首页 / 专利库 / 燃料种类 / 辛烷值 / 一种汽油加工方法

一种汽油加工方法

阅读:988发布:2020-05-11

专利汇可以提供一种汽油加工方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及加氢领域,具体地,公开了一种 汽油 加工方法,该方法包括:将汽油切割为轻汽油馏分、中汽油馏分和重汽油馏分,将所述轻汽油馏分进行醚化处理,将所述中汽油馏分进行抽提蒸馏处理,将所述重汽油馏分进行选择性加氢处理,其中,所述中汽油馏分的初馏点在40℃以上,且终馏点在170℃以下;所述抽提蒸馏处理得到富 溶剂 和精制后中汽油,所述抽提蒸馏处理使得中汽油馏分中芳 烃 和硫化物溶于抽提蒸馏溶剂形成所述富溶剂。该汽油加工方法能耗低、 脱硫 效率高,且 辛烷值 损失较低。,下面是一种汽油加工方法专利的具体信息内容。

1.一种汽油加工方法,其特征在于,该方法包括:将汽油切割为轻汽油馏分、中汽油馏分和重汽油馏分,将所述轻汽油馏分进行醚化处理,将所述中汽油馏分进行抽提蒸馏处理,将所述重汽油馏分进行选择性加氢处理,
其中,所述中汽油馏分的初馏点在40℃以上,且终馏点在170℃以下;所述抽提蒸馏处理得到富溶剂和精制后中汽油,所述抽提蒸馏处理使得中汽油馏分中芳和硫化物溶于抽提蒸馏溶剂形成所述富溶剂;
将所述中汽油馏分进行抽提蒸馏处理包括:在抽提蒸馏条件下,将中汽油馏分与抽提蒸馏溶剂接触
所述抽提蒸馏溶剂包括主溶剂、助溶剂和烯烃聚合抑制剂,以所述抽提蒸馏溶剂的总重量为基准,所述主溶剂的含量为70-99重量%,所述助溶剂的含量为0.999-29.9重量%,所述烯烃聚合抑制剂的含量为10-1000μg/g;
所述主溶剂选自砜类化合物;
所述助溶剂为N-甲基吡咯烷与三甘醇单甲醚和/或四甘醇单甲醚的混合物;所述烯烃聚合抑制剂为对叔丁基邻苯二酚和/或2-仲丁基-4,6-二硝基苯酚
2.根据权利要求1所述的汽油加工方法,其中,所述抽提蒸馏条件包括:入塔温度为60-
100℃;塔顶温度为70-90℃;塔底温度为140-180℃;塔顶压为0.05-0.1MPa。
3.根据权利要求1所述的汽油加工方法,其中,所述抽提蒸馏溶剂与所述中汽油馏分的进料重量比为1-4:1。
4.根据权利要求1所述的汽油加工方法,其中,所述抽提蒸馏溶剂与所述中汽油馏分的进料重量比为2-3:1。
5.根据权利要求1所述的汽油加工方法,其中,所述抽提蒸馏条件包括:入塔温度为80-
90℃;塔顶温度为75-85℃;塔底温度为155-170℃。
6.根据权利要求1所述的汽油加工方法,其中,所述主溶剂的含量为80-95重量%,所述助溶剂的含量为4.99-19.9重量%,所述烯烃聚合抑制剂的含量为100-1000μg/g。
7.根据权利要求1所述的汽油加工方法,其中,所述主溶剂的含量为85-90重量%,所述助溶剂的含量为9.95-14.9重量%,所述烯烃聚合抑制剂的含量为500-1000μg/g。
8.根据权利要求1所述的汽油加工方法,其中,所述砜类化合物选自环丁砜、3-甲基环丁砜、二甲基砜和二正丙基砜中的至少一种。
9.根据权利要求1所述的汽油加工方法,其中,所述砜类化合物为环丁砜。
10.根据权利要求1所述的汽油加工方法,其中,以100重量份的N-甲基吡咯烷酮计,所述三甘醇单甲醚和/或四甘醇单甲醚的用量为10-200重量份。
11.根据权利要求1所述的汽油加工方法,其中,以100重量份的N-甲基吡咯烷酮计,所述三甘醇单甲醚和/或四甘醇单甲醚的用量为50-100重量份。
12.根据权利要求1所述的汽油加工方法,其中,所述抽提蒸馏溶剂还包括缓蚀剂,所述缓蚀剂选自单乙醇胺、二乙醇胺、N-甲基单乙醇胺和N-甲基二乙醇胺中的至少一种。
13.根据权利要求12所述的汽油加工方法,其中,以抽提蒸馏溶剂的总重量为基准,所述缓蚀剂的含量为10-1000μg/g。
14.根据权利要求12所述的汽油加工方法,其中,以抽提蒸馏溶剂的总重量为基准,所述缓蚀剂的含量为100-1000μg/g。
15.根据权利要求12所述的汽油加工方法,其中,以抽提蒸馏溶剂的总重量为基准,所述缓蚀剂的含量为500-1000μg/g。
16.根据权利要求1所述的汽油加工方法,其中,将所述富溶剂进行汽提处理,得到溶剂和含有硫化物的芳烃。
17.根据权利要求16所述的汽油加工方法,其中,将所述含有硫化物的芳烃进行选择性加氢处理。
18.根据权利要求16所述的汽油加工方法,其中,将所述含有硫化物的芳烃与所述重汽油馏分混合后共同进行选择性加氢处理。
19.根据权利要求18所述的汽油加工方法,其中,所述选择性加氢处理的方法包括:在选择性加氢条件下,将所述含有硫化物的芳烃、重汽油馏分和氢气与选择性加氢脱硫催化剂接触。
