首页 / 专利库 / 电气元件和设备 / 电机 / 变压器 / 混合动力车辆的功率控制器

混合动车辆的功率控制器

阅读:303发布:2024-02-10

专利汇可以提供混合动车辆的功率控制器专利检索,专利查询,专利分析的服务。并且一种混合车辆的功率 控制器 ,包括:第一驱动 马 达(2、5),第一驱动马达(2、5)驱动车辆(1)的前轮(4)和后轮(6)中的任一个;引擎(3),引擎(3)通过 离合器 (8)驱动车辆的前轮和后轮中的一个轮子或者对应的另一轮子;发 电机 (11),发电机(11)由引擎(3)驱动;和 变压器 (18),变压器(18)降压所产生的电功率,该电功率从发电机(11)供给至第一驱动马达(2、5)和 电池 (20)。功率控制器根据变压器的 温度 限制变压器的通过功率,并且当变压器的通过功率被限制时,离合器被连接。,下面是混合动车辆的功率控制器专利的具体信息内容。

1.一种混合动车辆的功率控制器,包含:
第一驱动达,所述第一驱动马达驱动车辆(1)的前轮(4)和后轮(6)中的一方;
引擎(3),所述引擎(3)通过离合器(8)驱动所述车辆的所述前轮(4)和所述后轮(6)中的所述一方或者所述前轮(4)和所述后轮(6)中的另一方;
电机(11),所述发电机(11)由所述引擎(3)驱动;和
变压器(18),所述变压器(18)对产生的电功率降压,所述电功率从所述发电机(11)被供给至所述第一驱动马达(2、5)和电池(20),其特征在于:
所述功率控制器进一步包含:
限制部(27),所述限制部(27)根据所述变压器(18)的温度限制所述变压器(18)的通过功率;和
连接部(27),所述连接部(27)切换所述离合器(8)的连接;并且
当所述变压器(18)的所述通过功率由所述限制部(27)限制时,所述连接部(27)连接所述离合器,从而由所述引擎(3)驱动所述前轮(4)和所述后轮(6)中的所述一方或者所述前轮(4)和所述后轮(6)中的另一方。
2.如权利要求1所述的混合动力车辆的功率控制器,其特征在于,进一步包含第二马达(2),从所述发电机(11)产生的电功率和从所述电池(20)释放并且由所述变压器(18)升压的电功率中的至少一个被供给至所述第二马达(2),从而驱动所述另一轮子。
3.如权利要求1所述的混合动力车辆的功率控制器,其特征在于:
所述第一驱动马达(2、5)和所述引擎(3)驱动相同的轮子。
4.如权利要求1至3中任一项所述的混合动力车辆的功率控制器,其特征在于:
随着所述变压器(18)的温度增加,所述限制部(27)更加严格地限制所述变压器(18)的通过功率;
所述功率控制器进一步包含:
评估部(27),所述评估部(27)评估所述电池(20)的SOC;和
充电部(27),所述充电部(27)控制所述电池的充电;并且
当所述连接部根据所述变压器(18)的通过功率的限制而连接所述离合器(8)时,如果基于由所述评估部评估的所述SOC而确定所述电池(20)需要充电,并且还确定由所述限制部(27)限制的所述变压器(18)的通过功率的值超过预设的下限确定值,则所述充电部(27)使驱动所述前轮(4)和所述后轮(6)中的所述一方或所述前轮(4)和所述后轮(6)中的所述另一方的所述引擎(3)驱动所述发电机(11),对由所述变压器(18)产生的电功率降压,并且使用其对所述电池(20)充电。
5.如权利要求4所述的混合动力车辆的功率控制器,其特征在于:
当所述连接部根据对所述变压器(18)的通过功率的限制而连接所述离合器(8)时,如果基于由所述评估部评估的所述SOC而确定所述电池(20)需要充电,并且还确定由所述限制部(27)限制的所述变压器(18)的通过功率的值等于或者低于所述下限确定值,则所述充电部(27)使所述第一驱动马达(2、5)再发电,并且使用再发电的电功率对所述电池(20)充电。
6.如权利要求4所述的混合动力车辆的功率控制器,其特征在于:
当使所述引擎(3)驱动所述发电机(11)时,所述充电部(27)增加所述引擎(3)的输出,增加量是所述发电机(11)的驱动负载的量。
7.如权利要求5所述的混合动力车辆的功率控制器,其特征在于:
