首页 / 专利库 / 电子零件及设备 / 真空电子管 / 二极管 / 阶跃恢复二极管 / 全新光敏高温熔体压力传感器接收LED晶片

全新光敏高温熔体压传感器接收LED晶片

阅读:590发布:2020-05-29

专利汇可以提供全新光敏高温熔体压传感器接收LED晶片专利检索,专利查询,专利分析的服务。并且本 发明 全新光敏高温熔体压 力 传感器 接收LED晶片发光面是圆盖形状的,光分布是很特殊的,所以在不同的测量距离下,光强值会变化,偏离距离平方反比定律,即使固定了测量距离,但是由于接受器接受面积不同,其光强值也会变化。因此,为了提高测量 精度 ,应该把测量距离和接受面积大小相对地给予固定为好。例如,测量距离按照GIE推荐采用316mm,接受器面积固定为10×10mm。在同一测量距离下,LED转 角 不同,其光强也相应地有变化,因此为了获得最佳值,最好读出最大读数Rt为佳。,下面是全新光敏高温熔体压传感器接收LED晶片专利的具体信息内容。

1.全新光敏高温熔体压传感器接收LED晶片用于自动频率控制(AFC)和调谐用的小功率二极管变容二极管;日本厂商方面也有其它许多叫法;通过施加反向电压, ;使其PN结的静电容量发生变化;因此,被使用于自动频率控制、扫描振荡、调频和调谐等用途;
通常,虽然是采用的扩散型二极管,但是也可采用合金扩散型、外延结合型、双重扩散型等特殊制作的二极管,因为这些二极管对于电压而言,其静电容量的变化率特别大;结电容随反向电压VR变化,取代可变电容,用作调谐回路、振荡电路相环路,常用于电视机高频头的频道转换和调谐电路,多以硅材料制作;
对二极管的频率倍增作用而言,有依靠变容二极管的频率倍增和依靠阶跃(即急变)二极管的频率倍增;频率倍增用的变容二极管称为可变电抗器,可变电抗器虽然和自动频率控制用的变容二极管的工作原理相同,但电抗器的构造却能承受大功率;阶跃二极管又被称为阶跃恢复二极管,从导通切换到关闭时的反向恢复时间trr短,因此,其特长是急速地变成关闭的转移时间显着地短;如果对阶跃二极管施加正弦波,那么,因tt(转移时间)短,所以输出波形急骤地被夹断,故能产生很多高频谐波;
是代替稳压电子二极管的产品;被制作成为硅的扩散型或合金型;是反向击穿特性曲线急骤变化的二极管;作为控制电压和标准电压使用而制作的;二极管工作时的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成许多等级;在功率方面,也有从
200mW至100W以上的产品;工作在反向击穿状态,硅材料制作,动态电阻RZ很小,一般为
2CW型;将两个互补二极管反向串接以减少温度系数则为2DW型;
.PIN型二极管(PIN Diode)
这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管;PIN中的I是"本征"意义的英文略语;当其工作频率超过100MHz时,由于少数载流子的存贮效应和"本征"层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变;在零偏置或直流反向偏置时,"本征"区的阻抗很高;在直流正向偏置时,由于载流子注入"本征"区,而使"本征"区呈现出低阻抗状态;因此,可以把PIN二极管作为可变阻抗元件使用;它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中;
崩二极管它是在外加电压作用下可以产生高频振荡的晶体管;产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡;它常被应用于微波领域的振荡电路中;
它是以隧道效应电流为主要电流分量的晶体二极管;其基底材料是砷化镓和锗;其P型区的N型区是高掺杂的(即高浓度杂质的);隧道电流由这些简并态半导体的量子力学效应所产生;发生隧道效应具备如下三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性;江崎二极管为双端子有源器件;其主要参数有峰谷电流比(IP/PV),其中,下标"P"代表"峰";而下标"V"代表"谷";江崎二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中;
快速关断(阶跃恢复)它也是一种具有PN结的二极管;其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成"自助电场";由于PN结在正向偏压下,以少数载流子导电,并在PN结附近具有电荷存贮效应,使其反向电流需要经历一个"存贮时间"后才能降至最小值(反向饱和电流值);阶跃恢复二极管的"自助电场"缩短了存贮时间,使反向电流快速截止,并产生丰富的谐波分量;利用这些谐波分量可设计出梳状频谱发生电路;
快速关断(阶跃恢复)二极管用于脉冲和高次谐波电路中;