20.根据权利要求1-19中任意一项所述的汽油加工方法,其中,所述中汽油馏分的初馏点在65℃以上,且终馏点在150℃以下。
21.根据权利要求1-19中任意一项所述的汽油加工方法,其中,所述轻汽油馏分为20-
25重量份,所述中汽油馏分为35-45重量份,所述重汽油馏分为30-45重量份。
22.根据权利要求1-19中任意一项所述的汽油加工方法,其中,该方法还包括在将汽油进行切割前,将汽油进行预加氢处理,所述预加氢处理使得汽油中的二烯烃饱和,小分子硫化物转化为大分子硫化物。
23.根据权利要求22所述的汽油加工方法,其中,将汽油进行预加氢处理的方法包括:
在预加氢处理条件下,将汽油和氢气与预加氢处理催化剂接触,所述预加氢处理催化剂含有载体和金属活性组分,所述金属活性组分含有钼和/或钨以及镍,且以催化剂总重量为基准,载体的含量为66-86%,以化物计,钼和/或钨的含量为2-9%,镍的含量为12-25%,其中,以氧化物计,钼和/或钨与镍的重量比为0.1-0.5:1。
24.根据权利要求22所述的汽油加工方法,其中,所述预加氢处理条件包括温度为120-
350℃,液时空速为0.5-10h-1,压力为1-10MPa,氢油体积比为200-700:1。
25.根据权利要求1-19中任意一项所述的汽油加工方法,其中,所述汽油含有芳烃、烯烃、烷烃和硫化物。

说明书全文

一种汽油加工方法

技术领域

[0001] 本发明涉及加氢领域,具体地,涉及一种汽油加工方法。

背景技术

[0002] 随着人们对环境保护的日益重视,环保法规也日渐严格,而降低汽油的硫含量被认为是改善空气质量的最重要措施之一。我国汽油产品中的大多数硫来自于热加工汽油调合组分,如催化裂化汽油。因此,必须将催化裂化汽油进行深度脱硫,单纯的催化汽油脱硫技术都会带来一个问题:催化汽油的辛烷值下降。
[0003] 为了在保证一定脱硫深度的前提下,使尽量少的烯饱和,目前,研究者开发的工艺技术主要有:中石化开发的S-zorb技术、中石化石油化工科学研究院开发的RSDS技术,以及法国Prime-G+技术。
[0004] 中石化开发的S-zorb技术用于全馏分催化汽油脱硫,脱硫后硫含量可以控制在10ppm以下,全馏分催化汽油的辛烷值损失在1-2个单位。中石化石油化工科学研究院开发的RSDS技术先将催化汽油切割成轻重馏分,轻馏分经过抽提脱硫醇,重馏分去选择性加氢脱硫,当该技术的产品硫含量小于10ppm时,轻馏分产量约20%,大部分需要加氢,全馏分汽油辛烷值损失大约3-4个单位。法国Prime-G+技术在进行汽油切割前,将汽油进行预加氢,预加氢过程将较轻的硫化物与二烯烃作用形成高沸点的硫化物,而烯烃不被饱和,该技术的辛烷值损失大约也为3-4个单位。
[0005] 因此,亟需一种能够实现汽油深度脱硫的同时,减少辛烷值损失的汽油加工方法。

发明内容

[0006] 本发明的目的是克服现有技术脱硫过程中,辛烷值损失严重的缺陷,提供一种汽油加工方法。该汽油加工方法能耗低、脱硫效率高,且辛烷值损失较低。
[0007] 本发明的发明人在研究过程中发现,在汽油加工过程中,先将汽油切割为轻汽油馏分、中汽油馏分和重汽油馏分,然后将中汽油馏分进行抽提蒸馏处理,抽提蒸馏处理使得中汽油馏分中芳烃和硫化物溶于抽提蒸馏溶剂形成富溶剂,精制后的中汽油被蒸馏出来,可以有效将硫化物和烯烃组分分开,部分避免了脱硫过程中,烯烃的饱和造成的辛烷值损失,进一步地,将所述富溶剂进行汽提处理,可以将溶剂和含有硫化物的芳烃分开,含有硫化物的芳烃可以与重汽油馏分一起进入选择性加氢脱硫装置进行脱硫处理。
[0008] 基于此,本发明提供一种汽油加工方法,该方法包括:将汽油切割为轻汽油馏分、中汽油馏分和重汽油馏分,将所述轻汽油馏分进行醚化处理,将所述中汽油馏分进行抽提蒸馏处理,将所述重汽油馏分进行选择性加氢处理,其中,所述中汽油馏分的初馏点在40℃以上,且终馏点在170℃以下;所述抽提蒸馏处理得到富溶剂和精制后中汽油,所述抽提蒸馏处理使得中汽油馏分中芳烃和硫化物溶于抽提蒸馏溶剂形成所述富溶剂。
