首页 / 专利库 / 电路 / 浪涌电压 / 电力变换装置

变换装置

阅读:20发布:2020-05-13

专利汇可以提供变换装置专利检索,专利查询,专利分析的服务。并且提供一种能够以简易的结构来抑制 电压 控制型 半导体 开关 元件的控制 端子 与低电位侧端子之间的 浪涌电压 的影响的电 力 变换装置。具备:电力变换 电路 (15),其将直流电力变换为多相交流电力,具有电压控制型的第一 半导体开关 元件; 制动 电路(14),其保护电力变换电路免受施加到电力变换电路的过电压损害,具有电压控制型的第二半导体开关元件;控制电路(16),其对电力变换电路的第一半导体开关元件和制动电路的第二半导体开关元件进行控制;以及缓冲电路(20),其连接于电力变换电路的负电位侧与所述控制电路的负电位侧之间,用于抑制浪涌电压,该缓冲电路包括 电阻 和电容器。,下面是变换装置专利的具体信息内容。

1.一种电变换装置,其特征在于,具备:
电力变换电路,其将直流电力变换为多相交流电力,具有电压控制型的第一半导体开关元件;
制动电路,其保护所述电力变换电路免受施加到该电力变换电路的过电压损害,具有电压控制型的第二半导体开关元件;
控制电路,其对所述电力变换电路的所述第一半导体开关元件和所述制动电路的第二半导体开关元件进行控制;以及
缓冲电路,其连接于所述电力变换电路的负电位侧与所述控制电路的负电位侧之间,用于抑制浪涌电压,所述缓冲电路包括电阻和电容器。
2.根据权利要求1所述的电力变换装置,其特征在于,
所述电力变换电路、所述制动电路、所述控制电路以及所述缓冲电路一体地配置于一个封装内。
3.根据权利要求1或2所述的电力变换装置,其特征在于,
所述电力变换电路是将三相以上的开关臂并联连接来构成的,所述开关臂是将高电位侧半导体开关元件与低电位侧半导体开关元件串联连接而成的,
所述缓冲电路连接于构成所述开关臂的低电位侧半导体开关元件中的下述低电位侧半导体开关元件的低电位侧端子连接部与所述控制电路的低电位侧布线之间:该低电位侧半导体开关元件的低电位侧端子所连接的低电位侧布线的布线电感最大。
4.根据权利要求1或2所述的电力变换装置,其特征在于,
还具备将交流电力变换为直流电力的交直流电力变换电路,从所述交直流电力变换电路输出的直流电力被供给到所述制动电路和所述电力变换电路。

说明书全文

变换装置

技术领域

[0001] 本发明涉及一种具备电力变换电路制动电路的电力变换装置。

背景技术

[0002] 以往,在电动机吸尘器空调焊接机等中应用着逆变器等电力变换装置。在该电力变换装置中,使用了将高电位侧半导体开关元件与低电位侧半导体开关元件串联连接而成的开关臂。作为半导体开关元件,应用了IGBT、功率MOS等电压控制型半导体开关元件。
[0003] 作为电力变换装置,提出了以下电力变换装置:具备将交流电力变换为直流电力的整流电路、制动电路、将直流电力变换为交流电力的逆变器电路以及它们的控制电路(参照专利文献1)。
[0004] 最近,将整流电路、制动电路、逆变器电路以及它们的控制电路配置在一个封装内来形成智能功率模
[0005] 在像这样构成智能功率模块的情况下,存在以下趋势:智能功率模块内的布线变长、布线电感变大。
[0006] 因此,作为在制动电路、逆变器电路中使用的半导体开关元件,例如在IGBT从接通状态变为断开状态时,因布线电感中蓄积的蓄积能量引起的过电压(浪涌电压)被提供到IGBT的作为控制端子的栅极与作为低电位侧端子的发射极之间。
[0007] 为了防止该浪涌电压变得比IGBT的击穿电压高,如专利文献2所记载的那样,提出了设置浪涌电压抑制电路。
[0008] 该浪涌电压抑制电路是将两个齐纳二极管以彼此的阳极之间连接的方式反向串联连接来构成的。该浪涌电压抑制电路并联连接于IGBT的栅极与发射极之间。
[0009] 专利文献1:日本特开2014-138532号公报
[0010] 专利文献2:日本特开2010-136089号公报