肖特基二极管 ; 二极管电路它是具有肖特基特性的"金属半导体结"的二极管;其正向起始电压较低;其金属层除材料外,还可以采用金、钼、镍、等材料;其半导体材料采用硅或砷化镓,多为N型半导体;这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多;由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件;其工作频率可达100GHz;并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池发光二极管
2.全新光敏高温熔体压力传感器接收LED晶片阻尼二极管具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用;
瞬变电压抑制二极管TVP管,对电路进行快速过压保护,分双极型和单极型两种,按峰值功率(500W-5000W)和电压(8.2V~200V)分类;
双基极二极管(单结晶体管)
两个基极,一个发射极的三端负阻器件,用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等优点;
用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光;工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿、蓝单色光;随着技术的进步,近来研制成了白光高亮二极管,形成了LED照明这一新兴产业;
硅功率开关二极管
硅功率开关二极管具有高速导通与截止的能力;它主要用于大功率开关或稳压电路、直流变换器、高速电机调速及在驱动电路中作高频整流及续流箝拉,具有恢复特性软、过载能力强的优点、广泛用于计算机、雷达电源、步进电机调速等方面。
3.全新光敏高温熔体压力传感器接收LED晶片旋转二极管主要用于无刷电机励磁、也可作普通整流用;
特性分类点接触型二极管,按正向和反向特性分类如下;
一般用点接触型二极管
这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品;如:SD34、SD46、1N34A等等属于这一类;
高反向耐压点接触型二极管是最大峰值反向电压和最大直流反向电压很高的产品;使用于高压电路的检波和整流;这种型号的二极管一般正向特性不太好或一般;在点接触型锗二极管中,有SD38、1N38A、OA81等等;这种锗材料二极管,其耐压受到限制;要求更高时有硅合金和扩散型;
高反向电阻点接触型二极管
正向电压特性和一般用二极管相同;虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高;使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。
4.全新光敏高温熔体压力传感器接收LED晶片高传导点接触型二极管它与高反向电阻型相反;其反向特性尽管很差,但使正向电阻变得足够小;对高传导点接触型二极管而言,有SD56、1N56A等等;对高传导键型二极管而言,能够得到更优良的特性;这类二极管,在负荷电阻特别低的情况下,整流效率较高;
导电特性二极管最重要的特性就是单方向导电性;在电路中,电流只能从二极管的正极流入,负极流出;
电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置;必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱;只有当正向电压达到某一数值(这一数值称为“坎电压”,又称“死区电压”,锗管约为0.1V,硅管约为0.5V)以后,二极管才能直正导通;导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。
5.识别小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的;发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负;用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反;
二极管应该算是半导体器件家族中的元老了;很久以前,人们热衷于装配一种矿石收音机来收听无线电广播,这种矿石后来就被做成了晶体二极管;
按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等;
另外,有的发光二极管中包含二种或三种颜色的芯片;根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型;散射型发光二极管和达于做指示灯用。
6..全新光敏高温熔体压力传感器接收LED晶片按发光管出光面特征分按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等;
圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等;国外通常把φ3mm的发光二极管记作T-1;把 ;φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4);