[0009] 现有技术的液液抽提过程,一般适用于原料组分相对简单的原料的萃取,如重整油的芳烃抽提(原料基本只有芳烃、烷烃,几乎不含硫化物、氮化物、化物、只有少量的环烷烃、烯烃),当原料构成复杂时,在收率上将很难满足需求。催化汽油组分是一个原料组成极为复杂的原料,如果使用现有技术的液液抽提,芳烃、烯烃、硫化物(硫醇、硫醚、噻吩)的极性竞争将会非常激烈。按照溶剂分类选择性和轻重选择性叠加原理,轻的极性强的被溶剂携带走,重的极性弱的将损失掉。所以被液液抽提后的催化汽油中会含有重的硫化物,同时被溶剂溶解的油中将携带轻的烯烃。而本发明所述的抽提蒸馏将极性萃取和轻重蒸馏分离同时进行,在整个过程中既有芳烃、烯烃、硫化物(硫醇、硫醚、噻吩)的极性竞争过程,也有轻重物料蒸馏分离过程。这样可以最大限度的发挥溶剂极性萃取特性,也能体现组分轻重分离特性,使得溶剂携带芳烃组分以及中汽油中的硫化物形成富溶剂,精制后的中汽油被蒸馏出来,在富溶剂中很难看到烯烃,在精制后的中汽油中很难发现硫化物,进而能够在实现汽油深度脱硫的同时,减少辛烷值损失。
[0010] 本发明提供的汽油加工方法配合优选的抽提蒸馏溶剂可以更加有效地将硫化物和烯烃进行分离,减少脱硫过程中烯烃的损失。
[0011] 本发明提供的汽油加工方法与现有技术相比,存在如下优点:
[0012] (1)采用抽提蒸馏技术处理中汽油馏分,解决了精制中汽油的溶剂携带问题,取消了精制中汽油的洗,从而降低了装置运行能耗、避免了含硫污水的排放,同时也就不存在对水洗水的精制问题;
[0013] (2)采用抽提蒸馏技术,解决了烯烃极性和硫化物极性与溶剂的竞争问题,不存在高辛烷值的烯烃组分损失到富硫芳烃组分中的问题,因此不需要返洗油循环,所以能耗低;
[0014] (3)本发明不存在高辛烷值的烯烃组分损失到富硫芳烃组分中的问题,因此不需要为此添加反顶轻烯烃的戊烷组分,所以装置物耗低;
[0015] (4)由于没有轻组分返洗液循环,取消了返洗液塔,所以装置不存在冲塔、发泡等问题,提高了装置运行稳定性
[0016] 本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。

具体实施方式

[0017] 以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
[0018] 在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
[0019] 本发明提供一种汽油加工方法,该方法包括:将汽油切割为轻汽油馏分、中汽油馏分和重汽油馏分,将所述轻汽油馏分进行醚化处理,将所述中汽油馏分进行抽提蒸馏处理,将所述重汽油馏分进行选择性加氢处理,其中,所述中汽油馏分的初馏点在40℃以上,且终馏点在170℃以下;所述抽提蒸馏处理得到富溶剂和精制后中汽油,所述抽提蒸馏处理使得中汽油馏分中芳烃和硫化物溶于抽提蒸馏溶剂形成所述富溶剂。
[0020] 在本发明中,限定所述中汽油馏分的馏程范围,本领域技术人员可知的是,低于中汽油馏分的馏程的为轻汽油馏分,高于中汽油馏分的馏程的为重汽油馏分。例如,中汽油馏分的馏程为40-170℃,馏程低于40℃(不包括40℃)的为轻汽油馏分,馏程高于170℃(不包括170℃)的为重汽油馏分。
[0021] 在本发明中,所述汽油组成较为复杂,含有二烯烃、烯烃、环烯烃、烷烃、环烷烃、芳烃以及微量的硫化物、氮化物、氧化物和胶质等,优选所述汽油含有芳烃、烯烃、二烯烃、烷烃和硫化物。
[0022] 本发明所述的硫化物选自硫醇、硫醚、二硫化物和噻吩中的至少一种。
[0023] 本发明中所述切割采用的是本领域常规使用的切割技术,一般可以根据具体切割的原料的性质来选择切割的条件,切割的终点以尽可能使所述轻馏分、中馏分与重馏分分开为准。
[0024] 中汽油馏分的初馏点在40℃以上,且终馏点在170℃以下即可实现本发明的目的,而当所述中汽油馏分的初馏点在65℃以上,且终馏点在150℃以下时,更有利于减少汽油辛烷值的损失。
[0025] 根据本发明的一种优选实施方式,将所述中汽油馏分进行抽提蒸馏处理包括:在抽提蒸馏条件下,将汽油与抽提蒸馏溶剂接触
[0026] 本发明对所述中汽油馏分与抽提蒸馏溶剂接触的方式没有特别的限定,可以按照本领域常规手段进行,优选地,将中汽油馏分从抽提蒸馏塔中部引入,抽提蒸馏溶剂从抽提蒸馏塔上部引入。
[0027] 本发明对所述抽提蒸馏条件的选择范围较宽,只要使得中汽油馏分中芳烃和硫化物溶于抽提蒸馏溶剂即可,优选地,所述抽提蒸馏条件包括:入塔温度为60-100℃,优选为80-90℃;塔顶温度为70-90℃,优选为75-85℃;塔底温度为140-180℃,优选为155-170℃;
塔顶压为0.05-0.1MPa。
[0028] 本发明所述的抽提蒸馏将极性萃取和轻重蒸馏分离同时进行,在整个过程中既有芳烃、烯烃、硫化物(硫醇、硫醚、噻吩)的极性竞争过程,也有轻重物料蒸馏分离过程。这样可以最大限度的发挥溶剂极性萃取特性,也能体现组分轻重分离特性,使得溶剂携带芳烃组分以及中汽油中的硫化物形成富溶剂,精制后的中汽油被蒸馏出来,在富溶剂中很难看到烯烃,在精制后的中汽油中很难发现硫化物,进而能够在实现汽油深度脱硫的同时,减少辛烷值损失。