发明内容

[0011] 发明要解决的问题
[0012] 探讨将前述的专利文献2所记载的浪涌电压抑制电路应用于图3所示的电力变换装置的情况。该电力变换装置将从交流电源100输出的交流电力利用全波整流电路101变换为直流后输出到正极侧布线102p和负极侧布线102n。在正极侧布线102p与负极侧布线102n之间连接有平滑电容器103、制动电路104以及逆变器电路105。在逆变器电路105的交流输出侧连接有三相电动机108。此外,110是对制动电路104和逆变器电路105的各开关元件进行开关控制的控制电路。
[0013] 另外,在构成制动电路104的IGBT 106与负极侧布线102n之间连接浪涌电压抑制电路111。该浪涌电压抑制电路111被设为将两个齐纳二极管ZD1和ZD2反向串联连接的结构。同样地,在构成逆变器电路105的开关臂中的低电位侧的IGBT 107与负极侧布线102n之间也连接具有与浪涌电压抑制电路111相同的结构的浪涌电压抑制电路112。
[0014] 在像这样将专利文献2所记载的浪涌电压抑制电路应用于具有制动电路104和逆变器电路105的电力变换装置的情况下,至少需要对制动电路104和逆变器电路105连接两个浪涌电压抑制电路111及112。而且,作为浪涌电压抑制电路,使用两个齐纳二极管ZD1及ZD2,这些齐纳二极管ZD1及ZD2存在以下问题:芯片尺寸大,并且昂贵,电力变换装置的制造成本上升。
[0015] 因此,本发明是着眼于上述以往例的问题而完成的,其目的在于提供一种能够以简易的结构来抑制电压控制型半导体开关元件的控制端子与低电位侧端子之间的浪涌电压的影响的电力变换装置。
[0016] 用于解决问题的方案
[0017] 为了达到上述目的,本发明所涉及的电力变换装置的一个方式具备:电力变换电路,其将直流电力变换为多相交流电力,具有电压控制型的第一半导体开关元件;制动电路,其保护电力变换电路免受施加到电力变换电路的过电压损害,具有电压控制型的第二半导体开关元件;控制电路,其对电力变换电路的第一半导体开关元件和制动电路的第二半导体开关元件进行控制;以及缓冲电路,其连接于电力变换电路的负电位侧与所述控制电路的负电位侧之间,用于抑制浪涌电压,该缓冲电路包括电阻和电容器。
[0018] 发明的效果
[0019] 根据本发明的一个方式,能够以简易的结构来抑制施加到构成制动电路和电力变换电路的半导体开关元件的控制端子与低电位侧端子之间的浪涌电压的影响。附图说明
[0020] 图1是表示本发明所涉及的电力变换装置的一个实施方式的电路图。
[0021] 图2是表示图1的制动电路和电力变换电路的浪涌电压波形的波形图,(a)是未设置RC缓冲电路的情况下的波形图,(b)是设置有RC缓冲电路的情况下的波形图。
[0022] 图3是表示电力变换装置的以往例的电路图。