由半值大小可以估计圆形发光强度角分布情况;从发光强度角分布文段来分有三类:
指向性;一般为尖头环封装,或是带金属反射腔封装,且不加散射剂;半值角为
5°~20°或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统;
标准型;通常作指示灯用,其半值角为20°~45°;
散射型;这是视角较大的指示灯,半值角为45°~90°或更大,散射剂的量较大;
命名方法二极管的型号命名规定由五个部分组成 型号命名
关系二极管的正负二个端子;正端A称为阳极,负端K ;称为阴极;电流只能从阳极向阴极方向移动;一些初学者容易产生这样一种错误认识:“半导体的一‘半’是一半的‘半’;
而二极管也是只有一‘半’电流流动(这是错误的),所有二极管就是半导体 ;”;其实二极管与半导体是完全不同的东西;我们只能说二极管是由半导体组成的器件;半导体无论那个方向都能流动电流。
7.全新光敏高温熔体压力传感器接收LED晶片二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性;通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏;极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果;两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻);在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极;单负导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300左右;硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大);正向电阻越小越好,反向电阻越大越好;正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好; 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏;若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏;反向击穿电压的检测二极管反向击穿电压(耐压值)可以用晶体管直流参数测试表测量;其方法是:测量二极管时,应将测试表的“NPN/PNP”选择键设置为NPN状态,再将被测二极管的正极接测试表的“C”插孔内,负极插入测试表的“e”插孔,然后按下“V(BR)”键,测试表即可指示出二极管的反向击穿电压值; 也可用兆欧表和万用表来测量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极与兆欧表的负极相连,同时用万用表(置于合适的直流电压档)监测二极管两端的电压;如文段4-71所示,摇动兆欧表手柄(应由慢逐渐加快),待二极管两端电压稳定而不再上升时,此电压值即是二极管的反向击穿电压。

说明书全文

全新光敏高温熔体压传感器接收LED晶片

[0001] 本发明全新光敏高温熔体压力传感器接收LED晶片属于电子领域。
[0002] LED只能往一个方向导通(通电),叫作正向偏置(正向偏压),当电流流过时,电子与空穴在其内复合而发出单色光,这叫电致发光效应,而光线的波长颜色跟其所采用的半导体材料种类与掺入的元素杂质有关。具有效率高、寿命长、不易破损、开关速度高、高可靠性等传统光源不及的优点。白光LED的发光效率,在近几年来已经有明显的提升,同时,在每千流明的购入价格上,也因为投入市场的厂商相互竞争的影响,而明显下降。虽然越来越多人使用LED照明作办公室、家具、装饰、招牌甚至路灯用途,但在技术上,LED在光电转换效率(有效照度对用电量的比值)上仍然低于新型的荧光灯,是国家以后发展民用的去向!发光二极管
它是半导体二极管的一种,可以把电能化成光能;常简写为LED。发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和空穴所处的能量状态不同。当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。常用的是发红光、绿光或黄光的二极管。
[0003] 发光二极管的反向击穿电压约5伏。它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过管子的电流。限流电阻R可用下式计算:R=(E-UF)/IF
式中E为电源电压,UF为LED的正向压降,IF为LED的一般工作电流.
R=(E-UF)/IF
