首页 / 专利库 / 电气元件和设备 / 电机 / 变压器 / 用于控制具有直流-直流串联谐振变换器的电池充电器的方法

用于控制具有直流-直流串联谐振变换器的电池充电器的方法

阅读:139发布:2024-02-21

专利汇可以提供用于控制具有直流-直流串联谐振变换器的电池充电器的方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种用于控制 电池 充电器的方法,所述电池充电器包括直流到直流 串联 谐振变换器,所述变换器包括全桥,其中:控制(E1)断开所述桥的上部晶体管(T1);在对空闲时间期间所述下部晶体管(T2)的 端子 两端的 电压 (VT2)的变化进行分析(E2)之后,在断开所述上部晶体管(T1)后所述空闲时间之后,控制(E3)闭合同一臂的下部晶体管(T2)。,下面是用于控制具有直流-直流串联谐振变换器的电池充电器的方法专利的具体信息内容。

1.一种用于控制电池(BATT)充电器的方法,所述电池充电器包括串联谐振直流-直流变换器(CONV),所述串联谐振直流-直流变换器在其输入端处连接至输入整流器级,并且在其输出端处连接至电池(BATT),所述输入整流器级连接至交流供电网络(RES),所述串联谐振直流-直流变换器(CONV)包括:
-全桥,所述全桥由至少两个晶体管臂组成,所述晶体管臂中的每一个晶体管臂包括顶部晶体管(T3,T1)和底部晶体管(T4,T2),所述顶部晶体管(T3,T1)的集电极连接至所述输入整流器级的正输出总线并且所述顶部晶体管(T3,T1)的发射极连接至串联谐振电路的对应端,所述串联谐振电路包括电容器(C)、电感器(L)和变压器(TR)的初级绕组(L1),每个底部晶体管(T4,T2)的集电极连接至与所述底部晶体管(T4,T2)位于同一晶体管臂中的顶部晶体管(T3,T1)的发射极,并且每个底部晶体管(T4,T2)的发射极连接至所述输入整流器级的负输出总线,
-所述串联谐振电路,
-所述变压器(TR),其初级绕组(L1)连接至所述全桥,并且其次级绕组(L2)连接至输出整流器(RED2)的输入端,
-用于辅助所述顶部晶体管(T3,T1)和所述底部晶体管(T4,T2)在零电压上进行切换的电路,
-以及所述输出整流器(RED2),所述输出整流器在其输出端处连接至所述电池(BATT),所述方法包括:
-用于控制断开所述顶部晶体管中的一个顶部晶体管(T1)的断开步骤(E1),-用于在所述断开步骤(E1)之后一段死区时间(Tm)内控制闭合所述底部晶体管中与所述顶部晶体管中的所述一个顶部晶体管位于同一晶体管臂中的一个底部晶体管(T2)的闭合步骤(E3),
其特征在于,所述闭合步骤(E3)取决于对在所述死区时间(Tm)期间所述底部晶体管中的所述一个底部晶体管(T2)的集电极和发射极之间的电压(VT2)的估计随时间的变化进行测试的测试步骤(E2),
在所述测试步骤(E2)期间,分析所述电压(VT2)的随时间的变化,只有当检测到所述电压(VT2)增加时才触发所述闭合步骤(E3)。
2.如权利要求1所述的方法,其特征在于,仅当所述电压(VT2)进一步在预定低电压阈值与高电压阈值(Sh)之间的范围内时才触发所述闭合步骤(E3)。
3.如权利要求2所述的方法,其中,所述高电压阈值(Sh)小于在所述串联谐振直流-直流变换器(CONV)的标称电压操作中所述底部晶体管中的所述一个底部晶体管(T2)的集电极和发射极之间的最大电压的5%。
4.一种电池(BATT)充电系统,包括输入整流器级、串联谐振直流-直流变换器(CONV),所述输入整流器级能够连接至交流供电网络(RES),所述串联谐振直流-直流变换器在其输入端连接至所述输入整流器级并且能够在其输出端处连接至电池(BATT),所述串联谐振直流-直流变换器(CONV)包括:
-全桥,所述全桥由至少两个晶体管臂组成,所述晶体管臂中的每一个晶体管臂包括顶部晶体管(T3,T1)和底部晶体管(T4,T2),所述顶部晶体管(T3,T1)的集电极连接至所述输入整流器级的正输出总线并且所述顶部晶体管(T3,T1)的发射极连接至串联谐振电路的对应端,所述串联谐振电路包括电容器(C)、电感器(L)和变压器(TR)的初级绕组(L1),每个底部晶体管(T4,T2)的集电极连接至与所述底部晶体管(T4,T2)位于同一晶体管臂中的顶部晶体管(T3,T1)的发射极,并且每个底部晶体管(T4,T2)的发射极连接至所述输入整流器级的负输出总线,
-所述串联谐振电路,
-所述变压器(TR),其初级绕组(L1)连接至所述全桥,并且其次级绕组(L2)连接至输出整流器(RED2)的输入端,
-用于辅助所述顶部晶体管(T3,T1)和所述底部晶体管(T4,T2)在零电压上进行切换的电路,
-以及所述输出整流器(RED2),所述输出整流器能够在其输出端处连接至所述电池(BATT),
所述系统包括:
-用于控制断开每个顶部晶体管(T3,T1)的断开装置,
-用于在断开位于同一晶体管臂中的顶部晶体管(T3,T1)之后一段死区时间(Tm)内控制闭合每个底部晶体管(T4,T2)的闭合装置,
其特征在于,所述系统包括用于根据在所述死区时间(Tm)期间相应的底部晶体管(T2)的集电极和发射极之间的电压(VT2)的估计随时间的变化来触发所述闭合装置的触发装置,
所述触发装置包括用于检测所述电压(VT2)的增加的检测装置,所述触发装置由所述检测装置激活。
5.如权利要求4所述的电池充电系统,其特征在于,仅当所述电压(VT2)在预定低电压阈值与高电压阈值(Sh)之间的范围内时所述触发装置才由所述检测装置激活。
6.如权利要求5所述的电池充电系统,其中,所述高电压阈值(Sh)小于在所述串联谐振直流-直流变换器(CONV)的标称电压操作中所述底部晶体管(T2)的集电极和发射极之间的最大电压的5%。
7.一种计算机存储介质,其上存储有计算机程序,所述计算机程序包括可执行指令,所述可执行指令在一个或多个处理器上被执行时使所述处理器实施如权利要求1至3中任一项所述的方法。

