首页 / 专利库 / 变压器和转换设备 / 传感器 / 传感器 / 光探测器 / 快速检测返波管太赫兹输出频率不稳定性的装置及其方法

快速检测返波管太赫兹输出频率稳定性的装置及其方法

阅读:1018发布:2020-06-19

专利汇可以提供快速检测返波管太赫兹输出频率稳定性的装置及其方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种快速检测返波管太赫兹输出 频率 不 稳定性 的装置及其方法,其中,装置用于对返波管的输出频率进行检测,返波管具有固定于尾端的反光漫反射体,包括:可见 激光器 ,用于发出激光,使得该激光到达反光漫反射体;离轴抛物面镜,设于反光漫反射体的同一 水 平线上,用于对反光漫反射体反射激光而形成的散射光进行收集与 准直 ,得到平行光束;探测器,设于离轴抛物面镜后方,对平行光束进行探测并将平行光束的光 信号 转变为 电信号 ;示波器,与探测器电连接,对探测器检测到电信号进行导出从而得到信号幅度的 位置 ;以及三维手动平台,用于承载探测器并对探测器的三维空间位置进行调整。,下面是快速检测返波管太赫兹输出频率稳定性的装置及其方法专利的具体信息内容。

1.快速检测返波管太赫兹输出频率稳定性的装置,用于对返波管的输出频率进行检测,所述返波管具有固定于尾端的反光漫反射体,其特征在于,包括:
可见激光器,用于发出激光,使得该激光到达所述反光漫反射体;
离轴抛物面镜,设于所述反光漫反射体的同一平线上,用于对所述反光漫反射体反射所述激光而形成的散射光进行收集与准直,得到平行光束;
探测器,设于所述离轴抛物面镜后方,对所述平行光束进行探测并将所述平行光束的光信号转变为电信号
示波器,与所述探测器电连接,对所述探测器检测到所述电信号进行导出从而得到信号幅度的位置;以及
三维手动平台,用于承载所述探测器并对所述探测器的三维空间位置进行调整。
2.根据权利要求1所述的快速检测返波管太赫兹输出频率不稳定性的装置,其特征在于:
其中,所述可见激光器为635nm可见激光器且出口处贴有一张漫反射纸片,该漫反射纸片用于辅助校准所述离轴抛物面镜和所述探测器。
3.根据权利要求1所述的快速检测返波管太赫兹输出频率不稳定性的装置,其特征在于:
其中,所述探测器为高电子迁移率场效应管太赫兹探测器且响应时间小于3ns。
4.使用如权利要求1所述的快速检测返波管太赫兹输出频率不稳定性的装置对返波管太赫兹输出频率的不稳定度进行检测的方法,其特征在于,包括如下步骤:
步骤1,利用所述635nm可见激光器校准光路,精确测量所述返波管出口到所述探测器接收面的光路长度L;
步骤2,将所述探测器安装到所述三维手动平台上,并调整所述三维手动平台使得所述探测器位于所述离轴抛物面镜后方;
步骤3,采用所述635nm可见激光器发出635nm可见激光,使得该激光通过所述反光漫反射体的漫反射后经过所述离轴抛物面镜的收集与准直得到平行光束,所述探测器将所述平行光束由光信号转变为电信号后通过所述示波器来显示信号;
步骤4,调整所述三维手动平台从而前后移动所述探测器,导出所述示波器上信号幅度最大与最小位置,在一段距离中朝一个方向缓慢移动所述三维手动平台,记录N组信号最强与最弱值的示波器数据;
步骤5,将导出的数据进行处理,根据法布里-珀罗干涉原理计算返波管发光面的反射系数r2;
步骤6,利用法布里-珀罗干涉原理,以频率改变量作为拟合参数,将所述步骤5处理所得数据为依据进行拟合,从而得到所述返波管输出频率的不稳定度。
5.根据权利要求4所述的使用快速检测返波管太赫兹输出频率不稳定性的装置对返波管太赫兹输出频率的不稳定度进行检测的方法,其特征在于:
其中,所述步骤5包括如下子步骤:
步骤5-1,根据法布里-珀罗干涉原理,得到透射光强度
步骤5-2,根据Stoke定律,知tt′=1-r′2=1-R,其中令 为精巧系数,由式(1)简化得到
根据式(2)则有ITmax=I0,
步骤5-3,通过所述步骤4记录的N组信号最强与最弱值,即可得到最强平均值 与最弱平均值
步骤5-4,将已知探测器透镜表面系数r1代入 中可得到所述返波管发
光面的反射系数为r2,
*
其中,所述式(1)和式(2)中,UT表示透射振幅,UT表示共轭透射振幅,E0表示电矢量振幅,t表示光波从周围媒介到平板的透射系数,该透射系数为透射波振幅与入射振幅之比,t’表示光波从平板到周围媒介的透射系数,R表示平板的反射率,r’表示光波从平板到周围媒介的反射系数, 表示经过平板一个往返的积累相位, 表示积累相位的共轭数,δ表示各相邻光束之间的位相差,I0表示入射光的强度。
6.根据权利要求5所述的使用快速检测返波管太赫兹输出频率不稳定性的装置对返波管太赫兹输出频率的不稳定度进行检测的方法,其特征在于:
其中,所述步骤6包括如下子步骤:
步骤6-1,根据所述式(1)和式(2)建立仿真模型;
步骤6-2,根据与所述透射光强度函数相关的参数对光路折射率、波长、波长变化百分数、最小光路长度、最大光路长度、探测器硅透镜表面系数r1、返波管发光面的反射系数r2进行设定,从而得到所述仿真模型的输出频率在规定范围内变化的跟时间相关的波形图;
步骤6-3,将所述步骤6-2中得到的所述波形图与所述示波器导出数据进行拟合,从而得到所述返波管太赫兹输出频率不稳定度。