当使所述第一驱动马达(2、5)再发电时,所述充电部(27)增加所述引擎(3)的输出,增加量是所述第一驱动马达(2、5)的再发电负载的量。

说明书全文

混合动车辆的功率控制器

技术领域

[0001] 本发明涉及一种混合动力车辆的功率控制器,具体地,涉及配备有功率转换器(升压转换器)的混合动力车辆的功率控制器,该功率转换器对驱动电池的电功率升压,并且将驱动电池的电功率供给至驱动达。

背景技术

[0002] 例如,驱动模式在串联模式和并联模式之间能够切换的混合动力车辆利用驱动马达和引擎构成,驱动马达连接至驱动轮,引擎通过离合器也连接至驱动轮。在串联模式中,通过断开离合器以由引擎驱动马达发电机,并且使用所产生的电功率驱动驱动马达,以及利用剩余功率对驱动电池充电,从而使车辆行驶。同时,在并联模式中,通过连接离合器以将引擎的驱动力传输至驱动轮,或者除了引擎的驱动力之外,也将驱动马达的驱动力传输至驱动轮,从而使车辆行驶。
[0003] 顺便提及,如日本平开专利No.2007-325352中所述的,例如,在近年来被实际投入使用的混合动力车辆中,驱动电池的电功率不仅由逆变器从DC转换至AC,而且由升压转换器升压,从而提高驱动马达、逆变器等的效率。升压转换器具有这样的功能:不仅对来自驱动电池的电功率升压而且对例如在上述串联模式中由马达发电机产生的电功率降压。降压后的电功率被用以对驱动电池充电。

发明内容

[0004] 本发明待解决的问题
[0005] 然而,上述混合动力车辆面临如下问题:被施加以阻止升压转换器变得过热的功率限制减少了驱动电池的充电量并因此缩短了车辆航程。
[0006] 例如,由升压转换器升压或者降压的电功率增加(下文称之为通过功率),或者在高温环境下的操作等增加了升压转换器的温度并且由于过热可能导致故障。因而,为了保护部件,采取了对策以限制在某个高温范围内的通过功率。这种功率限制不仅被施加于从驱动电池供给至驱动马达的电功率,而且被施加于上述串联模式等中由马达发电机产生的电功率。
[0007] 由此,即使原本切换至串联模式的目的之一是对驱动电池充电,也无法实现对电池充电。结果,驱动电池的SOC(state of charge,充电状态)被降低,从而车辆的航程被缩短。
[0008] 本发明的目的是提供一种混合动力车辆的功率控制器,当升压转换器的温度升高时,该功率控制器能够通过限制通过功率而保护升压转换器,并且也能够,通过避免由于通过功率的限制而导致的驱动电池的充电量的减少,同时在此时维持车辆的行驶状态,从而确保车辆足够的航程。
[0009] 用于解决问题的手段
[0010] 为了实现以上目的,本发明的混合动力车辆的功率控制器包括:第一驱动马达,第一驱动马达驱动车辆的前轮和后轮中的一方;引擎,引擎通过离合器驱动车辆的前轮和后轮中的一方或者前轮和后轮中的另一方;发电机,发电机由引擎驱动;和变压器,变压器对从发电机产生的供给至第一驱动马达和电池的电功率降压,其特征在于:功率控制器进一步包括限制部和连接部,限制部根据变压器的温度限制变压器的通过功率,连接部切换离合器的连接;并且当变压器的通过功率由限制部限制时,连接部连接离合器,从而由引擎驱动前轮和后轮中的一方或者前轮和后轮中的另一方。
[0011] 根据以这种方式构造的混合动力车辆的功率控制器,引擎驱动发电机,所产生的电功率由变压器降压,从而被供给至第一驱动马达和电池。在本发明中,虽然电池的充电量通过根据变压器的温度而限制通过功率而减小,但是离合器此时被连接从而由引擎驱动一个或另一轮子。结果,供给至第一驱动马达侧的功率被停止,并且变压器的通过功率下降。
[0012] 降低的通过功率降低了变压器的温度,并且减少了由限制部施加的功率限制。例如,即使电池此时不需要充电,稍后也可能需要充电。然而,因为在此时施加在变压器上的功率限制将会被减少,电池能够没有阻碍地通过变压器被充电,从而能够避免电池的充电量减少。
[0013] 在本发明的另一个实施例中,混合动力车辆的功率控制器进一步包括第二马达,从发电机产生的电功率和从电池释放并由变压器升压的电功率中的至少一个被供给至第二马达从而驱动另一轮子。
