首页 / 专利库 / 信号处理 / 脉宽调制 / 空间矢量脉冲宽度调制 / 一种基于扩张状态观测器滑模控制的高铁低频振荡抑制方法

一种基于扩张状态观测器滑模控制的高低频振荡抑制方法

阅读:83发布:2020-05-20

专利汇可以提供一种基于扩张状态观测器滑模控制的高低频振荡抑制方法专利检索,专利查询,专利分析的服务。并且本 发明 公开一种基于扩张状态观测器滑模控制的高 铁 低频振荡抑制方法,先构建动车组网侧 整流器 状态空间 模型;再将负载变化视为扰动,对状态空间模型建立扩张状态观测器,得到负载功率估计值;结合控制目标,选取控制系统的输出,建立基于外环 电压 控制的两个滑模面,结合负载功率估计值,得到网侧 电流 无功分量参考值,完成滑模面表达式的求取;求取 开关 函数,再将开关函数与直流侧电压相乘,得到控制电压;将控制电压变换为α-β 坐标系 分量,通过正弦 脉宽调制 输出控制脉冲。本发明将所有外部扰动视为一个状态变量,在负载突变的情况下,能够保持直流侧电压的恒定,可使网侧电流拥有更小的总谐波畸变率,保证车网耦合系统的 电能 质量 和系统 稳定性 。,下面是一种基于扩张状态观测器滑模控制的高低频振荡抑制方法专利的具体信息内容。

1.一种基于扩张状态观测器滑模控制的高低频振荡抑制方法,其特征在于,包括以下步骤:
步骤A:定义网侧电流正交量,构建d-q旋转坐标系下动车组网侧整流器状态空间模型;
步骤B:将负载变化视为扰动,对上述状态空间模型建立扩张状态观测器,得到负载功率的估计值;
步骤C:结合控制目标,选取控制系统的输出,建立基于外环电压控制的两个滑模面,结合步骤B得到的负载功率估计值,得到网侧电流无功分量的参考值,完成滑模面表达式的求取;
步骤D:对上述两个滑模面选取滑模控制趋近率,将步骤C建立的两个滑模面代入滑模控制趋近率,将得到的结果代入d-q旋转坐标系下动车组网侧整流器的状态空间模型,得到开关函数,将该开关函数与直流侧电压相乘,得到控制电压;
步骤E:将步骤D中得到的控制电压经过坐标变换得到α-β坐标系分量,再通过正弦脉宽调制输出控制脉冲。
2.根据权利要求1所述的基于扩张状态观测器滑模控制的高铁低频振荡抑制方法,其特征在于,所述步骤A的具体过程如下:
针对单相两电平拓扑结构,将交流侧电流in表示为iα,交流侧电动势en表示为uα,构建与iα、uα正交的虚拟量iβ、uβ,根据坐标变换遵循的等功率变换原则,得到
uαiα+uβiβ=Udcidc
式中,Udc为直流侧稳定电压,idc为直流侧稳定负载电流;
定义uα=SαUdc,uα是uab在α轴上的分量,uβ=SβUdc,uβ是uab在β轴上的分量,uab为整流桥端口电压,Sα、Sβ是α-β坐标系下的理想开关函数;得到idc的表达式:
式中,udc为直流侧负载电压;
结合交流侧的KVL方程,将交流量、虚拟正交量表示在同一方程组中,得到
式中,L和R分别为车载变压器等效到次边的漏电感和漏电阻,C为直流侧支撑电容;eα即交流侧电动势en,eβ为en顺时针旋转90度后得到的与en正交的电压矢量,il为负载电流;进行两相静止坐标系到两相旋转坐标系的坐标变换,得到d-q旋转坐标系下动车组网侧整流器的数学模型:
式中,ed、eq分别为网侧电动势与虚拟正交分量分别在旋转坐标系中d轴与q轴的分量;
id、iq分别为网侧电动势与虚拟正交分量分别在旋转坐标系中d、q分量;根据定义,d轴分量表示有功分量,q轴分量表示无功分量,SdUdc、SqUdc则是uab相应的分量,表示成状态空间模型的矩阵形式:
得到动车组网侧整流器在两相旋转坐标系下矩阵形式的数学模型。
3.根据权利要求2所述的基于扩张状态观测器滑模控制的高铁低频振荡抑制方法,其特征在于,所述步骤B的具体过程如下:令
Pdq=edid+eqiq, x2=Pl;
其中,Pdq为交流侧功率;Pl=ilRl是实际负载功率,Rl为等效负载电阻;为表达简便,x1和x2分别为代表 与Pl的状态变量;则d-q旋转坐标系下动车组网侧整流器的数学模型的第三个公式 简化为:
为设计扩张状态观测器,将上式表示为:
其中,f(t)表示x2的求导;
则一个线性的扩张状态观测器表示如下:
其中,z1和z2分别为x1和x2的估计值,通过扩张状态观测器得到,β1和β2为通过赫尔维兹稳定理论求得的正参数。
4.根据权利要求3所述的基于扩张状态观测器滑模控制的高铁低频振荡抑制方法,其特征在于,所述步骤C的具体过程如下:
选择Udc、iq为控制系统的输出,设 则 根据步骤A中得到的d-q旋
转坐标系下动车组网侧整流器状态空间模型的矩阵形式,推出其能控标准型
其中,ω为电网交流频率速度;udc、iq、 的误差值 eφ分别表示为:
其中, 为直流侧电压的参考值; 为iq的参考值,φref为φ的参考值;
建立两个滑模面s1、s2分别与Udc、iq对应:
其中,α、α1、α2为放大增益,并用β代替 作为滑模控制的反馈系数;
将误差值 eφ的具体表达式代入上式,得到
将d-q旋转坐标系下动车组网侧整流器的数学模型以及直流侧电压参考值 代入上
式得到
将id分离,得到
式中,C、 是已知的常数,udc、iq、il通过对应的测量工具测得,β为预设的参数,Sd与Sq是开关函数,将 作为id的参考值;
根据d-q旋转坐标系下遵循功率不变原则
udid+uqiq=Udcidc
根据控制目标,无功电流分量iq=0,则
udid=Udcidc
定义ud=SdUdc,由于ud=ed-Rid,上式表示为
(ed-Rid)id=UdcSdid
则Sd的表达式为
由d-q旋转坐标系下动车组网侧整流器的数学模型
由于容量较大的变压器的电阻R极小,故忽略,又因为在理想情况下, eq=0,