说明书全文

快速检测返波管太赫兹输出频率稳定性的装置及其方法

技术领域

[0001] 本发明涉及太赫兹频率测量领域,具体涉及一种快速检测返波管太赫兹输出频率不稳定性的装置及其方法。

背景技术

[0002] 太赫兹是指频率在0.1~10THz之间的电磁波,在电磁波谱中位于微波和红外之间。由于太赫兹处在特殊电磁波段位置,因而它具有许多独特而优越的性质,在应用方面与其它波段的电磁波有非常强的互补特征。随着人们对太赫兹辐射光源和探测技术的不断发展和创新,太赫兹技术的应用领域日益拓宽,比如在材料检测、安检成像、生物医学、产品质量检查、环境监测、空间通信以及天文学等领域中都将发挥重要作用。
[0003] 太赫兹科学技术的应用需要太赫兹辐射源和太赫兹探测技术的发展,同时也离不开太赫兹波各种功能器件的进一步完善。随着应用领域对太赫兹技术的迫切需求,对高功率、低成本、便携式、常温下能工作的太赫兹辐射源的需要越来越紧迫,返波管太赫兹源就是其中一种,而且目前只有返波管振荡器在0.1THz以上的太赫兹源具有宽带调谐和大功率输出能。返波管振荡器是一种由加速电子产生太赫兹辐射的高效率太赫兹辐射源,由加热的电子枪(阴极)辐射出高速电子,在反向运动到阳极过程中,经过一个周期分布的电势场减速系统减速,发出电磁辐射,产生太赫兹波,可通过调节加速电压来调谐输出频率。太赫兹返波管高频系统的研究就是为了作为太赫兹源而提出的。
[0004] 太赫兹返波管是公认的最稳定的可调谐宽频的连续太赫兹源,然而当返波管作为太赫兹成像系统或频谱检测的频率振荡器时,为了获得可靠稳定的信号图谱,要求太赫兹源具有较高的频率稳定性。目前为止未能有简便方法测量返波管的不稳定性度的方法,即使有少数太赫兹探测器能观察到源的不稳定性的现象,但未有方法标定其不稳定度。本发明提出理论分析,将观察到的现象归咎为频率振荡的结果,并结合法布里-珀罗干涉原理对其不稳定度进行分析。