[0029] 本发明所述的抽提蒸馏溶剂与所述中汽油馏分的进料重量比的选择范围较宽,优选地,所述抽提蒸馏溶剂与中汽油馏分的进料重量比为1-4:1,进一步优选为2-3:1。
[0030] 根据本发明的一种优选实施方式,所述抽提蒸馏溶剂包括砜类化合物、二甘醇、三甘醇、四甘醇、聚乙二醇、2-吡咯烷、N-甲酰基吗啉、N-甲基吡咯烷酮、N-乙基吡咯烷酮、N-丙基吡咯烷酮、酸丙烯酯和碳酸亚乙酯中的至少一种。
[0031] 根据本发明的一种优选实施方式,所述抽提蒸馏溶剂包括主溶剂、助溶剂和烯烃聚合抑制剂,以所述抽提蒸馏溶剂的总重量为基准,所述主溶剂的含量为70-99重量%,所述助溶剂的含量为0.999-29.9重量%,所述烯烃聚合抑制剂的含量为10-1000μg/g;所述主溶剂选自砜类化合物;所述助溶剂选自N-甲基吡咯烷酮、三甘醇单甲醚、四甘醇单甲醚、糠和二甲基乙酰胺中的至少一种;所述烯烃聚合抑制剂选自对叔丁基邻苯二酚、二乙基羟胺、二丙基羟胺、2-仲丁基-4,6-二硝基苯酚和亚硝酸钠中的至少一种。该种优选的抽提蒸馏溶剂具有更高的溶解性和选择性,在能够保证对硫化物的选择性的同时,进一步降低对烯烃的选择性,且抽提蒸馏溶剂中的烯烃聚合抑制剂具有抑制烯烃聚合的作用,使得抽提蒸馏溶剂性能更加优异。
[0032] 本发明的发明人在研究过程中发现砜类化合物作为主溶剂,配合本发明所述的助溶剂和烯烃聚合抑制剂,不但可以提高溶剂对芳烃选择性,还克服了溶剂和芳烃不易于分离的缺陷。另外,主溶剂、助溶剂和烯烃聚合抑制剂的共同使用,不会造成单一组分功能的消退。
[0033] 为了进一步提高抽提蒸馏溶剂对芳烃和硫化物的选择性,降低对烯烃的选择性,优选地,以抽提蒸馏溶剂的总重量为基准,所述主溶剂的含量为80-95重量%,所述助溶剂的含量为4.99-19.9重量%,所述烯烃聚合抑制剂的含量为100-1000μg/g,进一步优选地,以复合溶剂的总重量为基准,所述主溶剂的含量为85-90重量%,所述助溶剂的含量为9.95-14.9重量%,所述烯烃聚合抑制剂的含量为500-1000μg/g。
[0034] 根据本发明,烯烃聚合抑制剂的含量指的是,相对于每g抽提蒸馏溶剂,烯烃聚合抑制剂的量。
[0035] 根据本发明的一种优选实施方式,所述助溶剂为N-甲基吡咯烷酮与三甘醇单甲醚和/或四甘醇单甲醚的混合物。采用该种优选实施方式更有利于主溶剂和助溶剂协同发挥作用,在保证对硫化物的选择性的同时,进一步降低对烯烃的选择性。
[0036] 在本发明中,优选地,以100重量份的N-甲基吡咯烷酮计,所述三甘醇单甲醚和/或四甘醇单甲醚的用量为10-200重量份,进一步优选为50-100重量份。采用该种优选实施方式,更有利于发挥N-甲基吡咯烷酮与三甘醇单甲醚和/或四甘醇单甲醚的作用,在保证对硫化物的选择性的同时,进一步降低了对烯烃的选择性。
[0037] 需要说明的是,当所述助溶剂同时含有N-甲基吡咯烷酮以及三甘醇单甲醚和四甘醇单甲醚时,所述三甘醇单甲醚和/或四甘醇单甲醚的用量指的是三甘醇单甲醚和四甘醇单甲醚的总用量。
[0038] 根据本发明的一种优选实施方式,所述烯烃聚合抑制剂为叔丁基邻苯二酚和/或2-仲丁基-4,6-二硝基苯酚,该优选的烯烃聚合抑制剂与抽提蒸馏溶剂中的主溶剂和助溶剂配合使用时,具有更好的抑制烯烃聚合的作用,抽提蒸馏溶剂性能更加优异。
[0039] 本发明对所述砜类化合物的选择范围较宽,可以为本领域常用的各种砜类化合物,例如所述砜类化合物可以选自环丁砜、3-甲基环丁砜、二甲基砜和二正丙基砜中的至少一种,优选为环丁砜。环丁砜在烃中的溶解度较好,对芳烃的选择性较优。
[0040] 以砜类化合物为主的抽提蒸馏溶剂在运行过程中,由于系统中O2的混入,易发生氧化作用生成酸性化合物和酸性聚合物,一旦系统中的PH值下降到4.5以下时,即表明砜类化合物溶剂降解,这种情况会对设备产生一定腐蚀,为了控制系统酸性,使得系统中的PH值保持在6.0左右,优选所述抽提蒸馏溶剂还包括缓蚀剂。
[0041] 本发明对所述缓蚀剂没有特别的限定,只要能控制系统酸性,同时确保添加的缓蚀剂不影响抽提蒸馏溶剂的性能即可,优选地,所述缓蚀剂选自单乙醇胺、二乙醇胺、N-甲基单乙醇胺和N-甲基二乙醇胺中的至少一种,最优选为单乙醇胺。
[0042] 本发明中,优选地,所述缓蚀剂配合抽提蒸馏溶剂中其他物质使用,可以有效控制系统酸性,从而确保整个系统的酸性稳定,在一定程度上也起到抑制烯烃聚合的作用。