[0014] 根据此实施例,车辆能够通过驱动一个轮子和另一轮子中的每一个而被驱动。
[0015] 在本发明的另一个实施例中,第一驱动马达和引擎驱动相同的轮子。
[0016] 根据此实施例,本发明的混合动力车辆能够被构造为两轮驱动车辆。
[0017] 在本发明的另一个实施例中,随着变压器的温度增加,限制部更加严格地限制变压器的通过功率;功率控制器进一步包括评估部和充电部,评估部评估电池的SOC,充电部控制电池的充电;并且,当连接部根据对变压器的通过功率的限制而连接离合器时,如果基于由评估部评估的SOC而确定电池需要充电,并且也确定由限制部限制的变压器的通过功率的值超过预设的下限确定值,则充电部致使驱动前轮和后轮中的一方或者前轮和后轮中的另一方的引擎驱动发电机,对变压器产生的电功率降压,并且使用该电功率对电池充电。
[0018] 根据此实施例,当连接离合器时,如果基于SOC而确定电池需要充电,并且也确定由限制部限制的变压器的通过功率的值超过下限确定值,则引擎驱动发电机,所产生的电功率由变压器降压,并且该电功率被用以对电池充电。由此,如果电池已被充电,则能够继续充电。
[0019] 在本发明的另一个实施例中,当连接部根据对变压器的通过功率的限制而连接离合器时,如果基于由评估部评估的SOC而确定电池需要充电,并且确定由限制部限制的变压器的通过功率的值等于或者低于下限确定值,充电部致使第一驱动马达再发电,并且使用再发电的电功率对电池充电。
[0020] 根据此实施例,因为当对电池充电时由发电机产生的电功率被变压器限制,所以,如果变压器由限制部限制的通过功率的值等于或者低于下限确定值,则实质上不可能对电池充电。在这种情况下,因为由第一驱动马达再发电的电功率被用以对电池充电,而再发电的电功率不经过变压器,所以能够尽可能地增加电池的充电量。
[0021] 在本发明的另一个实施例中,当致使引擎驱动发电机时,充电部增加引擎的输出,增加量为发电机的驱动负载的量。
[0022] 根据此实施例,引擎输出的增加确保驱动轮对应于加速器的操作的驱动力,从而能够维持优良的驾驶性能。
[0023] 在本发明的另一个实施例中,当致使第一驱动马达再发电时,充电部增加引擎的输出,增加量为第一驱动马达的再发电负载的量。
[0024] 根据此实施例,引擎输出的增加确保驱动轮对应于加速器操作的驱动力,从而能够维持优良的驾驶性能。
[0025] 如前文所述,根据本发明的混合动力车辆的功率控制器,通过当变压器的温度升高时限制通过功率,能够保护变压器,并且,通过避免由于限制通过功率而导致的电池的充电量的减少,同时在此时维持车辆的行驶状态,从而确保车辆足够的航程。附图说明
[0026] 图1是插电式混合动力车辆的总体构造示图,本发明的实施例的功率控制器被应用于该插电式混合动力车辆;
[0027] 图2是示出基于升压转换器的温度Tcvtr而计算功率限制值Wlimit的图表的示图;
[0028] 图3是示出由车辆ECU执行的功率控制程序的流程图;以及
[0029] 图4是另一个示例的总体构造示图,在该另一个示例中,本发明应用于前轮驱动的混合动力车辆。

具体实施方式

[0030] 在下文中,将描述本发明被实施为插电式混合动力车辆(下文称之为车辆1)的功率控制器的实施例。
[0031] 图1是插电式混合动力车辆的总体构造示图,实施例的功率控制器应用于该插电式混合动力车辆。
[0032] 实施例的车辆1是四轮驱动车辆,该四轮驱动车辆被构造成通过前马达2(第二驱动马达)的输出或者前马达2和引擎3的输出而驱动前轮4(第二驱动轮),并且通过后马达5(第一驱动马达)的输出而驱动后轮6(第一驱动轮)。
[0033] 前马达2的输出轴连接至前轮4的驱动轴7,引擎3通过离合器8也连接至驱动轴7。而且,前轮4通过前差速器9和左右驱动轴10连接至驱动轴7。当离合器8被连接时前马达2的驱动力和引擎3的驱动力通过驱动轴7、前差速器9和左右驱动轴10被传输至前轮4,并且在前轮4中产生驱动力用于使车辆运行。马达发电机(发电机)11连接至引擎3的输出轴。无论离合器8是否被连接,马达发电机11能够通过由引擎3驱动而任意地产生电功率,并且当离合器8被断开时也用作用于使引擎3从停止状态起动的起动器。