说明书全文

用于控制具有直流-直流串联谐振变换器的电池充电器的

方法

技术领域

[0001] 本发明总体上涉及电工领域,并且更确切地涉及一种用于控制电池充电器的方法,尤其可用于电动车辆中控制这种车辆的驱动电源电池的充电。

背景技术

[0002] 为了使所有人都可以得到可持续机动性,需要开发低成本且可在家庭电网上再充电的电动车辆。此类车辆优选地具有驱动电源电池充电器,当连接至单相交流电网时所述驱动电源电池充电器以低功率(尤其限制为7kW)运行。
[0003] 可能的充电器构造中,可能不同的是,一方面,在外部供电网络与有待充电的车辆之间使用具有电流隔离的变压器的充电器(称为隔离式充电器),以及另一方面,充电器未与外部电力网隔离。隔离式充电器是优选的,因为在对结合这种隔离式充电器的机动车辆进行充电期间电气安全管理较简单,尽管由于集成到电流隔离变压器的充电器中而导致的稍微更高的成本和有待提供的额外体积。
[0004] 法国专利申请FR3001091描述了一种针对在单相外部电力网上以7kW进行的慢充电过程设计的用于电动车辆的隔离式充电器。这种隔离式充电器包括输入整流器级,所述输入整流器级在其输出端处连接至直流-直流变换器级,所述变换器级自身在其输出端处通过升压级连接至驱动电源电池。
[0005] 所述直流-直流变换器级自身包括:
[0006] -逆变器,其输入端连接至输入整流器级,并且其输出端连接至谐振电路,[0007] -所述谐振电路,连接至所述逆变器,
[0008] -集成到谐振电路中的电流隔离变压器,所述谐振电路包括串联的变压器初级绕组、谐振电容器和谐振电感器,
[0009] -整流器,其输入端连接至所述变压器的次级绕组,并且在其输出端处连接至升压级,所述升压级连接至车辆的驱动电源电池。
[0010] 为了限制从供电网络向电池的传递能量期间的损失,谐振电路的部件被选择的方式为使得变压器内的能量传递可以发生于谐振电路的谐振频率上。然后控制所述逆变器以所述谐振频率产生交流电流。为此目的并且为了降低切换损耗,逆变器的晶体管因此以高频被切换,其方式为使得所述晶体管的切换是以谐振频率在零电压(称为“零电压切换”(ZVS)的切换)上并在零电流(称为“零电流切换”(ZCS)的切换)上进行的。
[0011] 这种类型的隔离式充电器需要对隔离式充电器的部件、并且尤其是谐振电路的部件进行精确匹配,从而获得充分性能并且不引起振荡,所述振荡将通过在结中的电荷重叠造成对晶体管的损坏。