得到
将上式代入id的参考值 的表达式,得到

其中,il是由步骤B中的z2/Udc=il得到,则通过上式可得到 的表达式
将滑模面改写为:
5.根据权利要求4所述的基于扩张状态观测器滑模控制的高铁低频振荡抑制方法,其特征在于,所述步骤D的具体过程如下:
对上所述两个滑模面s1、s2选取指数趋近率,得到
其中,ε1为常数,表示系统状态点趋近于滑模面s1(x)=0的速率,速率与ε1的大小成正比;-k1s为指数趋近项,代表系统状态趋近滑模面的将滑模面的过程; 为滑模面s1的求导;
将滑模面的表达式代入
由于 在理想状态下为常数,故 则上式表示为
代入d-q旋转坐标系下动车组网侧整流器的状态空间模型,得到
将开关函数Sd、Sq表示出来
得到脉冲宽度调制所需控制电压

说明书全文

一种基于扩张状态观测器滑模控制的高低频振荡抑制方法

技术领域

[0001] 本发明涉及高铁供电技术领域,具体为一种基于扩张状态观测器滑模控制的高铁低频振荡抑制方法。

背景技术

[0002] 随着中国高铁的迅猛发展,高速、重载、大密度已经成为当下电气化铁路的重要特性,因此,对高铁的供电可靠性提出了越来越高的要求。越来越多的新型交直交传动机车投入运营,大大增加了牵引供电系统的复杂性,我国牵引供电系统的低频振荡现象就是在这样的背景下产生的,这种现象根本上是车网参数不匹配造成的不稳定现象。许多研究结果均表明,网侧整流器的控制策略是影响车网系统稳定性的一大重要因素。交流传动机车、高速动车组中所用的牵引变流器主要由四象限脉冲整流器和牵引逆变器组成。四象限脉冲整流即网侧整流器,属于PWM整流器。动车组网侧整流器通常采用电压外环和电流内环相结合的双闭环控制方式,目前主要的控制方式有瞬态电流控制策略、可变相位控制策略、预测直接电流控制策略、dq解耦控制策略等。传统的线性控制方法的控制效果已经很难得到提升,因此将非线性控制方法,例如预测控制、无源控制以及滑模控制等引入变流器的控制中是有必要的。