式中E为电源电压,UF为LED的正向压降,IF为LED的一般工作电流 发光二极管物理特性发光二极管的两根引线中较长的一根为正极,应接电源正极。有的发光二极管的两根引线一样长,但管壳上有一凸起的小舌,靠近小舌的引线是正极。 发光二极管与小白炽灯泡和氖灯相比,发光二极管的特点是:工作电压很低(有的仅一点几伏);工作电流很小(有的仅零点几毫安即可发光);抗冲击和抗震性能好,可靠性高,寿命长;通过调制通过的电流强弱可以方便地调制发光的强弱。由于有这些特点,发光二极管在一些光电控制设备中用作光源,在许多电子设备中用作信号显示器。把它的管心做成条状,用7条条状的发光管组成7段式半导体数码管,每个数码管可显示0~9十个数目字。
[0004] 发光原理50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,发光二极管
它的基本结构是一电致发光的半导体材料,置于一个有引线的架子上,然后四周用环树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。
[0005] 发光二极管的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为PN结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。 当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。
[0006] 以下是传统发光二极管所使用的无机半导体物料和所它们发光的颜色砷化镓(AlGaAs)-红色及红外线铝磷化镓(AlGaP)-绿色
磷化铝铟镓(AlGaInP)-高亮度的橘红色,橙色,黄色,绿色
磷砷化镓(GaAsP)-红色,橘红色,黄色
磷化镓(GaP)-红色,黄色,绿色
氮化镓(GaN)-绿色,翠绿色,蓝色
铟氮化镓(InGaN)-近紫外线,蓝绿色,蓝色
(SiC)(用作衬底)-蓝色
硅(Si)(用作衬底)-蓝色(开发中)
宝石(Al2O3)(用作衬底)-蓝色
zincselenide(ZnSe)-蓝色
钻石(C)-紫外线
氮化铝(AlN),aluminiumgalliumnitride(AlGaN)-波长为远至近的紫外线
分类发光二极管还可分为普通单色发光二极管、高亮度发光二极管、超高亮度发光 发光二极管
二极管、变色发光二极管、闪烁发光二极管、电压控制型发光二极管、红外发光二极管和负阻发光二极管等。
[0007] 普通单色发光二极管普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮。它属于电流控制型半导体器件,使用时需串接合适的限流电阻。
[0008] 普通单色发光二极管的发光颜色与发光的波长有关,而发光的波长又取决于制 发光二极管造发光二极管所用的半导体材料。红色发光二极管的波长一般为650~700nm,琥珀色发光二极管的波长一般为630~650 nm ,橙色发光二极管的波长一般为610~630 nm左右,黄色发光二极管的波长一般为585 nm左右,绿色发光二极管的波长一般为555~570 nm。 常用的国产普通单色发光二极管有BT(厂标型号)系列、FG(部标型号)系列和2EF系列,见表
4-26、表4-27和表4-28。
[0009] 常用的进口普通单色发光二极管有SLR系列和SLC系列等。
[0010] 高亮度单色发光二极管高亮度单色发光二极管和超高亮度单色发光二极管使用的半导体材料与普通单色发光二极管不同,所以发光的强度也不同。
[0011] 通常,高亮度单色发光二极管使用砷铝化镓(GaAlAs)等材料,超高亮度单色发光二极管使用磷铟砷化镓(GaAsInP)等材料。
[0012] 而普通单色发光二极管使用磷化镓(GaP)或磷砷化镓(GaAsP)等材料。
[0013] 变色发光二极管变色发光二极管是能变换发光颜色的发光二极管。变色发光二极管发光颜色种类可分为双色发光二极管、三色发光二极管和多色(有红、蓝、绿、白四种颜色)发光二极管。
[0014] 变色发光二极管按引脚数量可分为二端变色发光二极管、三端变色发光二极管、四端变色发光二极管和六端变色发光二极管。
[0015] 常用的双色发光二极管有2EF系列和TB系列,常用的三色发光二极管有2EF302、2EF312、2EF322等型号。
[0016] 闪烁发光二极管闪烁发光二极管(BTS)是一种由CMOS集成电路和发光二极管组成的特殊发光器件,可用于报警指示及欠压、超压指示。
[0017] 闪烁发光二极管在使用时,无须外接其它元件,只要在其引脚两端加上适当的直流工作电压(5V)即可闪烁发光。
[0018] 电压控制型发光二极管普通发光二极管属于电流控制型器件,在使用时需串接适当阻值的限流电阻。电压控制型发光二极管(BTV)是将发光二极管和限流电阻集成制作为一体,使用时可直接并接在电源两端。
[0019] 红外发光二极管红外发光二极管也称红外线发射二极管,它是可以将电能直接转换成红外光(不可见光)并能辐射出去的发光器件,主要应用于各种光控及遥控发射电路中。
[0020] 红外发光二极管的结构、原理与普通发光二极管相近,只是使用的半导体材料不同。红外发光二极管通常使用砷化镓(GaAs)、砷铝化镓(GaAlAs)等材料,采用全透明或浅蓝色、黑色的树脂封装。