[0034] 同时,后马达5的输出轴连接至后轮6的驱动轴12,并且后轮6通过后差速器13和左右驱动轴14连接至驱动轴12。后马达5的驱动力通过驱动轴12、后差速器13和左右驱动轴14被传输至后轮6,并且在后轮6中产生驱动力用于使车辆运行。
[0035] 逆变器16、17分别连接至前马达2和马达发电机11,逆变器16、17连接至升压转换器(变压器)18。逆变器19连接至后马达5,逆变器19和驱动电池20连接至升压转换器18。驱动电池20由诸如锂离子电池的二次电池形成,并且包括计算其SOC(充电状态)且检测其温度TBAT的电池监控单元20a(评估部)。
[0036] 在升压转换器18的前侧和后侧之间操作电压不同。在前马达2、马达发电机11和其逆变器16、17被设计成以更高的电压(如,600V)操作以提高效率从而形成高压电路22的同时,后马达5和逆变器19被设计成以驱动电池20的电压(如,300V)操作从而形成带有驱动电池20的低压电路21。
[0037] 当电功率在电路21、22之间交换时,升压转换器18具有对电压升压和降压的功能。例如,升压转换器18对从驱动电池20释放的低压侧DC功率升压并供给至逆变器16,以使由逆变器16转换的三相AC功率驱动前马达2,并且类似地,由逆变器17转换的三相AC功率致使马达发电机11用作起动器。此外,由马达发电机11产生的三相AC功率由逆变器17转换成高压侧DC功率,并且升压转换器18对DC功率降压从而对驱动电池20充电。由升压转换器18降压的DC功率也由逆变器19转换成三相AC功率,并且被供给以驱动后马达5。
[0038] 应当注意,电功率在电路21、22中的每一个中交换而不经过升压转换器18。例如,在低压电路21侧,从驱动电池20释放的DC功率由逆变器19转换成三相AC功率,并且被供给至后马达5。相反地,由后马达5再发电的三相AC功率由逆变器19转换成DC功率,并且被用以对驱动电池20充电。此外,在高压电路22侧由马达发电机11产生的三相AC功率由逆变器17转换成DC功率,然后由逆变器16再次转换回三相AC功率从而被供给至前马达2。
[0039] 前马达ECU 24在高压电路22侧连接至逆变流器16、17中的每一个,前马达ECU 24切换逆变器16、17从而控制前马达2和马达发电机11的上述操作。同时,后马达ECU 25在低压电路21侧连接至逆变器19,后马达ECU 25切换逆变器19从而控制后马达5的上述操作。
[0040] 引擎ECU 26连接至引擎3,引擎ECU 26控制引擎3的节流位置燃料喷射量、点火时刻等等,从而操作引擎3。
[0041] 应当注意,虽然图1中未示出,驱动电池20包括充电器,充电器能够被用作利用从外部电源供给的电功率对驱动电池20充电。
[0042] 上述的前马达ECU 24、后马达ECU 25和引擎ECU 26连接至车辆ECU 27,车辆ECU27是更高级别的单元。ECU 24至27中的每一个由输入/输出设备、存储设备(如,ROM、RAM、或者非易失性RAM)、中央处理单元(CPU)等等形成。应当注意,每个存储设备的非易失性RAM存储指令,用于稍后提及的由每个CPU施行的各种控制。
[0043] 车辆ECU 27是用于施行车辆1的主要控制的控制单元,已接收来自车辆ECU 27的指令的更低级别的ECU 24至26控制前马达2、马达发电机11、后马达5和引擎3的上述操作。因而,驱动电池20的电池监控单元20a、用于检测升压转换器18的温度Tcvtr的温度传感器28和未图示的传感器连接至车辆ECU 27的输入侧,未图示的传感器诸如用于检测加速器踏板位置的加速器踏板位置传感器和用于检测车辆速度V的速度传感器。此外,前马达2、马达发电机11、后马达5和引擎3的操作状态通过ECU 24至26被输入至车辆ECU 27的输入侧。
[0044] 除了上述的前马达ECU 24、后马达ECU 25和引擎ECU 26,离合器8和升压转换器18也连接至车辆ECU 27的输出侧