具体实施方式

[0023] 接着,参照附图来说明本发明的一个实施方式。在下面的附图的记载中,对同一或类似的部分标注同一或类似的标记。
[0024] 另外,下面示出的实施方式用于例示用于将本发明的技术思想具体化的装置、方法,本发明的技术思想并不是将结构部件的材质、形状、构造、配置等特定为下述的材质、形状、构造、配置等。本发明的技术思想能够在权利要求书所记载的权利要求规定的技术范围内施加各种变更。
[0025] 参照附图来说明表示本发明的一个实施方式的电力变换装置。
[0026] 首先,使用图1来说明基于本实施方式的电力变换装置10。
[0027] 如图1所示,电力变换装置10具备:作为交直流电力变换电路的全波整流电路12,其将从三相交流电源11输入的三相交流电力变换为直流电力;以及平滑电容器13,其使从全波整流电路12输出的直流电力平滑化。
[0028] 全波整流电路12由全桥电路构成,该全桥电路是在作为高电位侧布线的正极侧布线Lp与作为低电位侧布线的负极侧布线Ln之间将串联连接两个二极管而成的串联电路12A、12B及12C并联连接而成的。三相交流电源11的各相电力被供给到各串联电路12A、12B及12C的二极管之间的连接点,通过各二极管对各相电力进行全波整流后,从正极侧布线Lp与负极侧布线Ln之间输出直流电力。
[0029] 平滑电容器13连接于从全波整流电路12输出直流电力的正极侧布线Lp与负极侧布线Ln之间,用于使直流电力平滑化。负极侧布线Ln在与平滑电容器13的连接点处与地连接。
[0030] 另外,电力变换装置10具备制动电路14、将直流变换为多相交流的作为电力变换电路的逆变器电路15、以及控制电路16。
[0031] 制动电路14在对作为负载的三相电动机19进行再生制动时通过连接于外部的电阻来消耗再生电流,以保护逆变器电路15免受施加到逆变器电路15的过电压损害。制动电路14包括浪涌电压抑制用的二极管14a、例如由IGBT构成的电压控制型的半导体开关元件14b以及与二极管14a并联连接的外置的电阻14c。
[0032] 而且,二极管14a的阴极及电阻14c的一端连接于正极侧布线Lp,二极管14a的阳极与电阻14c的另一端的连接点连接于半导体开关元件(IGBT)14b的高电位侧端子(集电极)。半导体开关元件(IGBT)14b的低电位侧端子(发射极)连接于负极侧布线Ln,控制端子(栅极)连接于后述的控制电路16。
[0033] 逆变器电路15具备X相开关臂15X、Y相开关臂15Y以及Z相开关臂15Z。这些X相开关臂15X、Y相开关臂15Y以及Z相开关臂15Z并联连接于正极侧布线Lp与负极侧布线Ln之间。
[0034] X相开关臂15X具有串联连接于正极侧布线Lp与负极侧布线Ln之间的高电位侧半导体开关元件QXH和低电位侧半导体开关元件QXL。高电位侧半导体开关元件QXH和低电位侧半导体开关元件QXL由作为电压控制型半导体开关元件的例如IGBT构成。对高电位侧半导体开关元件QXH反向并联连接有续流二极管DXH。对低电位侧半导体开关元件QXL也反向并联连接有续流二极管DXL。
[0035] Y相开关臂15Y具有串联连接于正极侧布线Lp与负极侧布线Ln之间的高电位侧半导体开关元件QYH和低电位侧半导体开关元件QYL。高电位侧半导体开关元件QYH和低电位侧半导体开关元件QYL由作为电压控制型半导体开关元件的例如IGBT构成。对高电位侧半导体开关元件QYH反向并联连接有续流二极管DYH。对低电位侧半导体开关元件QYL也反向并联连接有续流二极管DYL。
[0036] Z相开关臂15Z具有串联连接于正极侧布线Lp与负极侧布线Ln之间的高电位侧半导体开关元件QZH和低电位侧半导体开关元件QZL。高电位侧半导体开关元件QZH和低电位侧半导体开关元件QZL由作为电压控制型半导体开关元件的例如IGBT构成。对高电位侧半导体开关元件QZH反向并联连接有续流二极管DZH。对低电位侧半导体开关元件QZL也反向并联连接有续流二极管DZL。
[0037] 而且,X相开关臂15X、Y相开关臂15Y以及Z相开关臂15Z的开关元件间的连接点与作为负载的三相电动机19的例如星形连接的绕组Lx、Ly及Lz连接。