发明内容

[0012] 本发明的目的之一是通过提供一种用于控制隔离式电池充电器的方法连同一种用于这种充电器的控制系统来克服现有技术缺陷的至少一部分,所述方法和系统允许在+/-20%容差裕度内相对于这个充电器的部件特性的相对大的变化提高隔离式充电器的鲁棒性,而同时实现起来简单。
[0013] 为此目的,本发明提供了一种用于控制电池充电器的方法,所述电池充电器包括串联谐振直流-直流变换器,所述变换器在其输入端处连接至输入整流器级,并在其输出端处连接至电池,所述输入整流器级连接至交流供电网络,所述变换器包括:
[0014] -全桥,所述全桥由至少两个晶体管臂组成,所述臂中的每一个臂包括顶部晶体管和底部晶体管,所述顶部晶体管的集电极连接至所述输入整流器级的正输出总线并且所述顶部晶体管的发射极连接至串联谐振电路的对应端,所述串联谐振电路包括电容器、电感器和变压器的初级绕组,每个底部晶体管的集电极连接至与所述底部晶体管位于同一臂中的顶部晶体管的发射极,并且每个底部晶体管的发射极连接至所述输入整流器级的负输出总线,
[0015] -所述串联谐振电路,
[0016] -所述变压器,其初级绕组连接至所述全桥,并且其次级绕组连接至输出整流器的输入端,
[0017] -用于辅助所述顶部晶体管和所述底部晶体管在零电压上进行切换的电路,[0018] -以及所述输出整流器,所述输出整流器在其输出端处连接至所述电池,[0019] 所述方法包括:
[0020] -用于控制断开所述顶部晶体管中的一个顶部晶体管的步骤,
[0021] -在所述用于控制断开的步骤之后一段死区时间内控制闭合所述底部晶体管中与所述顶部晶体管中的所述一个顶部晶体管位于同一臂中的一个晶体管的步骤,[0022] 其特征在于,所述用于控制闭合的步骤被调节为对在所述死区时间期间所述底部晶体管中所述一个底部晶体管的端子两端的电压的估计的时间变化进行的测试步骤。
[0023] 借助本发明,当跨直流-直流变换器的晶体管的端子的电压最大时,由于此晶体管的端子两端存在不想要的电压振荡,避免了接通所述晶体管。实际上,发明人已经注意到,与直流-直流变换器的晶体管并联定位的用于辅助进行ZVS切换和ZCS切换的电容器的存在在切换期间在断开晶体管与闭合位于同一臂中的另一晶体管之间的死区时间期间提供了次级谐振。这种次级谐振引起跨晶体管的端子的振荡,其结果是,当所述晶体管的端子两端的电压最大时,所述晶体管容易被接通。之后,充电器不再运行于ZVS模式,这导致产生显著且不期望的电磁发射,并且还导致在所考虑的开关的端子两端产生较大过电压,这些较大过电压能够毁坏这些开关。
[0024] 按照根据本发明的控制方法的一种有利特征,在所述测试步骤期间,分析所述电压的时间变化,只有当检测到所述电压增加时才触发所述用于控制闭合的步骤。
[0025] 本发明的这种实现方式允许限制开关的断开和闭合之间的死区时间的时长,这是优化了隔离式充电器的效率的事实。
[0026] 按照根据本发明的控制方法的另一有利特征,仅当所述电压进一步在预定低电压阈值与高电压阈值之间的范围内时才触发所述控制步骤。