[0045] 基于上述加速器踏板位置传感器等的各种检测量和操作信息,车辆ECU 27将车辆1的驱动模式在EV模式、串联模式和并联模式中切换。例如,在诸如引擎3的效率较高的高速范围,驱动模式被设置成并联模式。在中速至低速范围中,驱动模式根据驱动电池20的SOC等在EV模式和串联模式之间切换。
[0046] 在EV模式中,离合器8被断开,引擎3被停止,以使来自驱动电池20的电功率通过前马达2驱动前轮4并且通过后马达5驱动后轮6,从而驱动车辆1。在串联模式中,离合器8被断开以从前轮4侧分离引擎3,引擎3被操作以驱动马达发电机11。产生的电功率通过前马达2驱动前轮4并且通过后马达5驱动后轮6从而驱动车辆1,并且利用剩余功率对驱动电池20充电。
[0047] 在并联模式中,离合器8被连接,引擎3被操作以将驱动力传输至前轮4。当引擎驱动力不足时,电池的功率被用以驱动前马达2或者后马达5。此外,当因为驱动电池20的SOC低而需要充电时,引擎3驱动马达发电机11,并且产生的电功率被用以对驱动电池20充电。
[0048] 当电功率因此在低压电路21和高压电路22之间交换时,升压转换器18以上述方式对电压升压和降压。
[0049] 此外,基于上述各种检测量和操作信息,车辆ECU 27计算用于车辆1行驶需求总输出。车辆ECU 27在EV模式和串联模式中将需求总输出分配至前马达2侧和后马达5侧,并且在并联模式中将需求总输出分配至前马达2侧、引擎3侧和后马达5侧。然后,基于分配的需求输出等,车辆ECU 27为前马达2、后马达5和引擎3中的每一个设置需求转矩,并且将指令信号输出至前马达ECU 24、后马达ECU 25和引擎ECU 26,以使能够实现相应的需求转矩。
[0050] 根据来自车辆ECU 27的指令信号,前马达ECU 24和后马达ECU 25计算目标电流值以应用于前马达2和后马达5的每个相位的线圈从而实现需求转矩。此后,前马达ECU 24和后马达ECU 25根据目标电流值切换相应的逆变器16、19以实现需求转矩。应当注意,当马达发电机11产生电功率时,施行类似的操作。这里,根据由需求转矩在负极侧计算的目标电流值,前马达ECU 24切换逆变器17以实现需求转矩。
[0051] 根据来自车辆ECU 27的指令信号,引擎ECU 26计算节流位置、燃料喷射量、点火时刻等的目标值用于实现需求转矩,并且基于目标值控制引擎3的操作从而实现需求转矩。
[0052] 同时,车辆ECU 27控制升压转换器18从而对在低压电路21和高压电路22之间交换的电功率的电压升压和降压。虽然升压和降压电压提高了例如前马达2和马达发电机11以及其逆变器16、17的效率,但是升压转换器18随着其操作消耗功率。因此,在前马达2或者马达发电机11的高速-重负载范围内升压转换器18被激活,在该高速-重负载范围中能够实现特别高的效率或者需要较高的功率,在其他操作范围内升压转换器18被停止。
[0053] 并且,因为升压转换器18的通过功率的增加或在高温环境下的操作等等增加了升压转换器18的温度并且可能导致故障,所以车辆ECU 27根据升压转换器18的温度限制通过功率(限制部)。具体地,通过基于由温度传感器28检测的升压转换器18的温度Tcvtr,根据图2所示的图表而计算通过功率的限制值Wlimit(下文称之为功率限制值),并且通过使用功率限制值Wlimit作为上限而限制例如由马达发电机11产生的电功率,车辆ECU 27限制通过功率。
[0054] 从图2可以看出,在等于或者高于最低温度T0的温度范围内施加功率限制,在最低温度T0,温度升高可能导致升压转换器18的故障,并且通过为升压转换器18的更高温度Tcvtr设置更低的功率限制值Wlimit而抑制温度升高。然而,如相关技术的描述中所提及的,存在串联模式期间在升压转换器18上施加的功率限制减少驱动电池20的充电量并且降低SOC,因此缩短车辆1的航程的问题。
