首页 / 专利库 / 电子零件及设备 / 压电谐振器 / Piezoelectric thin multilayer composite resonators

Piezoelectric thin multilayer composite resonators

阅读:182发布:2023-04-13

专利汇可以提供Piezoelectric thin multilayer composite resonators专利检索,专利查询,专利分析的服务。并且Alternate thin layers of piezoelectric material having differently orientated piezoelectric axes with respect to each other are placed on a substrater and electroded to form a high frequency resonator. The thickness mode resonant frequency of the composite structure corresponds a proper fraction of the resonator operating frequency, layer thickness varying between 0.2 and 100 microns corresponding to approximately 10 percent of the substrate thickness.,下面是Piezoelectric thin multilayer composite resonators专利的具体信息内容。

1. A high frequency piezoelectric resonator device for operation at a frequency in the range represented by a wavelength of the order of from 0.2 to 100 microns, said device comprising in combination a wafer substrate, a plurality of alternate superposed layers of piezoelectric material of first and second different types with respect to piezoelectric axes and capable of acoustic vibrations, and a plurality of electrodes, there being at least two of said layers of the first type having parallel faces and having piezoelectric properties, each electrode being applied to a different one of said faces, the superposed layers being mounted on said substrate with parallel faces in force transmitting relation to each other with means for energizing one of the piezoelectric layers, the layers and substrate together forming a composite structure having an overall thickness defining a resonant frequency in a thickness mode of vibration corresponding to 1/n times the frequency at which the resonator is to be operated, where n is any integer, and the thickness of each layer is substantially in the range of from 0.2 to 100 microns and is of the order of 1 percent to 10 percent of substrate thickness.
2. A high frequency piezoelectric resonator device for operation at a frequency in the range represented by a wavelength of the order of 0.2 to 100 microns, said device comprising in combination a wafer substrate, a plurality of superposed layers of piezoelectric material mounted thereon with parallel surfaces in force transmitting relation to each other with means for energizing one of the layers, together formiNg a composite structure having an overall thickness defining a resonant frequency in a thickness mode of vibration corresponding to 1/n times the frequency at which the resonator is to be operated, where n is any integer, and the layer thickness is substantially in the range from 0.2 to 100 microns and is of the order of 1 percent to 10 percent of substrate thickness, the piezoelectric axes of successive layers being tilted from a normal to the surface.
3. A device as in claim 2 wherein the piezoelectric axes of successive layers are tilted in different directions from the normal.
4. A high frequency piezoelectric resonator device comprising in combination a wafer substrate, a plurality of superposed layers of piezoelectric material mounted thereon with parallel faces in force transmitting relation to each other with means for energizing one of the layers, together forming a composite structure having an overall thickness defining a resonant frequency in a thickness mode of vibration corresponding to 1/n times the frequency at which the resonator is to be operated, wherein n is any integer and the layer thickness is substantially in the range from 0.2 to 100 microns and is of the order of 1 percent to 10 percent of substrate thickness there being alternate layers of piezoelectric material capable of acoustic vibrations, said alternate layers being of different types with respect to their piezoelectric axes, said layers of the first type having parallel faces and having piezoelectric properties with piezoelectric axes extending in a predetermined direction, the layers of the second type having its piezoelectric axes oriented in a different direction the axes of both types being titled with respect to a normal from the parallel faces, and said layers of the first type having a plurality of electrodes, each electrode being applied to a different one of said faces, each of at least three of such electrodes being adapted for connection to an exterior terminal.
5. A device as in claim 4 wherein the layers of the first and second types differ with respect to piezoelectric response.
6. A device as in claim 4 wherein the layers of the second type have opposite faces which are electrically connected.
7. A device as in claim 4 wherein the layers of the second type are inactive piezoelectrically.
8. A device as in claim 4 wherein the layers of the first and second types are piezoelectric with piezoelectric responses differently oriented.
9. A device as in claim 4 wherein the layers have a thickness shear mode of vibration with piezoelectric axes of layers of the first type tilting at one angle with respect to a normal to the layer face and piezoelectric axes of layers of the second type tilting at a different angle with respect to a normal to the faces of the layers.
说明书全文
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