[0038] 控制电路16由制动用控制电路17和逆变器用控制电路18构成。制动用控制电路17由对制动电路14的半导体开关元件(IGBT)14b的控制端子(栅极)进行驱动的栅极驱动电路(GDU)构成。在平滑电容器13的端子间电压小于逆变器电路15的半导体开关元件(IGBT)的击穿电压或比其更低的设定电压时,该制动用控制电路17将制动电路14的半导体开关元件(IGBT)14b维持为断开状态。当平滑电容器13的端子间电压超过设定电压时,制动用控制电路17使半导体开关元件14b导通。
[0039] 逆变器用控制电路18由高电位侧控制电路18H和低电位侧控制电路18L构成。
[0040] 高电位侧控制电路18H在模块内配置于与制动用控制电路17相反的一侧。该高电位侧控制电路18H向高电位侧半导体开关元件QXH、QYH及QZH的控制端子(栅极)提供驱动信号来对各开关元件QXH、QYH及QZH进行开关控制。
[0041] 低电位侧控制电路18L在模块内与制动用控制电路17相邻地配置于与制动用控制电路17相同的一侧。该低电位侧控制电路18L向低电位侧半导体开关元件QXL、QYL及QZL的控制端子(栅极)提供驱动信号来对各开关元件QXL、QYL及QZL进行开关控制。
[0042] 制动用控制电路17的负极端子17n及低电位侧控制电路18L的负极端子18n与地连接。
[0043] 而且,在作为负电位侧的负极侧布线Ln与制动用控制电路17的作为负电位侧的负极端子17n之间连接有作为浪涌电压抑制电路的RC缓冲电路20。该RC缓冲电路20被设为将电阻21与电容器22串联连接而成的结构。RC缓冲电路20的电阻21侧连接于负极侧布线Ln,电容器22侧连接于制动用控制电路17的负极端子17n。
[0044] 优选的是,将电阻21与负极侧布线Ln的连接位置设为逆变器电路15的布线电感最大的低电位侧半导体开关元件QiL(i=X、Y、Z)的低电位侧端子(发射极端子)的连接点。即,当设负极侧布线Ln的宽度和厚度相等时,优选设为到负极侧布线Ln与地的连接点为止的布线长度最长的低电位侧半导体开关元件QiL(i=X、Y、Z)的低电位侧端子(发射极端子)的连接点的附近位置。通过像这样将电阻21连接在同负极侧布线Ln与地的连接点之间的布线长度最长的位置,能够最大限度地发挥浪涌电压抑制效果。
[0045] 而且,全波整流电路12、制动电路14、逆变器电路15、控制电路16配置于一个封装来构成为智能功率模块(IPM)。
[0046] 接着,说明上述实施方式的动作。
[0047] 来自外部的交流电源的交流电力被全波整流电路12进行整流后变换为直流电力。该直流电力被平滑电容器13平滑化后供给到制动电路14和逆变器电路15。
[0048] 此时,在正在利用逆变器电路15对三相电动机19进行旋转驱动的状态下,通过逆变器用控制电路18的高电位侧控制电路18H和低电位侧控制电路18L对逆变器电路15进行开关控制。另一方面,由于平滑电容器13的端子间电压不会达到设定电压,因此制动电路14的半导体开关元件14b维持断开状态。
[0049] 考虑在逆变器电路15中低电位侧半导体开关元件QXL~QZL从接通状态进行关断的情况。在该情况下,负极侧布线Ln的布线电感中蓄积的蓄积能量作为浪涌电压被供给到低电位侧半导体开关元件QXL~QZL的控制端子与低电位侧端子之间。
[0050] 此时,在负极侧布线Ln的布线电感最大的连接点与制动用控制电路17的负极端子17n同地的连接点之间连接有RC缓冲电路20。因此,浪涌电压通过RC缓冲电路20的电阻21来被电容器22抑制。因而,能够抑制施加到逆变器电路15的低电位侧半导体开关元件QXL~QZL的控制端子和低电位侧端子的浪涌电压。
[0051] 即,以下面的情况为例来进行说明:X相开关臂15X的低电位侧半导体开关元件QXL从接通状态进行关断,由于布线电感的蓄积能量而产生浪涌电压。
[0052] 首先,在不设置RC缓冲电路20的情况下,如图2的(a)所示,X相开关臂15X中的低电位侧半导体开关元件QXL的控制端子与低电位侧端子之间的电压VGE(X-N1)由于浪涌电压而达到20V/div。
[0053] 与此相对,在设置有RC缓冲电路20的情况下,负极侧布线Ln的布线电感中蓄积的蓄积能量通过RC缓冲电路20的电阻21来被电容器22所吸收。因此,X相开关臂15X中的低电位侧半导体开关元件QXL的控制端子与低电位侧端子之间的电压VGE(X-N1)如图2的(b)所示那样为11.9V。
[0054] 其结果,与不设置RC缓冲电路20的情况相比,通过设置RC缓冲电路20,能够使低电位侧半导体开关元件QXL的控制端子与低电位侧端子之间的电压VGE(X-N1)下降8.1V,能够发挥大的浪涌电压抑制效果。