[0043] 本发明对所述缓蚀剂的用量的选择范围较宽,优选地,以抽提蒸馏溶剂的总重量为基准,所述缓蚀剂的含量为10-1000μg/g,进一步优选为100-1000μg/g,更进一步优选为500-1000μg/g。
[0044] 根据本发明的一种优选实施方式,可以将所述富溶剂进行汽提处理,得到溶剂和含有硫化物的芳烃。所述溶剂可以进行循环使用。
[0045] 本发明对所述汽提的条件没有特别的限制,本领域技术人员可以根据实际情况进行适当的选择,例如汽提的条件可以包括:塔顶温度为80-90℃,塔底温度为170-178℃;塔顶压力为-40至-60KPa,回流/进料质量比为0.5-1:1。
[0046] 根据本发明的一种优选实施方式,将所述含有硫化物的芳烃进行选择性加氢处理,优选地,将所述含有硫化物的芳烃与所述重汽油馏分混合后共同进行选择性加氢处理。本发明所提供的汽油加工方法,使得汽油中几乎所有的硫化物溶入芳烃(几乎不含有烯烃),将抽提工艺应用到汽油脱硫过程中,高效的将烯烃和硫化物进行分离,将含有硫化物的芳烃(几乎不含有烯烃)与所述重汽油馏分混合后共同进行选择性加氢处理既能保证深度脱硫,又能减少辛烷值的损失。
[0047] 本发明对所述重汽油馏分和含有硫化物的芳烃进行选择性加氢处理,将其中的硫化物脱除,同时最大限度的保留重汽油中的烯烃,以避免过多的辛烷值损失。
[0048] 本发明对所述选择性加氢处理的条件没有特别的限定,现有技术所有选择性加氢处理方法均可用于本发明。
[0049] 在本发明中,所述选择性加氢处理的方法包括:在选择性加氢条件下,将所述含有硫化物的芳烃、重汽油馏分和氢气与选择性加氢脱硫催化剂接触。
[0050] 根据本发明的一种优选实施方式,所述选择性加氢条件包括:温度为250-600℃,液时空速为1-10h-1,氢油体积比为200-700,压力为2-8MPa;进一步优选地,温度为260-400℃,液时空速为2-6h-1,氢油体积比为250-400,压力为2-6MPa。
[0051] 根据本发明,所述选择性加氢脱硫催化剂可以为本领域常规使用的各种选择性加氢脱硫催化剂,一般含有载体和选择性加氢脱硫活性组分,其中,以所述选择性加氢脱硫催化剂的总量为基准,所述选择性加氢脱硫活性组分的含量为1-40重量%,载体的含量为60-99重量%。所述选择性加氢脱硫活性组分一般可以为选自ⅥB族、Ⅷ族元素中的一种或多种,优选情况下,所述选择性加氢脱硫活性组分一般为钨、镍、钼、钴中的一种或多种。所述载体可以为常规使用的各种载体,即可以为本领域常用的各种耐热的多孔材料,具体地,所述耐热的多孔材料可以为耐热的无机氧化物和/或酸盐。
[0052] 根据本发明所述的汽油加工方法,优选地,以汽油的总量为100重量份计,所述轻汽油馏分为15-30重量份,所述中汽油馏分为30-50重量份,所述重汽油馏分为20-50重量份,进一步优选地,所述轻汽油馏分为20-25重量份,所述中汽油馏分为35-45重量份,所述重汽油馏分为30-45重量份。
[0053] 根据本发明的一种优选实施方式,该方法还包括在将汽油进行切割前,将汽油进行预加氢处理,所述预加氢处理使得汽油中的二烯烃饱和,小分子硫化物转化为大分子硫化物。在将汽油进行切割前,将汽油进行预加氢处理,更有利于得到硫含量较低的轻汽油馏分,从而最大限度的避免辛烷值损失。
[0054] 根据本发明的一种优选实施方式,将汽油进行预加氢处理的方法包括:在预加氢处理条件下,将汽油和氢气与预加氢处理催化剂接触,所述预加氢处理催化剂含有载体和金属活性组分,所述金属活性组分含有钼和/或钨以及镍,且以催化剂总重量为基准,载体的含量为66-86%,以氧化物计,钼和/或钨的含量为2-9%,镍的含量为12-25%,其中,以氧化物计,钼和/或钨与镍的重量比为0.1-0.5:1。
[0055] 本发明中,所述钼和/或钨的含量是指钼和钨的总含量,即当所述金属活性成分同时含有钼和钨时,该含量表示钼和钨的总含量;当所述金属活性成分含有钼而不含有钨时,该含量表示钼的含量;当所述金属活性成分含有钨而不含有钼时,该含量表示钨的含量。
[0056] 本发明的发明人在研究过程中发现,只要所述预加氢处理催化剂中含有钼和/或钨以及镍,且满足前述的比例即可以实现本发明的目的,但优选情况下,以预加氢处理催化剂总重量为基准,所述载体的含量为66-86%,以氧化物计,钼和/或钨的含量为2-9%,镍的含量为12-25%时,预加氢处理催化剂的脱硫活性更高。
[0057] 进一步优选情况下,钼和/或钨与镍的重量比为0.1-0.5:1。本发明的发明人认为,尽管钼和钨中的至少一种与镍进行配合作为金属活性组分就可以实现本发明的目的,但是在金属活性成分中含有钼和钨时,特别是钼与钨的重量比为0.1-0.9:1时,优选为0.1-0.6:1时,预加氢处理催化剂的脱硫活性可以进一步提高。