[0027] 本发明的这种特征允许对轻度电压振荡和迟滞现象进行滤波,而同时维持隔离式充电器的高效率。
[0028] 有利地,所述高阈值至少小于在所述直流-直流变换器的标称操作中所述底部晶体管中的所述一个底部晶体管的端子两端的最大电压的5%。
[0029] 本发明还涉及一种电池充电系统,包括输入整流器级、串联谐振直流-直流变换器,所述输入整流器级能够连接至交流供电网络,所述变换器连接至所述输入整流器级的输入端并且能够在其输出端处连接至电池,所述变换器包括:
[0030] -全桥,所述全桥由至少两个晶体管臂组成,所述臂中的每一个臂包括顶部晶体管和底部晶体管,所述顶部晶体管的集电极连接至所述输入整流器级的正输出总线并且所述顶部晶体管的发射极连接至串联谐振电路的对应端,所述串联谐振电路包括电容器、电感器和变压器的初级绕组,每个底部晶体管的集电极连接至与所述底部晶体管位于同一臂中的顶部晶体管的发射极,并且每个底部晶体管的发射极连接至所述输入整流器级的负输出总线,
[0031] -所述串联谐振电路,
[0032] -所述变压器,其初级绕组连接至所述全桥,并且其次级绕组连接至输出整流器的输入端,
[0033] -用于辅助所述顶部晶体管和所述底部晶体管在零电压上进行切换的电路,[0034] -以及所述输出整流器,所述输出整流器能够在其输出端处连接至所述电池,[0035] 所述系统包括:
[0036] -用于控制断开每个顶部晶体管的装置,
[0037] -用于在断开位于同一臂中的顶部晶体管之后一段死区时间内控制闭合每个底部晶体管的装置,
[0038] 其特征在于,所述系统包括用于根据在所述死区时间期间相应的底部晶体管的端子两端的电压的估计的时间变化来触发所述闭合控制装置的装置。
[0039] 有利地,所述用于触发根据本发明的充电系统的装置包括用于检测所述电压的增加的装置,所述触发装置由所述检测装置激活。换言之,所述触发装置被设计成仅当所述电压增加时才激活闭合所述底部晶体管。
[0040] 有利的,仅当所述电压在预定低电压阈值与高电压阈值之间的范围内时所述触发装置才由所述检测装置激活。所述高阈值有利地至少小于在所述直流-直流变换器的标称操作中所述底部晶体管的端子两端的最大电压的5%。
[0041] 本发明还涉及一种计算机程序,所述计算机程序包括当其在一个或多个处理器上被执行时用于实施根据本发明的用于控制电池充电器的方法的指令。
[0042] 根据本发明的充电系统和根据本发明的计算机程序提供了类似于根据本发明的控制方法的优点。附图说明
[0043] 通过阅读参照附图所描述的一个优选实施例,其他特征和优点将变得清楚,在附图中:
[0044] -图1示出了在此优选实施例中的根据本发明的充电系统,
[0045] -图2示出了对具有相同拓扑结构但不实现本发明的充电系统的控制,[0046] -图3示出了对在此优选实施例中的根据本发明的充电系统的控制,[0047] -图4示出了根据本发明的控制方法的步骤,
[0048] -并且图5示出了用于在此优选实施例中的根据本发明的充电系统的控制信号