[0055] 鉴于以上问题,本发明的发明人将注意力集中于以下这一点,因为在串联模式中在升压转换器18中限制的电功率是被供给至后马达5和驱动电池20的电功率,所以通过减少供给至后马达5的电功率的量,减少量的电功率能够被用以对驱动电池20充电。此外,考虑到后马达5处于停止状态的串联模式的继续运行使马达发电机11,逆变器16、17,和前马达2的效率下降,因此阻碍将引擎3的整体驱动力传输至前轮4,驱动模式从串联模式被切换至并联模式。根据这种陈述,将在下文描述当升压转换器18的温度升高时由车辆ECU 27施行的功率控制。
[0056] 图3是示出由车辆ECU 27执行的功率控制程序的流程图。
[0057] 基于如下假设进行描述;假定车辆1在行驶同时串联模式被选择为驱动模式,并且,由于当前的转换器温度Tcvtr等于或者高于下限温度T0,根据功率限制值Wlimit在升压转换器18上施加功率限制。
[0058] 首先,在步骤S1中,车辆ECU 27确定用于功率限制的功率限制值Wlimit是否等于或者低于预设的第一确定值W1。第一确定值W1被设置为阻碍驱动电池20充电的最大电功率。因而,如果功率限制值Wlimit超过第一确定值W1,则认为,即使在通过升压转换器18降压的通过功率上施加限制也不阻碍驱动电池20的充电。由此,在步骤S1中确定为“否”,程序行进到步骤S2。
[0059] 在步骤S2中,施行正常驱动模式-切换控制。例如,在引擎3的效率较高的高速范围内,驱动模式被切换至并联模式。在其他速度范围内,如果驱动电池20的SOC等于或者高于预定值,则驱动模式被切换至EV模式,并且,如果SOC低于预定值,则驱动模式被切换至串联模式,程序暂时结束。
[0060] 同时,如果功率限制值Wlimit等于或者低于第一确定值W1(在本发明中,这对应于“当变压器的通过功率被限制时”),在步骤S1中确定为“是”,在步骤S3中驱动模式被切换至并联模式(连接部)。换言之,在连接离合器8之后操作引擎3,以使引擎3的驱动力能够被传输至前轮4。切换至并联模式使前马达2和后马达5停止,以使车辆1仅仅由机械地连接至前轮4的引擎3的驱动力驱动。在接下来的步骤S4中,通过参考SOC确定驱动电池20是否需要充电,如果不需要,则程序暂时结束。
[0061] 同时,如果在步骤S4中确定为“是”,则程序行进到步骤S5,确定功率限制值Wlimit是否等于或者低于预设的第二确定值W2(下限确定值)。即使当根据功率限制值Wlimit限制电功率时,第二确定值W2也用作确定是否能够对驱动电池20充电的阈值。换言之,第二确定值W2用作阈值,以决定利用由马达发电机11产生的电功率对驱动电池20充电,还是利用由后马达5再发电的电功率对驱动电池20充电,这将在下文提及。因而,第二确定值W2被设置为可使用的对驱动电池20充电的最小电功率(能够有效地增加SOC的最小电功率)。
[0062] 如果在步骤S5中确定为“否”,则确定能够通过升压转换器18利用由马达发电机11产生的电功率对驱动电池20充电。在这种情况下,程序行进到步骤S6,在步骤S6中,引擎3驱动马达发电机11,所产生的电功率通过升压转换器18被降压并且被用以在低压电路侧(充电部)对驱动电池20充电。
[0063] 在接下来的步骤S7中,增加引擎输出,增加量为马达发电机11(充电部)的驱动负载的量,然后程序结束。因为当前引擎3驱动前轮4,所以由于马达发电机11上的驱动负载而导致前轮4的驱动力减小,给驾驶员减速的感觉。由此,引擎输出的增加确保前轮4对应于加速器的操作的驱动力,以使车辆1能够维持优良的驾驶性能。
[0064] 同时,如果在步骤S5中确定为“是”,则确定由马达发电机11产生的电功率在升压转换器18中被限制,并且该电功率不能够对驱动电池20充足地充电。在这种情况下,程序行进到步骤S8,在步骤S8中,后马达5再发电,该再发电的电功率被用以对驱动电池20充电(充电部)。
[0065] 在接下来的步骤S9中,增加引擎输出,增加量为后马达5(充电部)的再发电负载的量,并且程序结束。此过程与上述步骤S7目的相同,防止当前轮4的驱动力由于后马达5上的再发电负载而减少时使驾驶员感受到减速的感觉。因而,车辆1能够维持优良的驾驶性能。