发明内容

[0005] 本发明是为了解决上述问题而进行的,目的在于提供一种快速检测返波管太赫兹输出频率不稳定性的装置及其方法。
[0006] 本发明提供了一种快速检测返波管太赫兹输出频率不稳定性的装置,用于对返波管的输出频率进行检测,返波管具有固定于尾端的反光漫反射体,具有这样的特征,包括:可见激光器,用于发出激光,使得该激光到达反光漫反射体;离轴抛物面镜,设于反光漫反射体的同一平线上,用于对反光漫反射体反射激光而形成的散射光进行收集与准直,得到平行光束;探测器,设于离轴抛物面镜后方,对平行光束进行探测并将平行光束的光信号转变为电信号;示波器,与探测器电连接,对探测器检测到电信号进行导出从而得到信号幅度的位置;以及三维手动平台,用于承载探测器并对探测器的三维空间位置进行调整。
[0007] 在本发明提供的快速检测返波管太赫兹输出频率不稳定性的装置及中,还可以具有这样的特征:其中,可见激光器为635nm可见激光器且出口处贴有一张漫反射纸片,该漫反射纸片用于辅助校准离轴抛物面镜和探测器。
[0008] 在本发明提供的快速检测返波管太赫兹输出频率不稳定性的装置中,还可以具有这样的特征:其中,探测器为高电子迁移率场效应管太赫兹探测器且响应时间小于3ns。
[0009] 本发明还提供了一种使用快速检测返波管太赫兹输出频率不稳定性的装置对返波管太赫兹输出频率的不稳定度进行检测的方法,具有这样的特征,包括如下步骤:
[0010] 步骤1,利用635mm可见激光器校准光路,精确测量返波管出口到探测器接收面的光路长度L;
[0011] 步骤2,将探测器安装到三维手动平台上,并调整三维手动平台使得探测器位于离轴抛物面镜后方;
[0012] 步骤3,采用635mm可见激光器发出635mm可见激光,使得该激光通过反光漫反射体的漫反射后经过离轴抛物面镜的收集与准直得到平行光束,探测器将平行光束由光信号转变为电信号后通过示波器来显示信号;
[0013] 步骤4,调整三维手动平台从而前后移动探测器,导出示波器上信号幅度最大与最小位置,在一段距离中朝一个方向缓慢移动三维手动平台,记录N组信号幅度最大位置和最小位置的示波器数据;
[0014] 步骤5,将导出的数据进行处理,根据法布里-珀罗干涉原理计算源表面的反射系数r2;
[0015] 步骤6,利用法布里-珀罗干涉原理,以频率改变量作为拟合参数,将步骤5处理所得数据为依据进行拟合,从而得到返波管输出频率的不稳定度。
[0016] 在本发明提供的快速检测返波管太赫兹输出频率不稳定性的方法中,还可以具有这样的特征:其中,步骤5包括如下子步骤:
[0017] 步骤5-1,根据法布里-珀罗干涉原理,得到透射光强度
[0018]
[0019] 步骤5-2,根据Stoke定律,知tt′=1-r2=1-R,其中令 为精巧系数,由式(1)简化得到
[0020]
[0021] 根据式(2)则有
[0022] 步骤5-3,通过步骤3记录的N组信号最强与最弱值,即可得到最强平均值 与最弱平均值
[0023] 步骤5-4,将已知探测器透镜表面系数r1代入 中可得到源表面系数为r2,
[0024] 其中,式(1)和式(2)中,UT表示透射振幅,U*T表示表示共轭投射振幅,E0表示电矢量振幅,t表示光波从周围媒介到平板的透射系数,该投射系数为投射波振幅与入射振幅之比,t,表示光波从平板到周围媒介的透射系数, 表示经过平板一个往返的积累相位,e-iδ表示积累相位的共轭数,I0表示入射光的强度。
[0025] 在本发明提供的快速检测返波管太赫兹输出频率不稳定性的方法中,还可以具有这样的特征:其中,步骤6包括如下子步骤:
[0026] 步骤6-1,根据式(1)和式(2)建立仿真模型;
[0027] 步骤6-2,根据与透射光强度函数相关的参数对光路折射率、波长、波长变化百分数、最小光路长度、最大光路长度、探测器硅透镜反射率r1、返波管发光面反射率r2进行设定,从而得到仿真模型的输出频率在规定范围内变化的跟时间相关的波形图;
[0028] 步骤6-3,将步骤5-2中得到的波形图与示波器导出数据进行拟合,从而得到返波管太赫兹输出频率不稳定度。
[0029] 发明的作用与效果
[0030] 根据本发明所涉及的快速检测返波管太赫兹输出频率不稳定性的装置及其方法,因为所使用的抛物面镜,所以保证了探测器在前后移动的过程中光强分布均匀。因为所使用的探测器的响应速度快,所以可以探测到太赫兹源输出的快速变化。因为所使用的探测器可直接接入示波器下使用,所以避免了斩波器额外引入的噪声。因为所使用的三维手动平台能够改变探测器的位置,所以提高了测量的准确度。因此,本发明的快速检测返波管太赫兹输出频率不稳定性的装置及其方法构件简单、便利、廉价,可以为频率稳定性测量的可行性提供理论依据。附图说明
[0031] 图1是本发明的实施例中的装置结构示意图;
[0032] 图2是本发明的实施例中的截取示波器一个周期八个片段示意图;
[0033] 图3是本发明的实施例中的法布里-珀罗多光束干涉的原理图;
[0034] 图4是本发明的实施例中的波长变化率为零与较大时的两个仿真片断图;
[0035] 图5是本发明的实施例中的信号最强与最弱位置的示波器显示图;
[0036] 图6是本发明的实施例中的程序仿真结果与最强最弱位置图的拟合图。