具体实施方式

[0049] 根据在图1中所示出的本发明的一个优选实施例,根据本发明的充电系统包括:
[0050] -输入整流器级,所述输入整流器级能够连接至单相供电网络RES,[0051] -直流-直流变换器CONV,其输入端连接至输入整流器级,
[0052] -以及输出整流器RED2,所述输出整流器在其输入端处连接至所述直流-直流变换器CONV,并且能够在其输出端处连接至电池BATT,这里是具有约400V(伏特)标称电压的电动或混合动力车辆的驱动电源电池。
[0053] 所述输入整流器级包括:
[0054] -电磁兼容性滤波器F,所述滤波器连接至单相网络RES,
[0055] -整流器RED1,所述整流器由二极管桥组成,从由供电网络传递并由滤波器F滤波的电压中生成直流电压,
[0056] -以及功率因数校正级PFC,所述功率因数校正级在其输入端处连接至整流器RED1并在其输出端处连接至变换器CONV的输入端;这一级PFC保证了网络RES上正弦电流的吸收并且由两个升压臂组成,这两个升压臂并联连接至功率因数校正级PFC的输出平滑电容器。
[0057] 所述直流-直流变换器CONV包括:
[0058] -由两个晶体管臂组成的全桥,第一臂包括顶部晶体管T3和底部晶体管T4,第二臂包括顶部晶体管T1和底部晶体管T2;顶部晶体管T3和T1的集电极连接至功率因数校正级PFC的输出端的正直流电压;底部晶体管T4和T2的发射极连接至功率因数校正级PFC的负输出总线;
[0059] -串联谐振电路,所述串联谐振电路在第一端处连接至第一臂的中点,换言之,连接至晶体管T3的发射极与晶体管T4的集电极之间的连接点,并且在第二端处连接至第二臂的中点,换言之,连接至晶体管T1的发射极与晶体管T2的集电极之间的连接点;
[0060] -变压器TR,其初级绕组L1连接至所述全桥,并且其次级绕组L2连接至输出整流器RED2的输入端;
[0061] -以及输出整流器RED2,所述输出整流器由二极管桥并由输出平滑电容器组成,所述输出平滑电容器与电池BATT并联连接。所述二极管桥的这两个臂的中点各自连接至变压器TR的次级绕组L2的不同端。
[0062] 所述串联谐振电路包括串联连接的电容器C、电感器L和变压器TR的初级绕组L1。
[0063] 另外,续流二极管与每个晶体管T1、T2、T3和T4并联连接。晶体管T1、T2、T3和T4还配备有用于帮助进行ZVS切换和ZCS切换的电路,比如由与每个晶体管T1、T2、T3和T4(未示出)并联的被称为“缓冲电阻器(Snubber Resistor)”的电阻器串联连接的电容器组成的偶极子。
[0064] 根据本发明的充电系统还包括被集成到例如电子板中用于控制晶体管T1至T4的装置CMDE。
[0065] 参照图2,当未实施根据本发明的控制方法时,在直流-直流变换器CONV的绕组L中流动的电流Ires、晶体管T1的控制信号CT1、晶体管T2的控制信号CT2连同晶体管T2的端子两端的电压VT2一起示出在同一时间轴上。
[0066] 当控制信号CT1处于其高值时,晶体管T1闭合并且晶体管T2断开。当控制信号CT1变为其零值时,晶体管T2的端子两端的电压VT2然后形成电压脉冲,所述电压脉冲在晶体管T1断开之后立即快速地降低。然而,这种降低紧跟着的是次级谐振波峰P1,在图2的一部分的放大图A1上可以更精确地看到所述次级谐振波峰。可以看出,晶体管T2的控制信号CT2通过当电压VT2几乎处于其最大值次级谐振波峰P1(这意味着充电系统不再工作于ZVS模式)的时刻变为其高值来控制闭合所述晶体管。在此图2中可以看到其他谐振波峰,因为它们在切换晶体管与切换位于同一臂中的另一晶体管之间的死区时间期间出现。