[0066] 接下来,将描述各种情况下在车辆ECU 27的上述控制下车辆1内部的电功率平衡。
[0067] 在以下表格中,引擎(E/G)3、前马达(FM)2和后马达(RM)5的输出,马达发电机(MG)11的功率产生量,驱动电池20的充电量,以及升压转换器(CVTR)18的通过功率被标准化(无量纲化),以用于直接比较,并且假定设备中没有损失。
[0068] 由此,例如,在表格1的上排的情况下,能够通过以100的引擎输出驱动马达发电机11而得到功率产生量100,如果功率产生量100平均地分配至前马达2和后马达5,则能够实现每个马达输出为50。然而,当然地,应当注意,表格是示例,本发明并不局限于此。
[0069] 首先,下方的表格1示出升压转换器18的功率限制值Wlimit等于或者低于第一确定值W1(在图3的步骤S1中为是)并且驱动电池20不需要充电(在步骤S4中为否)的情况。
[0070] [表格1]
[0071]
[0072] 在串联模式被切换之前,离合器8被断开,马达发电机11通过以100的引擎输出被驱动而产生100的电功率,功率产生量100平均地分配至前马达2和后马达5。因而,车辆1通过经由相应的每个输出为50的马达2、5驱动前轮4和后轮6而被驱动。此时,升压转换器18的通过功率是50,其是供给至后马达5侧的量。
[0073] 在切换至并联模式之后,停止马达发电机11的功率产生,并且离合器8被连接,从而引擎3以100的输出驱动前轮4从而驱动车辆1。结果,供给至后马达5侧的功率被停止,升压转换器18的通过功率下降至0。
[0074] 虽然在此时驱动电池20不需要充电,但是如果并联模式期间由于引擎驱动力不足电池的功率被用以驱动前马达2或者后马达5,此后,则SOC降低的驱动电池20可能需要充电。在转变成这种状态之前,因为在以上示例中,升压转换器18的通过功率降至0,所以升压转换器18的温度被降低。因而,基于图2的图表的功率限制值Wlimit增加并且超过第一确定值W1,以使车辆ECU 27从图3的步骤S1行进到步骤S2,并且恢复正常驱动模式-切换控制。
[0075] 即,在串联模式中,上文作为示例的通过功率50在一些情况下能够通过功率限制值Wlimit而被限制,但是在其它情况下可能不被限制。然而,在这些情况的任何一种中,当车辆1的行驶状态通过并联模式维持的时刻,使得通过功率降至0从而降低升压转换器18的温度。因而,能够迅速地恢复正常驱动模式-切换控制。然后,因为增加的功率限制值Wlimit已经减少了在恢复时施加在升压转换器18上的功率限制,所以驱动电池20能够通过升压转换器18没有任何阻碍地被充电。
[0076] 结果,根据实施例的混合动力车辆1的功率控制器,升压转换器18通过当升压转换器18的温度升高时限制通过功率而被保护,并且,能够通过避免由于通过功率的限制而使驱动电池20的充电量的减少,同时在此时维持车辆1的行驶状态,从而确保车辆1的足够的航程。
[0077] 同时,以下表格2示出驱动电池20需要充电(在图3的步骤S4中为是)的情况。中间排示出升压转换器18的功率限制值Wlimit在第一确定值W1和第二确定值W2之间(在步骤S5中为否)的情况,下排示出升压转换器18的功率限制值Wlimit等于或者低于第二确定值W2(在步骤S5中为是)的情况。
[0078] [表格2]
[0079]
[0080]
[0081] 与切换之前的串联模式的表格1的不同点在于,引擎输出和马达发电机11的功率产生量增加(100→120),增加量20被用以通过升压转换器18对驱动电池20充电。因而,增加量20连同对后马达5侧的供给量50一起使升压转换器18的通过功率增加至70。
[0082] 在中间排的情况下,因为在切换至并联模式之后供给至后马达5侧的功率被停止,所以升压转换器18的通过功率下降至20,其等于驱动电池20的充电量。然后,如从表格1的下排与表格2的中间排之间的比较可见,引擎输出被增加,以补偿由驱动电池20充电导致的马达发电机11的驱动负载(图3的步骤S7)。由此,在通过并联模式维持车辆1的行驶状态的同时,能够通过维持期望的充电量20而继续驱动电池20的充电。