[0021] 常用的红外发光二极管有SIR系列、SIM系列、PLT系列、GL系列、HIR系列和HG系列等LED用GaN形成的蓝光LED1993年,当时在日本NichiaCorporation(日亚化工)工作的中村修二(ShujiNakamura)发明了基于宽禁带半导体材料氮化镓(GaN)和铟氮化稼(InGaN)的具有商业应用价值的蓝光LED,这类LED在1990 年代后期得到广泛应用。理论上蓝光LED结合原有的红光LED和绿光LED可产生白光,但白光LED却很少是这样造出来的。
[0022] 现时生产的白光LED大部分是通过在蓝光LED(near-UV,波长450nm至470nm)上覆盖一层淡黄色荧光粉涂层制成的,这种黄色磷光体通常是通过把掺了铈的 发光二极管晶体磨成粉末后混和在一种稠密的黏合剂中而制成的。当LED芯片发出蓝光,部分蓝光便会被这种晶体很高效地转换成一个光谱较宽(光谱中心约为580nm)的主要为黄色的光。(实际上单晶的掺Ce的YAG被视为闪烁器多于磷光体。)由于黄光会刺激肉眼中的红光和绿光受体,再混合LED本身的蓝光,使它看起来就像白色光,而其的色泽常被称作“月光的白色”。这种制作白光LED的方法是由开发并从1996年开始用在生产白光LED上。若要调校淡黄色光的颜色,可用其它稀土金属铽或钆取代Ce3+:YAG中掺入的铈(Ce),甚至可以以取代YAG中的部份或全部铝的方式做到。而基于其光谱的特性,红色和绿色的对象在这种LED照射下看起来会不及阔谱光源照射时那么鲜明。
[0023] 另外由于生产条件的变异,这种LED的成品的色温并不统一,从暖黄色的到冷的蓝色都有,所以在生产过程中会以其出来的特性作出区分。
[0024] 另一个制作的白光LED的方法则有点像日光灯,发出近紫外光的LED会被涂上两种磷光体的混合物,一种是发红光和蓝光的铕,另一种是发绿光的,掺杂了硫化锌(ZnS)的和铝。但由于紫外线会使黏合剂中的环氧树脂裂化变质,所以生产难度较高,而寿命亦较短。与第一种方法比较,它效率较低而产生较多热(因为StokesShift前者较大),但好处是光谱的特性较佳,产生的光比较好看。而由于紫外光的LED功率较高,所以其效率虽比较第一种方法低,出来的亮度却相若。
[0025] 最新一种制造白光LED的方法没再用上磷光体。新的做法是在硒化锌(ZnSe)基板上生长硒化锌的磊晶层。通电时其活跃地带会发出蓝光而基板会发黄光,混合起来便是白色光。
[0026] 设计理念LED的出现打破了传统光源的设计方法与思路,目前有两种最新的设计理念。
[0027] 情景照明是以环境的需求来设计灯具。情景照明以场所为出发点,旨在营造一种漂亮、绚丽的光照环境,去烘托场景效果,使人感觉到有场景氛围。
[0028] 情调照明是以人的需求来设计灯具。情调照明是以人情感为出发点,从人的度去创造一种意境般的光照环境。情调照明与情景照明有所不同,情调照明是动态的,可以满足人的精神需求的照明方式,使人感到有情调;而情景照明是静态的,它只能强调场景光照的需求,而不能表达人的情绪,从某种意义上说,情调照明涵盖情景照明。
[0029] 光源特点电压LED使用低压电源,供电电压在3-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 发光二极管
效能
消耗能量较同光效的白炽灯减少80%
适用性
体积很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境
稳定性
10万小时,光衰为初始的50%
响应时间
其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级
环境污染
无有害金属汞
颜色
发光二极管方便地通过化学修饰方法,调整材料的能带结构和禁带宽度,实现红黄绿蓝橙多色发光。红光管工作电压较小,颜色不同的红、橙、黄、绿、蓝的发光二极管的工作电压依次升高。
[0030] 价格LED的价格越来越平民化,因LED省电的特性,也许不久的将来,人们都会的把白炽灯换成LED灯。我国部分城市公路、学校、厂区等场所已换装完LED路灯、节能灯等。
[0031] 种类发展最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。
[0032] 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。
[0033] 到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。
[0034] 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。
[0035] 单色光LED的应用 发光二极管最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。
经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。
[0036] 汽车信号灯也是LED光源应用的重要领域。1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。