发明内容

[0003] 针对上述问题,本发明的目的在于提供一种能够节省成本,能够保持直流侧电压的恒定,使得网侧电流拥有更小的总谐波畸变率,能够保证车网耦合系统的电能质量和系统稳定性的基于扩张状态观测器滑模控制的高铁低频振荡抑制方法。技术方案如下:
[0004] 一种基于扩张状态观测器滑模控制的高铁低频振荡抑制方法,包括以下步骤:
[0005] 步骤A:定义网侧电流正交量,构建d-q旋转坐标系下动车组网侧整流器的状态空间模型;
[0006]
[0007] 步骤B:将负载变化视为扰动,对上述状态空间模型建立扩张状态观测器,得到负载功率的估计值;
[0008] 步骤C:结合控制目标,选取控制系统的输出,建立基于外环电压控制的两个滑模面,结合步骤B得到的负载功率估计值,得到网侧电流无功分量的参考值,完成滑模面表达式的求取;
[0009] 步骤D:对上述两个滑模面选取滑模控制趋近率,将步骤C建立的两个滑模面代入滑模控制趋近率,将得到的结果代入d-q旋转坐标系下动车组网侧整流器的状态空间模型,得到开关函数,将该开关函数与直流侧电压相乘,得到控制电压;
[0010] 步骤E:将步骤D中得到的控制电压经过坐标变换得到α-β坐标系分量,再通过正弦脉宽调制输出控制脉冲。
[0011] 进一步的,所述步骤A的具体过程如下:
[0012] 针对单相两电平拓扑结构,将交流侧电流in表示为iα,交流侧电动势en表示为uα,构建与iα、uα正交的虚拟量iβ、uβ,根据坐标变换遵循的等功率变换原则,得到
[0013] uαiα+uβiβ=Udcidc
[0014] 式中,Udc为直流侧稳定电压,idc为直流侧稳定负载电流;
[0015] 定义uα=SαUdc,uα是uab在α轴上的分量,uβ=SβUdc,uβ是uab在β轴上的分量,uab为整流桥端口电压;Sα、Sβ是α-β坐标系下的理想开关函数;得到idc的表达式:
[0016]
[0017] 式中,udc为直流侧负载电压;
[0018] 结合交流侧的KVL方程,将交流量、虚拟正交量表示在同一方程组中,得到
[0019]
[0020] 式中,L和R分别为车载变压器等效到次边的漏电感和漏电阻,C为直流侧支撑电容;eα即交流侧电动势en,eβ为en顺时针旋转90度后得到的与en正交的电压矢量,il为负载电流;进行两相静止坐标系到两相旋转坐标系的坐标变换,得到d-q旋转坐标系下动车组网侧整流器的数学模型:
[0021]
[0022] 式中,ed、eq分别为网侧电动势与虚拟正交分量分别在旋转坐标系中d轴与q轴的分量;id、iq分别为网侧电动势与虚拟正交分量分别在旋转坐标系中d、q分量;根据定义,d轴分量表示有功分量,q轴分量表示无功分量,SdUdc、SqUdc则是uab相应的分量,表示成状态空间模型的矩阵形式:
[0023]
[0024] 得到动车组网侧整流器在两相旋转坐标系下矩阵形式的数学模型。
[0025] 更进一步的,所述步骤B的具体过程如下:令
[0026]
[0027] 其中,Pdq为上述edid与eqiq的和,即交流侧功率;Pl=ilRl是实际负载功率,Rl为等效负载电阻;为表达简便,x1和x2分别为代表 与Pl的状态变量;将d-q旋转坐标系下动车组网侧整流器的数学模型的第三个公式 简化为:
[0028]
[0029] 为设计扩张状态观测器,将上式表示为:
[0030]
[0031] 其中,f(t)表示x2的求导;
[0032] 则一个线性的扩张状态观测器表示如下:
[0033]
[0034] 其中,z1和z2分别为x1和x2的估计值,通过扩张状态观测器得到,β1和β2为通过赫尔维兹稳定理论求得的正参数。
[0035] 更进一步的,所述步骤C的具体过程如下:
[0036] 选择Udc、iq为控制系统的输出,设 则 根据步骤A中得到的d-q旋转坐标系下动车组网侧整流器状态空间模型的矩阵形式,推出其能控标准型
[0037]
[0038] 其中,ω为电网交流频率角速度;udc、iq、 的误差值 eφ分别表示为:
[0039]
[0040] 其中, 为直流侧电压的参考值; 为iq的参考值,φref为φ的参考值。