[0058] 根据本发明,所述预加氢处理催化剂的总孔体积可以为0.3-1.2cm3/g,优选为0.5-1.0cm3/g。
[0059] 根据本发明,所述预加氢处理催化剂的比表面积可以为30-150m2/g,优选为70-150m2/g。本发明中比表面积为BET比表面积。
[0060] 所述载体可以为本领域常用的各种耐热的多孔材料。具体地,所述耐热的多孔材料可以为耐热的无机氧化物和/或硅酸盐。
[0061] 优选地,所述载体为氧化、氧化硅、氧化、氧化镁、氧化锆、氧化钍、氧化铍、粘土和分子筛中的一种或多种。更优选地,所述载体为氧化铝、氧化硅和分子筛中的一种或多种。
[0062] 根据本发明,本发明对所述载体的孔体积无特殊要求,优选为0.8-1.4cm3/g。
[0063] 本发明中所述的预加氢处理催化剂可以参照现有技术的各种方法进行制备,例如可以采用常规的浸渍法制备,例如干式浸渍法(即等体积浸渍法),所述干式浸渍法例如可以按如下步骤进行:将钼和/或钨盐以及镍盐溶液(如去离子水溶液)与载体接触,使得最终形成的预加氢处理催化剂中钼和/或钨的含量低于10%,镍的含量为10-30%,然后干燥,焙烧即可得到本发明所述的预加氢处理催化剂。其中将钼和/或钨盐以及镍盐溶液(如去离子水溶液)与载体接触的方法可以按如下两种方法进行:(1)可以将钼盐和/或钨盐以及镍盐形成一种混合水溶液后再将载体浸入其中;(2)也可以将钼盐和/或钨盐以及镍盐各自配成水溶液,然后将载体依次与钼盐和/或钨盐以及镍盐溶液接触(与三种溶液接触的次序任意)。
[0064] 根据本发明,所述镍盐可以是各种水溶性镍盐,如可以是硝酸镍、氯化镍、硫酸镍等常用的各种水溶性镍盐中的一种或多种;钨盐可以是各种水溶性钨盐,如可以是偏钨酸铵、硫代钨酸铵等常用的各种水溶性钨盐中的一种或多种;钼盐可以是各种水溶性钼盐,如可以是七钼酸铵、四钼酸铵、二钼酸铵等常用的各种水溶性钼盐中的中的一种或多种。
[0065] 本发明对所述干燥、焙烧的方法和条件无特殊要求,可以参照现有技术进行。例如,干燥的温度可以是80-200℃,干燥的时间可以是1-10h。焙烧的温度可以是300-800℃,焙烧的时间可以是1-8h。
[0066] 本发明对所述预加氢处理处理的条件没有特别的限定,例如,所述选择性加氢处理条件可以包括:温度为120-350℃,液时空速为0.5-10h-1,压力为1-10MPa,氢油体积比为200-700:1。
[0067] 在本发明中,将汽油切割得到的轻汽油馏分进行醚化处理,所述醚化处理的条件为使得轻汽油馏分中的C5、C6烯烃尽可能转化成相应的醚(高辛烷值汽油组分),从而提高汽油辛烷值。
[0068] 本发明对所述醚化处理的条件没有特别的限定,本领域技术人员可以根据实际情况进行选择。
[0069] 具体地,所述醚化处理的方法包括:在醚化条件下,将所述轻汽油馏分和醚化试剂与醚化催化剂接触,得到醚化产物。
[0070] 根据本发明,本发明的醚化条件可以为常规的醚化条件,本发明的醚化条件一般包括:温度为30-200℃,优选为65-85℃,压力为0.1-5MPa,优选为0.5-2MPa,液时空速为0.1-5h-1,优选为0.5-2.5h-1,醚化试剂与轻汽油馏分的体积比为0.1-10:1,优选为0.5-5:
1。
[0071] 本发明中,所述醚化试剂可以为各种常规使用的各种醚化试剂,优选为甲醇和/或乙醇。
[0072] 本发明中,所述醚化催化剂可以为各种常规使用的醚化催化剂,例如可以为阳离子交换树脂和/或杂多酸,其中,所述阳离子交换树脂优选为强酸性阳离子交换树脂,所述含有杂多酸化合物的催化剂可以为杂多酸化合物本身,优选情况下,所述含有杂多酸型化合物的催化剂为固载杂多酸催化剂,所述固载杂多酸催化剂可以是常规的固载杂多酸催化剂,例如可以为将杂多酸化合物固载到活性炭上的固载杂多酸催化剂(参见文献:固载杂多酸催化剂的轻汽油醚化反应性能研究,徐海升等,西安石油大学石油炼化工程技术研究中心)。
[0073] 本发明中,可以将轻汽油馏分进行醚化后的醚化产物根据需要直接使用,也可以将从中汽油馏分得到的富硫芳烃和重汽油馏分选择性加氢脱硫后的脱硫产物根据需要进行直接使用,一般而言,因为富硫芳烃和重汽油馏分选择性加氢脱硫后的产物含硫量相对较低(一般在10μg/g以下),而轻汽油馏分醚化后的醚化产物因为没有脱硫,可能硫含量相对较高(一般在20-60μg/g),因此,优选情况下还是将所述轻汽油馏分进行醚化后的醚化产物和富硫芳烃和重汽油馏分选择性加氢脱硫后的脱硫产物以及中汽油馏分抽提蒸馏得到的抽余油进行混合后再使用,这样调和后的产物含硫量适当,燃烧后既可以满足当前的排放标准,又不会导致能源的浪费。即优选情况下,本发明的汽油加工方法还包括将所述轻汽油馏分进行醚化处理得到的醚化产物、中汽油馏分进行抽提蒸馏处理得到的抽余油以及富硫芳烃和重汽油馏分进行选择性加氢处理得到的产物混合。