具体实施方式

[0037] 为了使本发明实现的技术手段与功效易于明白了解,以下结合实施例及附图对本发明作具体阐述。
[0038] 图1是本发明的实施例中的装置结构示意图。
[0039] 如图1所示,本发明的一种快速检测返波管太赫兹输出频率不稳定性的装置100,用于对返波管的输出频率进行检测,返波管具有固定于尾端的反光漫反射体2,包括:可见激光器1、离轴抛物面镜3、探测器4、示波器5和三维手动平台(图中未示出)。
[0040] 可见激光器1,用于发出激光,使得该激光到达反光漫反射体2。
[0041] 可见激光器1为635nm可见激光器且出口处贴有一张漫反射纸片,该漫反射纸片用于辅助校准离轴抛物面镜3和探测器4。
[0042] 离轴抛物面镜3,设于反光漫反射体2的同一水平线上,用于对反光漫反射体2反射激光而形成的散射光进行收集与准直,得到平行光束。
[0043] 探测器4,设于离轴抛物面镜3后方,对平行光束进行探测并将平行光束的光信号转变为电信号。
[0044] 探测器4为高电子迁移率场效应管太赫兹探测器且响应时间小于3ns。
[0045] 示波器5,与探测器4电连接,对探测器4检测到电信号进行导出从而得到信号幅度的位置。
[0046] 三维手动平台,用于承载探测器4并对探测器4的三维空间位置进行调整。
[0047] 一种使用快速检测返波管太赫兹输出频率不稳定性的装置对返波管太赫兹输出频率的不稳定度进行检测的方法,包括如下步骤:
[0048] 步骤1,利用635mm的可见激光器1校准光路,精确测量返波管出口到探测器4接收面的光路长度L,若光路L的长度发生改变,干涉的位置也会发生改变。
[0049] 步骤2,将探测器4安装到三维手动平台上,并调整三维手动平台使得探测器4位于离轴抛物面镜3后方。
[0050] 步骤3,采用635mm可见激光器1发出635mm可见激光,使得该激光通过反光漫反射体2的漫反射后经过离轴抛物面镜3的收集与准直得到平行光束,探测器4将平行光束由光信号转变为电信号后通过示波器5来显示信号。
[0051] 步骤4,调整三维手动平台从而前后移动探测器4,导出示波器5上信号幅度最大与最小位置,在一段距离中朝一个方向缓慢移动三维手动平台,记录N组信号幅度最大位置和最小位置的示波器5数据。
[0052] 步骤5,将导出的数据进行处理,根据法布里-珀罗干涉原理计算源表面的反射系数r2。
[0053] 步骤5包括如下子步骤:
[0054] 步骤5-1,根据法布里-珀罗干涉原理,得到透射光强度
[0055]
[0056] 步骤5-2,根据Stoke定律,知tt′=1-r2=1-R,其中令 为精巧系数,由式(1)简化得到
[0057]
[0058] 根据式(2)则有
[0059] 步骤5-3,通过步骤3记录的N组信号最强与最弱值,即可得到最强平均值 与最弱平均值
[0060] 步骤5-4,将已知探测器硅透镜表面系数r1代入 中可得到源表面系数为r2,
[0061] 其中,式(1)和式(2)中,UT表示透射振幅,U*T表示表示共轭投射振幅,E0表示电矢量振幅,t表示光波从周围媒介到平板的透射系数,该投射系数为投射波振幅与入射振幅之比,t,表示光波从平板到周围媒介的透射系数, 表示经过平板一个往返的积累相位,e-iδ表示积累相位的共轭数,I0表示入射光的强度。
[0062] 步骤6,利用法布里-珀罗干涉原理,以频率改变量作为拟合参数,将步骤5处理所得数据为依据进行拟合,从而得到返波管输出频率的不稳定度。
[0063] 步骤6包括如下子步骤:
[0064] 步骤6-1,根据式(1)和式(2)建立仿真模型;
[0065] 步骤6-2,根据与透射光强度函数相关的参数对光路折射率、波长、波长变化百分数、最小光路长度、最大光路长度、探测器4的硅透镜反射率r1、返波管发光面反射率r2进行设定,从而得到仿真模型的输出频率在规定范围内变化的跟时间相关的波形图;