[0041] 建立两个滑模面s1、s2分别与Udc、iq对应:
[0042]
[0043] 其中,α、α1、α2为放大增益,并用β代替 作为滑模控制的反馈系数;
[0044]
[0045] 将误差值 eφ的具体表达式代入上式,得到:
[0046]
[0047] 将d-q旋转坐标系下动车组网侧整流器的数学模型以及直流侧电压参考值 代入上式得到:
[0048]
[0049] 将id分离,得到
[0050]
[0051] 式中,C、 是已知的常数,udc、iq、il通过对应的测量工具测得,β为预设的参数,Sd与Sq是开关函数,将 作为id的参考值;
[0052] 根据d-q旋转坐标系下遵循功率不变原则
[0053] udid+uqiq=Udcidc
[0054] 根据控制目标,无功电流分量iq=0,则
[0055] udid=Udcidc
[0056] 定义ud=SdUdc,由于ud=ed-Rid,上式表示为
[0057] (ed-Rid)id=UdcSdid
[0058] 则Sd的表达式为
[0059]
[0060] 由d-q旋转坐标系下动车组网侧整流器的数学模型
[0061]
[0062] 由于容量较大的变压器的电阻R极小,故忽略,又因为在理想情况下, eq=0,则
[0063]
[0064] 得到
[0065]
[0066] 将上式代入id的参考值 的表达式,得到
[0067]
[0068] 则
[0069]
[0070] 其中,il是由步骤B中的z2/Udc=il得到,则通过上式可得到 的表达式
[0071]
[0072] 将滑模面改写为:
[0073]
[0074] 更进一步的,所述步骤D的具体过程如下:
[0075] 对上所述两个滑模面s1、s2选取指数趋近率,得到
[0076]
[0077] 其中,ε1为常数,表示系统状态点趋近于滑模面s1(x)=0的速率,速率与ε1的大小成正比;-k1s为指数趋近项,代表系统状态趋近滑模面的将滑模面的过程; 为滑模面s1的求导;
[0078] 将滑模面的表达式代入
[0079]
[0080] 由于 在理想状态下为常数,故 则上式表示为
[0081]
[0082] 代入d-q旋转坐标系下动车组网侧整流器的状态空间模型,得到
[0083]
[0084] 将开关函数Sd、Sq表示出来
[0085]
[0086] 得到脉冲宽度调制所需控制电压
[0087]
[0088] 本发明的有益效果是:
[0089] 1)本发明提出的适用于动车组网侧整流器的基于扩张状态观测器滑模控制策略因其本身是变结构控制的特性,符合PWM整流器在本质上也是变结构系统的特征,提高了该系统的鲁棒性能,能够阻尼牵引网-动车组电气量振荡的问题。
[0090] 2)本发明可以克服动车组网侧整理器响应速度和超调时间之间的矛盾,且基于外环中的干扰估计的扩张状态观测器部分可以提高系统的鲁棒性。
[0091] 3)本发明所需要的信息量较少,可以用更少的信息实现相同的控制目标,并可节省传感器的经济支出与空间占用。
[0092] 4)本发明将所有的外部扰动视为一个状态变量,使得在负载突变的情况下,相比于原滑模控制器无法保持直流侧电压的恒定,该方法可以保持。
[0093] 5)本发明可使网侧电流拥有更小的总谐波畸变率,这对保证车网耦合系统的电能质量和系统稳定性具有重大意义。附图说明
[0094] 图1为本发明的控制结构图。
[0095] 图2为本发明的整流器等效电路图。
[0096] 图3位本发明的整流器包含开关函数的简化电路图。
[0097] 图4为直流侧电压波形对比图。
[0098] 图5本发明的仿真模型图;From与Goto标号相同为一组,表示两个信号实际上相连。
[0099] 图6为本发明的控制器仿真模型图;图5中出现的标号本图未重复标注。
[0100] 图7a为本发明直流侧电压Udc波形图。
[0101] 图7b交流侧电流in、交流侧电流un波形图。
[0102] 图7c为本发明车网级联仿真在0s时刻首先接入5台动车,接着在3s、6s以及9s时刻分别增加1台动车,一共接入8台动车的网侧电压u、网侧电流i波形图;EMU指一台动车组。