[0067] 参照图3,当未实施根据本发明的控制方法时,在直流-直流变换器CONV的绕组L中流动的电流Ires、晶体管T1的控制信号CT1、晶体管T2的控制信号CT2连同晶体管T2的端子两端的电压VT2一起示出在同一时间轴上。
[0068] 在此图3中,在断开晶体管T1与闭合晶体管T2之间的死区时间Tm期间,晶体管T2的端子两端的电压VT2在晶体管T1刚断开就快速的下降。在图3的这部分的放大图A2中更精确的示出了晶体管T2的端子两端的电压VT2的时间变化。在死区时间Tm期间,晶体管T2的端子两端的电压VT2的次级谐振P2比图2中的次级谐振波峰P1弱得多。实际上,在此次级谐振P2期间,在电压VT2开始上升时进行晶体管T2的闭合。因此,这种切换策略禁止次级谐振P2,因为当晶体管T2在次级谐振到达谐振波峰之前闭合时电压VT2的值变为零值。因此,本发明允许充电系统以ZCS模式和ZVS模式运行,尽管切换辅助电路导致了次级谐振现象。
[0069] 现在以包括图4中所示的步骤E1至E3的算法的形式来表示根据本发明的控制方法。
[0070] 所述方法在电子控制装置CMDE内实施。
[0071] 步骤E1是断开根据本发明的充电系统的顶部晶体管(在本示例中,晶体管T1)的命令。此步骤对应于将晶体管T1的控制信号CT1设置为零,图5中所示。
[0072] 下一个步骤E2是对底部晶体管T2的端子两端的电压VT2的测量信号执行的测试步骤。在这一步骤中,通过计算在时间t测量的电压VT2与在前一时间t-1的前一电压VT2测量结果之间的差来监视电压VT2的时间变化。当这个差为正时,进一步验证了,电压VT2在例如0V的低阈值与比在根据本发明的充电系统的标称操作期间电压VT2的最大值低得多的高阈值Sh之间的范围内。这个高阈值Sh固定在例如在标称操作中晶体管T2的端子两端的最大电压的5%。
[0073] 如果这些条件被验证,换言之,如果电压VT2的测量信号在低阈值与高阈值Sh之间的范围内,并且如果这个信号的导数为正,则授权闭合晶体管T2的信号EN_T2被设置为高值。
[0074] 当信号EN_T2处于其高值时并且当晶体管T2的控制信号PWM_T2也处于其高值时,则所述方法前进到下一步骤E3。所述控制信号PWM_T2保证了在位于同一臂中的开关的切换之间存在最小死区时间,以及生成晶体管T2的控制占空比。
[0075] 对应于将晶体管T2的控制信号CT2设置为其高值,下一步骤E3是闭合晶体管T2的命令。
[0076] 应该注意的是,在桥的另一臂上以对称的方式重复这些步骤。在断开晶体管T3时,所述方法在授权闭合晶体管T4之前等待晶体管T4的端子两端的电压增加并在0V的低阈值与高阈值Sh之间的范围内。
[0077] 应该注意的是,虽然在本实施例中,充电系统使用单相供电网络,本发明还可用于使用运行与ZVS模式和ZCS模式的串联谐振直流-直流变换器但是使用三相供电网络的充电系统。的确,在这种变体实施例中,使用在输入整流器级具有三个臂的整流器桥而不是使用具有两个臂的整流器桥就足够了。类似地,本发明还可以在稍微不同于本实施例中所描述的拓扑结构上实施。的确,充电系统输入端处的功率因数校正级或电磁兼容性滤波器对于本发明的实现和操作而言不是必需的,虽然为了遵守网络连接标准其存在是优选的。类似地,充电系统的平滑电容器对于本发明的实现而言不是必不可少的。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