[0037] 另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。
[0038] 参数介绍LED的光学参数中重要的几个方面就是:光通量、发光效率、发光强度、光强分布、波长。
[0039] 发光效率和光通量发光效率就是光通量与电功率之比。发光效率表征了光源的节能特性,这是衡量现代光源性能的一个重要指标。
[0040] 发光强度和光强分布LED发光强度是表征它在某个方向上的发光强弱,由于LED在不同的空间角度光强相差很多,随之而来我们研究了LED的光强分布特性。这个参数实际意义很大,直接影响到LED显示装置的最小观察角度。比如体育场馆的LED大型彩色显示屏,如果选用的LED单管分布范围很窄,那么面对显示屏处于较大角度的观众将看到失真的文段像。而且交通标志灯也要求较大范围的人能识别。
[0041] 波长对于LED的光谱特性我们主要看它的单色性是否优良,而且要注意到红、黄、蓝、绿、白色LED等主要的颜色是否纯正。因为在许多场合下,比如交通信号灯对颜色就要求比较严格,不过据观察我国的一些LED信号灯中绿色发蓝,红色的为深红,从这个现象来看我们对LED的光谱特性进行专研究是非常必要而且很有意义的。
[0042] 检测普通发光二极管的检测(1)用万用表检测。利用具有×10kΩ挡的指针式万用表可以大致判断发光二极管的好坏。正常时,二极管正向电阻阻值为几十至200kΩ,反向电阻的值为∝。如果正向电阻值为0或为∞,反向电阻值很小或为0,则易损坏。这种检测方法,不能实质地看到发光管的发光情况,因为×10kΩ挡不能向LED提供较大正向电流。
[0043] 如果有两块指针万用表(最好同型号)可以较好地检查发光二极管的发光情况。用一根导线将其中一块万用表的“+”接线柱与另一块表的“-”接线柱连接。余下的“-”笔接被测发光管的正极(P区),余下的“+”笔接被测发光管的负极(N区)。两块万用表均置×10kΩ挡。正常情况下,接通后就能正常发光。若亮度很低,甚至不发光,可将两块万用表均拨至×1mΩ若,若仍很暗,甚至不发光,则说明该发光二极管性能不良或损坏。应注意,不能一开始测量就将两块万用表置于×1mΩ,以免电流过大,损坏发光二极管。
[0044] (2)外接电源测量。用3V稳压源或两节串联的干电池及万用表(指针式或数字式皆可)可以较准确测量发光二极管的光、电特性。为此可按文段10所示连接电路即可。如果测得VF在1.4~3V之间,且发光亮度正常,可以说明发光正常。如果测得VF=0或VF≈3V,且不发光,说明发光管已坏。
[0045] 红外发光二极管的检测由于红外发光二极管,它发射1~3μm的红外光,眼看不到。通常单只红外发光二极管发射功率只有数mW,不同型号的红外LED发光强度角分布也不相同。红外LED的正向压降一般为1.3~2.5V。正由于其发射的红外光人眼看不见,所以利用上述可见光LED的检测法只能判定其PN结正、反向电学特性是否正常,而无法判定其发光情况正常否。为此,最好准备一只光敏器件(如2CR、2DR型硅光电池)作接收器。用万用表测光电池两端电压的变化情况。来判断红外LED加上适当正向电流后是否发射红外光。
[0046] 测量原理光强度把光强标准灯,LED和配有V(λ)滤光片的硅光电二极管安装和调试在光具座上,特别是严格地调灯丝位置,LED发光部位及接受面位置。
[0047] 先用光强标准灯校准硅光电二极管,C=E/S式中Rs=Is/Ds
Ds是标准灯与接受器之间的距离,I s是标准灯的光强度,R s是标准灯的响应。
[0048] Et=C •R t式中E t是被测LED的照度,R t是被测LED的响应,则LED的光强度I t为:I t=E t •Dt式中Dt 是LED与接受面之距离。
[0049] 对于LED来讲,其发光面是圆盖形状的,光分布是很特殊的,所以在不同的测量距离下,光强值会变化,偏离距离平方反比定律,即使固定了测量距离,但是由于接受器接受面积不同,其光强值也会变化。因此,为了提高测量精度,应该把测量距离和接受面积大小相对地给予固定为好。例如,测量距离按照GIE推荐采用316mm,接受器面积固定为10×10mm。在同一测量距离下,LED转角不同,其光强也相应地有变化,因此为了获得最佳值,最好读出最大读数R t为佳。
[0050] 光通量光通量测量在变角光度计的转台上进行,转台上安转了LED,该转台在其平面上绕着垂直轴旋转±90度,LED在垂直面上绕着测光轴旋转360度。在水平面上和垂直面上的转角的控制是通过步进达来实现的。转台在导轨上随意移动,当测量标准灯时,转台应离开导轨。
[0051] 测量时大转盘在水平面上绕垂直轴旋转,步进角度为0.9°,正方向90°,反方向90°。LED自身也在旋转,在每一个水平角度下,垂直平面上每隔18°进行一次信号采集,转完360°之后共采集到20个数据,按下式计算总光通量。
[0052] 如果大盘旋转0°~90°时,小盘转0°~360°即可。但是大盘旋转0°~90°时,有可能LED安装不均匀(不对称)而引起误差,因此最好的解决办法是大盘转-90°~0°~90°,小盘仍然转0°~360°,把大盘0°~90°和-90°~0°两个范围内绝对值相等的角度上的照度值取平均值来作为0° 发光二极管~90°内的值。