具体实施方式

[0103] 下面结合附图和具体实施例对本发明做进一步详细说明。本实施例以CRH5型动车组为例。
[0104] 步骤A:定义网侧电流正交量,构建d-q旋转坐标系下动车组网侧整流器的状态空间模型。
[0105] 动车组网侧整流器采用的是四象限脉冲整流器,本专利针对的是单相两电平拓扑结构。受电弓从接触网取流,经车载变压器降压后作为整流器的输入,整流器则将输入的单相交流电压变换成稳定的直流电压。
[0106] 将交流侧电流in表示为iα,交流侧电动势en表示为uα,构建与iα、uα正交的虚拟量iβ、eβ,根据坐标变换遵循的等功率变换原则,可得到
[0107] uαiα+uβiβ=Udcidc
[0108] 式中,Udc为直流侧稳定电压,idc为直流侧稳定负载电流。
[0109] 定义uα=SαUdc,uα是uab在α轴上的分量,uβ=SβUdc,uβ是uab在β轴上的分量,Sα、Sβ是α-β坐标系下的理想开关函数。得到idc的表达式:
[0110]
[0111] 如图2所示,通过对交流侧列写KVL方程,并将交流量、虚拟正交量表示在同一方程组中,可获得d-q旋转坐标系下动车组网侧整流器的数学模型
[0112]
[0113] 式中,L和R分别为车载变压器等效到次边的漏电感和漏电阻,C为直流侧支撑电容。动车组网侧整流器中,相应的参数取值分别为:牵引网网压有效值Un=27500V,网侧电阻R=0.145Ω,网侧电感L=0.0054H,直流侧支撑电容C=0.009F,直流侧负载等效电阻R=25Ω。给定直流侧电压Udc=3600V。
[0114] 对上式进行两相静止坐标系到两相旋转坐标系的坐标变换,可得到d-q旋转坐标系下动车组网侧整流器的数学模型
[0115]
[0116] 式中,ed、eq分别为网侧电动势与虚拟正交分量分别在旋转坐标系中d轴与q轴的分量,同理,id、iq分别为网侧电动势与虚拟正交分量分别在旋转坐标系中d、q分量。根据定义,d轴分量表示有功分量,q轴分量表示无功分量。
[0117] 步骤B:令Pdq=edid+eqiq, x2=Pl。其中Pl=ilRl是实际负载功率。因此d-q旋转坐标系下动车组网侧整流器的数学模型的第三个公式可简化为 为
了建立扩张状态观测器,所有的扰动和未知量都被视为一个新的状态变量。对于动车组网侧整流器,实际负载功率不是恒定的,所以被视为外部干扰。因此,为设计扩张状态观测器,可表示为
[0118]
[0119] 而一个线性的扩张状态观测器则如下所示
[0120]
[0121] 其中,z1和z2通过扩张状态观测器得到,他们分别是x1和x2的估计值。
[0122] 本实施例将所有的外部扰动视为一个状态变量,使得在负载突变的情况下,相比于原滑模控制器无法保持直流侧电压的恒定的问题,该方法则可以保持持直流侧电压的恒定。如图4所示。
[0123] 步骤C:结合控制目标,选取控制系统的输出,建立基于外环电压控制的两个滑模面,得到网侧电流无功分量的参考值,完成滑模面表达式的求取。具体如下:
[0124] 选择Udc、iq为控制系统的输出。设 则 根据步骤A中得到的d-q旋转坐标系下动车组网侧整流器状态空间模型的矩阵形式,推出其能控标准型
[0125]
[0126] 根据动车组网侧整流器的两个控制目标:其一,保证网压网流保持功率因数接近于1;其二,保证直流侧电压稳定在允许的波动范围内,选择Udc、iq为控制系统的输出。udc、iq、 的误差值 eφ分别表示为
[0127]
[0128] 建立两个滑模面s1、s2分别与两个控制目标即Udc、iq对应
[0129]