[0074] 本发明中,脱硫率的定义为处理前的汽油中硫的含量与处理后的汽油中的硫含量的差值与处理前的汽油中硫的含量的比值,计算方法为(处理前的汽油中硫的含量-处理后的汽油中的硫含量)/处理前的汽油中硫的含量。
[0075] 本发明中,所述辛烷值为研究法辛烷值,测定方法参照常规的研究法辛烷值的测定方法即可,本发明无特殊要求。
[0076] 以下通过具体实施例详细说明本发明的实施过程和所产生的有益效果,旨在帮助阅读者更清楚地了解本发明的精神实质所在,但不能对本发明的实施范围构成任何限定。
[0077] 以下实施例中,采用的催化汽油性质列于表1。
[0078] 表1
[0079]原料性质  
3
密度(20℃),kg/m 0.737
硫含量,μg/g 1800
烯烃,wt% 37.8
芳烃,wt% 24.2
初馏点,℃ 42
终馏点,℃ 203
研究法辛烷值RON 92
[0080] 实施例1
[0081] (1)预加氢处理
[0082] 根据干式浸渍法制备预加氢处理催化剂:干式浸渍法包括用七钼酸铵和偏钨酸铵以及硝酸镍的水溶液进行干式浸渍。调节前体溶液中三种盐溶液的浓度,在载体上沉积预期重量的金属氧化物,将浸渍后得到的固体在室温下熟化4h,在120℃干燥6h。最后,干燥后的固体在500℃下的空气中煅烧两小时,使用的载体为氧化铝载体(孔体积为1.2cm3/g),按照前述方法制备的预加氢处理催化剂含有2.5重量%的MoO3,5.5重量%的WO3,18重量%的NiO,且比表面积(BET)为70m2/g,总孔体积(TPV)为1.0cm3/g;
[0083] 取0.2克预加氢处理催化剂,对预加氢处理催化剂进行硫化,硫化的条件为采用含5重量%CS2的正己烷为硫化油于液时空速36h-1下硫化3h,进料速率为0.3毫升/分钟,H2流量为180毫升/分钟,氢分压为3.2MPa;
[0084] 将硫化后的预加氢处理催化剂与催化汽油(性质见表1)进行预加氢处理反应,反应条件包括:压力为3.2MPa,液时空速为6h-1,进料速率为0.2毫升/分钟,氢油体积比为300,得到预加氢处理后产物。
[0085] (2)对预加氢处理后产物进行切割:将预加氢处理后产物进行蒸馏切割,得到馏程为150-203℃的重汽油馏分(35重量份)、馏程为65-150℃的中汽油馏分(40重量份)和馏程为42-65℃的轻汽油馏分(25重量份)。
[0086] (3)轻汽油馏分进行醚化处理:将步骤(2)所得馏程为42-65℃的轻汽油馏分在温-1度为75℃、压力为1MPa、液时空速为1h ,醚化试剂为甲醇、醚化催化剂为商购自深圳美恒环保技术有限公司的强酸性阳离子树脂、且甲醇与轻汽油馏分的体积比为1的条件下进行醚化,得到醚化产物。
[0087] (4)中汽油馏分抽提蒸馏:将中汽油馏分引入抽提蒸馏塔中部,将抽提蒸馏溶剂F-1(具体组成见表2)从上部引入抽提蒸馏塔(抽提蒸馏溶剂与中汽油馏分的质量比为2:1),经过抽提蒸馏,抽提蒸馏条件包括:入塔温度为84℃,塔顶温度为76-77℃,塔底温度为158-
160℃,塔顶操作压力为0.1MPa,抽提蒸馏塔塔顶排出抽余油,抽提蒸馏塔塔底的富含芳烃和硫化物的富溶剂进入汽提塔进行汽提,具体汽提条件包括:塔顶温度为80-82℃,塔底温度为177-179℃,回流/进料质量比为1;塔底得到贫溶剂,塔顶得到富硫芳烃,系统运行6个月后,得到的贫溶剂PH值约为7。
[0088] (5)选择性加氢脱硫处理:将步骤(4)得到的富硫芳烃和步骤(2)所得馏程为150-203℃的重汽油馏分进行选择性加氢脱硫处理,选择性加氢条件包括:温度为280℃,液时空速为2.5h-1,氢油体积比为250,压力为2.5MPa,催化剂商购自石油化工科学研究院,牌号为RSDS-31,得到硫含量为10μg/g的选择性加氢脱硫产物。
[0089] (6)醚化产物、抽余油与选择性加氢处理产物混合:将步骤(3)所得醚化产物、步骤(4)所得抽余油以及步骤(5)所得选择性加氢处理产物混合,得到低硫反应油,该低硫反应油的含硫量及研究法辛烷值均见表3,脱硫率及辛烷值损失见表3。
[0090] 表2抽提蒸馏溶剂组成
[0091]
[0092] 注:抽提蒸馏溶剂余量为水
[0093] 实施例2
[0094] 按照实施例1的方法,不同的是:
[0095] 步骤(1):按照前述方法制备的预加氢处理催化剂含有1重量%的MoO3,3重量%的WO3,20重量%的NiO,且比表面积(BET)为90m2/g,总孔体积(TPV)为0.8cm3/g。
[0096] 步骤(4):将抽提蒸馏溶剂F-1替换为将抽提蒸馏溶剂F-2,将抽提蒸馏溶剂F-2具体组成见表2,抽提蒸馏溶剂与中汽油馏分的质量比为3:1。
[0097] 实施例3
[0098] 按照实施例1的方法,不同的是:
[0099] 步骤(1):按照前述方法制备的预加氢处理催化剂含有0.5重量%的MoO3,4.5重量%的WO3,25重量%的NiO,且比表面积(BET)为100m2/g,总孔体积(TPV)为0.5cm3/g。
[0100] 步骤(4):将抽提蒸馏溶剂F-1替换为将抽提蒸馏溶剂F-3,将抽提蒸馏溶剂F-3具体组成见表2,抽提蒸馏溶剂与中汽油馏分的质量比为2.5:1。
[0101] 实施例4
[0102] 按照实施例1所述的方法进行,不同的是,步骤(4)所采用的抽提蒸馏溶剂中,采用相同质量的N-甲基吡咯烷酮替代三甘醇单甲醚。系统运行6个月后,得到的贫溶剂PH值约为7,且贫溶剂中无聚合烯烃悬浮物。
[0103] 实施例5
[0104] 按照实施例1所述的方法进行,不同的是,步骤(4)所采用的抽提蒸馏溶剂中,采用相同质量的三甘醇单甲醚替代N-甲基吡咯烷酮。系统运行6个月后,得到的贫溶剂PH值约为7,且贫溶剂中无聚合烯烃悬浮物。
[0105] 实施例6
[0106] 按照实施例1所述的方法进行,不同的是,步骤(4)所采用的抽提蒸馏溶剂中,采用相同质量的二乙基羟胺替代叔丁基邻苯二酚。系统运行6个月后,得到的贫溶剂PH值约为7,贫溶剂中出现少量聚合烯烃悬浮物。
[0107] 实施例1相比,系统运行6个月后,贫溶剂中出现少量聚合烯烃悬浮物,即发生了少许烯烃聚合反应。
[0108] 实施例7
[0109] 按照实施例1所述的方法进行,不同的是,所述抽提蒸馏溶剂中不含有缓蚀剂,缓蚀剂用相同质量的环丁砜替代。系统运行6个月后,得到的贫溶剂PH值下降到5.5,性能下降。
[0110] 实施例8
[0111] 按照实施例1所述的方法进行,不同的是,所述抽提蒸馏溶剂使用CN1262264A所述的以环丁砜为主溶剂、邻二甲苯为助溶剂的复合溶剂替代,以所述复合溶剂的总重量为基准,所述环丁砜的含量为94重量%,所述邻二甲苯的含量为6重量%。
[0112] 实施例9
[0113] 按照实施例1所述的方法进行,不同的是,按照实施例1方法进行预加氢处理催化剂的制备,不同的是,调节前体溶液中三种盐溶液的浓度,在载体上沉积预期重量的金属氧化物,性质如下:15重量%的MoO3,0重量%的WO3,9重量%的NiO,且比表面积(BET)为90m2/3
g,总孔体积(TPV)为0.8cm/g。
[0114] 实施例10
[0115] 按照实施例1的方法进行,不同的是,不包括步骤(1)所述的预加氢处理,直接对催化汽油进行切割。
[0116] 对比例1
[0117] 按照实施例1的方法,不同的是,步骤(2)中对预加氢处理后产物进行切割:将预加氢处理后产物在70℃下进行蒸馏切割,得到馏程为70-203℃的重馏分和馏程为42-70℃的轻馏分,并且不包括步骤(4)。
[0118] 表3
[0119]脱硫率(%) 辛烷值损失
实施例1 94.3 0.9
实施例2 93.6 0.9
实施例3 93.3 0.9
实施例4 90.5 1.3
实施例5 88.2 1.4
实施例6 86.1 1.6
实施例7 93.8 1.2
实施例8 84.3 1.8
实施例9 83.2 1.7
实施例10 80.0 2.0
对比例1 85.4 2.9
[0120] 由上述内容可以看出,采用本发明提供的汽油加工方法解决了烯烃极性和硫化物极性与溶剂的竞争问题,不存在高辛烷值的烯烃组分损失到富硫芳烃组分中的问题,因此不需要返洗油循环,所以能耗低;本发明提供的汽油加工不存在高辛烷值的烯烃组分损失到富硫芳烃组分中的问题,因此不需要为此添加反顶轻烯烃的戊烷组分,所以装置物耗低;由于没有轻组分返洗液循环,取消了返洗液塔,所以装置不存在冲塔、发泡等问题,提高了系统运行稳定性。本发明提供的汽油加工方法配合优选的抽提蒸馏溶剂可以更加有效地将硫化物和烯烃进行分离,减少脱硫过程中烯烃的损失。优选情况下,该汽油加工方法配合特定的预加氢处理催化剂更有利于提高脱硫率,并且进一步减少辛烷值的损失。
[0121] 以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其他的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