[0053] LED总光通量测量的第二种方法是积分求法。此方法的优点是简单易行,但测量精度不高。LED的总光通量计算方法如下,先计算离积分球入射窗口(入射窗口面积 A)1 距离上标准灯(光强值 I s)进入积分球内的光通量Φs,Φs=I s • A /I 2读出接收器上的光电流信号i s,然后把LED置于窗口上,读出相应的接收器光电流信号it,则LED的总光通量Φ为:
Φt=It/IsΦs•K 式中 K 为色修正系数。
[0054] 测量方法发光二极管的光谱功率分布测量,目的是掌握LED的光谱特性和色度,再者是为了对已测得的LED的光度量值进行修正。
[0055] 在测量LED光谱功率分布时,应注意以下几点,一个是在与标准光谱辐照度进行比较时由于标准灯的光谱辐强度比LED强得多,为了避免这个问题,最好在标准灯前加一个中性滤光片,使它的光谱辐强度接近于LED。
[0056] LED的光谱宽度很窄,为了准确地描绘LED的光谱分布轮廓,最好采用窄带波长宽度的单色仪进行测量,波长间隔为1nm为好。
[0057] 按下式计算LED的光谱功率分布E t。
[0058] Etλ=Esλ•Itλ/Isλ式中 i 是标准灯在波长 i 处的响应;E 是标准灯的光谱功率分布;i 是LED在波长λ处的响应。
[0059] LED的色坐标计算公式为:x=∫Etλ•xλdλ
y=∫Etλ•ydλ
z=∫Etλ•ydλ
色坐标为:
x=X/(X+Y+Z)
y=Y/(X+Y+Z)
也可计算LED的主波长和色纯度。
[0060] 发光二极管也与普通二极管一样由PN结构成,也具有单向导电性。它广泛应用于各种电子电路、家电、仪表等设备中、作电源指示或电平指示。
[0061] 发光二极管的主要特性表* cd(坎德拉)发光强度的单位
行业趋势据《2013-2017年中国LED照明产业市场前瞻与投资战略规划分析报告》[1]分析认为,LED照明市场一直被认为是LED最重要、最具发展前景的应用。总体来看,宏观环境对于LED照明应用的发展非常有利,主要表现为:1)节能减排成为全球关注的议题并得到积极推进;2)传统光源技术成长缓慢,面临发展瓶颈;3)LED照明技术进步与成本不断降低,长期市场障碍已不大。
[0062] 数据显示,2009年,全球LED路灯装置数量约250万盏,渗透率达到1%,2010年,全球LED路灯可达到450万盏,渗透率达到2%以上。报告预测全球LED路灯市场在2010年后将呈高速增长,2009至2013年复合增长率高达97.75%,至2013年,全球LED路灯市场规模达到21.59亿美元。
[0063] 前瞻网LED照明行业研究小组分析认为,受“十城万盏”政策的推动,我国LED路灯市场将保持持续增长,至2013年我国LED路灯市场规模预计达到86.63亿元,占到全球市场规模的五成左右,成为全球最重要的LED路灯市场之一。
[0064] 随着行业的继续发展,技术的飞跃突破,应用的大力推广,LED的光效也在不断提高,价格不断走低。新的组合式管芯的出现,也让单个LED管(模块)的功率不断提高。通过同业的不断努力研发,新型光学设计的突破,新灯种的开发,产品单一的局面也有望在进一步扭转。控制软件的改进,也使得LED照明使用更加便利。这些逐步的改变,都体现出了LED发光二极管在照明应用的前景广阔。
[0065] 性能要求1.高可靠性特别像LED路灯的驱动电源,装在高空,维修不方便,维修的花费也大。
[0066] 2.高效率LED是节能产品,驱动电源的效率要高。对于电源安装在灯具内的结构,尤为重要。因为LED的发光效率随着LED温度的升高而下降,所以LED的散热非常重要。电源的效率高,它的耗损功率小,在灯具内发热量就小,也就降低了灯具的温升。对延缓LED的光衰有利。
[0067] 3.高功率因素功率因素是电网对负载的要求。一般70瓦以下的用电器,没有强制性指标。虽然功率不大的单个用电器功率因素低一点对电网的影响不大,但晚上大家点灯,同类负载太集中,会对电网产生较严重的污染。对于30瓦~40瓦的LED驱动电源,据说不久的将来,也许会对功率因素方面有一定的指标要求。
[0068] 4.驱动方式通行的有两种:其一是一个恒压源供多个恒流源,每个恒流源单独给每路LED供电。这种方式,组合灵活,一路LED故障,不影响其他LED的工作,但成本会略高一点。另一种是直接恒流供电,LED串联或并联运行。它的优点是成本低一点,但灵活性差,还要解决某个LED故障,不影响其他LED运行的问题。这两种形式,在一段时间内并存。多路恒流输出供电方式,在成本和性能方面会较好。也许是以后的主流方向。
[0069] 5.浪涌保护LED抗浪涌的能力是比较差的,特别是抗反向电压能力。加强这方面的保护也很重要。有些LED灯装在户外,如LED路灯。由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。因此LED驱动电源要有抑制浪涌的侵入,保护LED不被损坏的能力。