[0055] 另外,负极侧布线Ln中产生的浪涌电压还被施加到制动电路14的半导体开关元件14b。因此,半导体开关元件14b的控制端子(栅极端子)与低电位侧端子(发射极端子)之间的电压VGE(B-N1)如图2的(a)所示那样为超过击穿电压的20V/div。
[0056] 与此相对,通过设置RC缓冲电路20,利用RC缓冲电路20的电容器22来抑制浪涌电压,因此能够使制动电路14的半导体开关元件14b的控制端子(栅极端子)与低电位侧端子(发射极端子)之间的电压VGE(B-N1)下降为13.8V。因而,与不设置RC缓冲电路20的情况相比,通过设置RC缓冲电路20,能够使制动电路14的半导体开关元件14b的控制端子(栅极端子)与低电位侧端子(发射极端子)之间的电压VGE(B-N1)下降6.2V。
[0057] 另外,说明以下情况:使逆变器电路15作为全波整流器来进行动作,将三相电动机19作为发电机来进行再生制动。在该再生制动状态下,由三相电动机19发出的交流电力被逆变器电路15进行全波整流后变换为直流电力。因此,产生以下情况:平滑电容器13的端子间电压上升,超过构成逆变器电路15的各半导体开关元件QXH~QZL的击穿电压。
[0058] 此时,当平滑电容器13的端子间电压超过击穿电压或被设定为比击穿电压低的电压的设定电压时,制动电路14的半导体开关元件14b被控制为接通状态。因此,平滑电容器13的端子间电压通过外置的电阻14c被消耗,平滑电容器13的端子间电压的上升得到抑制。
因而,能够保护逆变器电路15的各半导体开关元件QXH~QZL。
[0059] 之后,当平滑电容器13的端子间电压下降到低于设定电压时,制动电路14的半导体开关元件14b被控制为断开状态。因此,因负极侧布线Ln的布线电感中蓄积的蓄积能量引起的浪涌电压被施加到半导体开关元件14b的控制端子和低电位侧端子。
[0060] 在该情况下,在负极侧布线Ln中产生的浪涌电压也通过RC缓冲电路20的电阻21来被电容器所抑制。因此,能够抑制浪涌电压被施加到制动电路14的半导体开关元件14b和逆变器电路15的低电位侧半导体开关元件QXL~QZL。
[0061] 在本实施方式中,如前所述那样将浪涌电压抑制电路设为以下简易的结构:仅在负极侧布线Ln的布线电感最大的连接点与制动用控制电路的负极端子同地之间的连接点之间连接一个RC缓冲电路20。通过该结构,能够抑制因布线电感而产生的浪涌电压所引起的电压控制型的半导体开关元件的控制端子(栅极端子)与低电位侧端子(发射极端子)之间的电压的上升。而且,与对制动电路和逆变器电路独立地设置将两个齐纳二极管彼此反向串联连接而成的浪涌电压抑制电路的情况相比,能够通过一个RC缓冲电路20来发挥大的浪涌电压抑制效果。
[0062] 此外,在上述实施方式中,说明了将IGBT应用为构成制动电路14和逆变器电路15的电压控制型半导体开关元件的情况。然而,本发明不限定于上述结构,能够应用功率MOSFET等其它电压控制型半导体开关元件。
[0063] 另外,在上述实施方式中,说明了将全波整流电路12应用为将交流电力变换为直流电力的电力变换电路的情况。然而,本发明不限定于上述结构,能够应用具有与逆变器电路15相同的结构的AC-DC电力变换电路来代替整流电路。
[0064] 并且,在上述实施方式中,说明了设置有将交流电力变换为直流电力的全波整流电路12的情况。然而,本发明也可以省略全波整流电路12而将电池等直流电源连接于正极侧布线Lp与负极侧布线Ln之间。
[0065] 另外,在上述实施方式中,说明了由制动用控制电路17和逆变器用控制电路18来构成控制电路16的情况。然而,本发明不限定于上述结构,也可以将制动用控制电路17和逆变器用控制电路18组入到一个控制电路。
[0066] 附图标记说明
[0067] 10:电力变换装置;12:全波整流电路;13:平滑电容器;14:制动电路;14a:二极管;14b:半导体开关元件;14c:电阻;15:逆变器电路;15X:X相开关臂;15Y:Y相开关臂;15Z:Z相开关臂;QXH~QZH:高电位侧半导体开关元件;QXL~QZL:低电位侧半导体开关元件;16:控制电路;17:制动用控制电路;18:逆变器用控制电路;18H:高电位侧控制电路;18L:低电位侧控制电路;20:RC缓冲电路;21:电阻;22:电容器。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