[0083] 并且,有时通过功率70可能局限于根据串联模式中的功率限制值Wlimit的下限值,这表示不能实现期望的充电量20。然而,因为在切换至并联模式之后通过功率下降至与充电量20相同的值,所以功率限制被消除。因而,在这种情况下,驱动电池20的充电量能够被增加至期望值20,从而对于驱动电池的充电量20能够实现更加显著的效果。
[0084] 此外,虽然省略了重复描述,但是因为降低的通过功率降低了升压转换器18的温度,所以也具有能够迅速地恢复正常驱动模式-切换控制的效果。
[0085] 同时,相较于中间排的情况,下排的情况在升压转换器18上施加更加严格的功率限制,因此将马达发电机11的功率产生量和升压转换器18的通过功率降低至10。然后,由后马达5再发电的电功率被用以对驱动电池20充电,并且补偿驱动电池20的充电量的不足。因为后马达5和驱动电池20都在低压电路21侧,从后马达5再发电的电功率能够不用经过升压转换器18(没有功率限制)而被用以对驱动电池20充电。
[0086] 然后,如从表格1的下排和表格2的下排之间的比较可见,引擎输出被增加,以补偿由驱动电池20充电造成的后马达5的再发电负载(图3的步骤S9)。由此,在通过并联模式维持车辆1的行驶状态的同时,通过维持期望的充电量20能够继续驱动电池20的充电。应当注意,下排的情况与中间排的情况类似,从而,降低的通过功率降低了升压转换器18的温度。
[0087] 如中间排的情况下通过使用由马达发电机11产生的电功率对驱动电池20充电,和如下排的情况下通过使用由后马达5再发电的电功率对驱动电池20充电,二者有不同的优势。即使当电功率由马达发电机11产生时,行驶车辆1的驱动状态也没有改变,并且如在正常的并联模式中,驱动力基本上产生在前轮4中。因而,驾驶员能够继续驾驶而不会感受到不舒适,因此这种情况使车辆1产生了更高的驾驶性能。然而,因为当对驱动电池20充电时施加在升压转换器18上的功率限制被应用于由马达发电机11产生的电功率,所以,如果功率限制下降至为可使用的最小电功率的第二确定值W2,则实质上不可能对驱动电池20充电。
[0088] 另一方面,因为无论是否在升压转换器18上施加功率限制,由后马达5再发电的电功率都能够被用以对驱动电池20充电,所以此情况使电池产生了更高的充电率。另一方面,因为由后马达5再发电的制动力作用在后轮6上,所以行驶车辆的状态可能改变并且导致驾驶员不舒适。
[0089] 相较于此背景,如参考图3的流程图所描述的,在实施例中,驱动电池20首先由马达发电机11产生的电功率充电,并且当由于施加在升压转换器18上的功率限制不能够继续充电时,通过切换至由后马达5再发电而使电池充电继续。因而,在确保优良的驾驶性能的同时,能够尽可能地增加驱动电池20的充电量。
[0090] 虽然在此结束该实施例的描述,但是本发明的形式并不局限于该实施例。例如,虽然在以上实施例中本发明被实施为四轮驱动混合动力车辆1的功率控制器,但是其也能够应用于两轮(前轮驱动或者后轮传动)驱动混合动力车辆101。
[0091] 图4示出本发明应用于前轮驱动混合动力车辆101的另一个示例。其机械构造与图1所示的实施例相同,此示例的不同点仅在于,前马达2称之为马达2,前马达ECU 24称之为马达ECU 24。然而,应当注意,在该实施例的情况下马达发电机11和逆变器17连接至升压转换器18并且形成高压电路22时,此示例的不同在于,马达2和逆变器16连同驱动电池20一起形成低压电路21。
[0092] 在此构造中,马达(第一驱动马达)2用作以上实施例的后马达5。即,在串联模式中,由马达发电机11产生并且由升压转换器18降压的电功率被供给至马达2,并且马达2驱动前轮4(第一驱动轮)从而驱动车辆101。在并联模式中,功率供给的停止降低升压转换器18的通过功率,并且当对驱动电池20充电时,引擎驱动力的一部分被用以再发电。因而,虽然省略了重复描述,但是能够实现类似于该实施例的各种效果。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