[0130] 其中,α、α1、α2为放大增益,并使用β代替 为滑模控制的反馈系数。
[0131]
[0132] 将d-q旋转坐标系下动车组网侧整流器的数学模型以及人为设置的直流侧电压参考值 代入上式可得,此处由于CRH5型车直流侧电压的额定值3600V,则控制目标要直流侧电压在3600V附近一定范围内波动。
[0133]
[0134] 将id分离,得到
[0135]
[0136] 其中,il是由步骤B中的z2/Udc=il得到,则通过上式可得到 的表达式
[0137]
[0138] 式中C、 是已知的常数,udc、iq、il可以通过对应的测量工具测得,β是需要设计者设计的参数,Sd与Sq是开关函数,将 作为id的参考值。
[0139] 根据d-q旋转坐标系下遵循功率不变原则
[0140] udid+uqiq=Udcidc
[0141] 根据控制目标,无功电流分量iq=0,则
[0142] udid=Udcidc
[0143] 定义ud=SdUdc,根据电路知识可得ud=ed-Rid,得到Sd的表达式
[0144]
[0145] 由d-q旋转坐标系下动车组网侧整流器的数学模型。且对于容量较大的变压器,其电阻R极小,可以忽略,又因为在理想情况下, eq=0,则
[0146]
[0147] 将上式代入id的参考值 的表达式,得到
[0148]
[0149] 则
[0150]
[0151] 其中,il是由步骤B中的z2/Udc=il得到,则通过上式可得到 的表达式
[0152]
[0153] 可将滑模面改写成以下简单的形式
[0154]
[0155] 步骤C:对上述两个滑模面选取滑模控制趋近率,将步骤B建立的两个滑模面代入滑模控制趋近率,将得到的结果代入d-q旋转坐标系下动车组网侧整流器的状态空间模型,得到开关函数,将该开关函数与直流侧电压相乘,得到控制电压。
[0156] 对上文所取得两个滑模面s1、s2选取指数趋近率,得到
[0157]
[0158] ε1为常数,表示系统状态点趋近于滑模面s1(x)=0的速率,速率与ε1的大小成正比;-k1s是指数趋近项,代表系统状态趋近滑模面的将滑模面的过程; 为滑模面s1的求导值;ε2、s2、-k2s2、 含义规律同上。
[0159] 将滑模面的表达式代入
[0160]
[0161] 由于 都是常数,所以 上式可表示为
[0162]
[0163] 代入d-q旋转坐标系下动车组网侧整流器的状态空间模型,得到
[0164]
[0165] 将开关函数Sd、Sq表示出来
[0166]
[0167] 得到脉冲宽度调制所需控制电压
[0168]
[0169] D.将步骤C中得到的控制电压经过坐标变换得到α-β坐标系分量,再通过正弦脉宽调制输出控制脉冲。
[0170] 最后在Matlab/Simulink中搭建仿真模型如图5所示,所得电压、电流波形如图7a、7b所示,所加负载为额定负载,等效电阻为R=25Ω。波形显示直流侧电压超调量为0,没有峰值时间,调节时间为0.05s,电压波动60V。相比常用的传统比例积分控制而言性能指标得到较好改善,交流电流从启动到稳定仅需要3个周波,且THD有所减小。
[0171] 将该滑模控制算法应用于牵引网-动车组级联仿真模型中,依次增加接入牵引网的动车组数量,在传统瞬态直接电流控制下,接入动车组达到8台时动车组和牵引网电压、电流发生明显的波动,及产生车网低频振荡现象。在基于滑模控制高铁低频振荡抑制方法的控制下,接入动车组达到甚至超过8台时,电气量基本稳定,如图7c所示,未发生低频振荡问题。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