[0066] 步骤6-3,将步骤5-2中得到的波形图与示波器5导出数据进行拟合,从而得到返波管太赫兹输出频率不稳定度。
[0067] 实施例:
[0068] 图2是本发明的实施例中的截取示波器一个周期八个片段示意图
[0069] 如图2所示,前后移动探测器4位置,在示波器5上观察到,信号的幅度与形态发生周期性变化,且经过多组数据研究,信号变化的周期约为半个波长。其中经过观察,信号最强处与最弱处信号振荡幅度最小,遂将这个位置作为特征位置进行计算。
[0070] 图3是本发明的实施例中的法布里-珀罗多光束干涉的原理图,图4是本发明的实施例中的波长变化率为零与较大时的两个仿真片断图。
[0071] 如图3和图4所示,公式推导如下:
[0072] 相邻透射光束几何程差:Δ=n(AB+BC)-CD;
[0073] 由图3可知: CD=ACsinv,t=2dtanvtsinv,t;
[0074] 代入有:Δ=2ndcosvt;
[0075] 透射振幅为UT=E0tt,(1+r,2eiδ+r,4ei2δ+r,6ei3δ+...);
[0076] 根据无穷等比数列求和,且r,2eiδ<1,则有:
[0077]
[0078] 相邻光束的总相位差
[0079] 透射光强
[0080] 其中eiδ+e-iδ=2cosδ=2(1-2sin2(δ/2)),简化得:
[0081]
[0082] 根据Stoke定律,tt,=1-r,2=1-R,令 则有:
[0083]
[0084] 当sin2(δ/2)=0时,IT取最大值;当sin2(δ/2)=1时,IT取最小值。
[0085] 图4是根据图3所示原理图建立仿真模型得到的频率变化与不变化的两个仿真片断图,从图中可以看出,当测量光路长度L与频率不发生变化时,法布里-珀罗干涉强度并不会随着时间而变化。在本实施例中,保持探测器4的位置不变,改变返波管频点的位置,同样能观察到示波器5上图谱周期变化。结合以上两点,可证明通过探测器4探测到的图谱是由于返波管频率变化的结果。
[0086] 图5是本发明的实施例中的信号最强与最弱位置的示波器显示图。
[0087] 如图5所示,在本实例中记录10组强度最大值与最小值,将其数据取平均再画出波形,且取图形中强度最大值最小值求出源表面反射系数。源的反射系数为r1,探测器反射系数r2,则F=4r1r2/(1-r1r2)2。图5中从下至上分别为无源信号波形,有源信号强度最大处,有源信号强度最小处,对应的值分别为10mV、133mV和30mV。已知硅透镜反射系数r2=0.54,代入可求得r1≈0.78。
[0088] 图6是本发明的实施例中的程序仿真结果与最强最弱位置图的拟合图。
[0089] 如图6所示,对测得数据进行拟合,测量光路L=585mm,硅透镜振幅反射率设为0.54,求得返波管发射面振幅反射率为0.78,离轴抛物面镜3的反射率设为1。从拟合结果可得到频率的不稳定性δλ/λ=9×10-4,与返波管说明书中给出的相关参数一致。
[0090] 实施例的作用与效果
[0091] 本实施例的快速检测返波管太赫兹输出频率不稳定性的装置及其方法,因为所使用的抛物面镜,所以保证了探测器在前后移动的过程中光强分布均匀。因为所使用的探测器的响应速度快,所以可以探测到太赫兹源输出的快速变化。因为所使用的探测器可直接接入示波器下使用,所以避免了斩波器额外引入的噪声。因为所使用的三维手动平台能够改变探测器的位置,所以提高了测量的准确度。因此,本发明的快速检测返波管太赫兹输出频率不稳定性的装置及其方法构件简单、便利、廉价,可以为频率稳定性测量的可行性提供理论依据。
[0092] 上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