[0070] 6.保护功能电源除了常规的保护功能外,最好在恒流输出中增加LED温度负反馈,防止LED温度过高。
[0071] 7.防护方面灯具外安装型,电源结构要防水、防潮,外壳要耐晒。
[0072] 8.驱动电源的寿命要与LED的寿命相适配。
[0073] 9.要符合安规和电磁兼容的要求。
[0074] LED生产原物料LED五大原物料分别是指:晶片,支架胶,金线,环氧树脂1、晶片
1.1晶片的构成:由金垫,P极,N极,PN结,背金层构成(双pad晶片无背金层)。
[0075] 1.2定义:晶片是由P层半导体元素,N层半导体元素靠电子移动而重新排列组合成的PN结合体。也正是这种变化使晶片能够处于一个相对稳定的状态。
[0076] 1.3晶片的发光原理:在晶片被一定的电压施加正向电极时,正向P区的空穴则会源源不断的游向N区,N区的电子则会相对于孔穴向P区运动。在电子,空穴相对移动的同时,电子空穴互相结对,激发出光子,产生光能。
[0077] 1.4晶片的分类:1.4.1按发光类型分:
表面发光型: 光线大部分从晶片表面发出
五面发光型: 表面,侧面都有较多的光线射出
1.4.2按发光颜色分:
红,橙,黄,黄绿,纯绿,标准绿,蓝绿, 蓝
2、支架:
支架的结构:
1层是
2层铜(导电性好,散热快)
3层镀镍(防氧化),4层镀银(反光性好,易焊线)
3、银胶(因种类较多,我们依H20E为例)
也叫白胶,乳白色,绝缘粘合作用(烘烤温度为:100°C/1.5H)
3.1组成:
银粉(导电,散热,固定晶片)+环氧树脂(固化银粉)+稀释剂(易于搅拌)
3.2使用条件:
储藏条件:银胶的制造商一般将银胶以-40 °C 储藏,应用单位一般将银胶以-5 °C 储藏。单剂为25 °C/1年(干燥,通的地方),混合剂25 °C/72小时(但在上线作业时因其他的因素“温湿度、通风的条件”,为保证产品的质量一般的混合剂使用时间为4小时)烘烤条件:150 °C/1.5H
搅拌条件:顺一个方向均匀搅拌15分钟
4、金线(依φ1.0mil为例)
LED所用到的金线有φ1.0mil、 φ1.2mil
金线的材质:
LED用金线的材质一般含金量为99.9%
金线的用途:
利用其含金量高材质较软、易变形且导电性好、散热性好的特性,让晶片与支架间形成一闭合电路。
[0078] 5、 环氧树脂(以EP400为例)5.1组成:A、B两组剂份:
A胶:是主剂,由环氧树脂+消泡剂+耐热剂+稀释剂
B剂:是固化剂,由酸酣+离模剂+促进剂
5.2使用条件:
混合比:A/B=100/100(重量比)
混合粘度:500-700CPS/30 °C
胶化时间:120 °C*12分钟或110 °C*18分钟
可使用条件:室温25 °C约6小时。一般根据产线的生产需要,我们将它的使用条件定为2小时。
[0079] 硬化条件:初期硬化110 °C-140 °C 25 - 40分钟后期硬化100 °C*6-10小时(可视实际需要做机动性调整)
生产品LED移动宣传车也是led的一个延生产品(OMDM),Outdoor Mobile Direct Mail advertising 是LED行业兴起后的伴生产物。一般由五部分组成。包括大屏系统、供电系统、液压系统(有些没有部分)、操作系统、牵引系统。供电一般采用工业380V电,或者自身发电机供电。是指由LED屏作为信息输出设备,移动车身作为重体的广告设备,自身可以变换位置,一般自带发电机、音响、电脑等设备,属于广告车中的一种。[2]重视科技创新,不断开发更新型,结构散热更合理,性价比更高。
[0080] LED的优点一、体积小[2]LED基本上是一块很小的晶片被封装在环氧树脂里面,所以它非常的小,非常的轻。
[0081] 二、耗电量低LED耗电相当低,一般来说LED的工作电压是2-3.6V。工作电流是0.02-0.03A。这就是说:它消耗的电不超过0.1W。
[0082] 三、使用寿命长在恰当的电流和电压下,LED的使用寿命可达10万小时。
[0083] 四、高亮度、低热量LED使用冷发光技术,发热量比普通照明灯具低很多。
[0084] 五、环保LED是由无毒的材料作成,不像荧光灯含水银会造成污染,同时LED也可以回收再利用。
[0085] 六、坚固耐用LED是被完全的封装在环氧树脂里面,它比灯泡和荧光灯管都坚固。灯体内也没有松动的部分,这些特点使得LED可以说是不易损坏的。
[0086] 半导体集成电路(IC)元件被称为“工业之米”,作为构成当代文明的基本元素,已渗透到社会生活的各个领域。不仅机器设备,就连我们生活中不可或缺的电子手表、电箱、洗衣机、电饭锅等也离不开IC元件。
[0087] 在迅速发展的信息化时代,人们通过固定电话、手机、传真机、计算机、互联网可以在任何时候、任何地方与世界上的任何人互通情报、交流信息,快捷而便利。
[0088] 在多媒体时代,人们正在集中力量开发将信息、通信、设备及家电等融合为一体的电子设备。不言而喻,个人便携化、高速度、数字化、多功能、大容量、低价格已成为这类电子综合设备的战略发展目标。
[0089] 在此基础上,人们正逐步实现各种机器的智能化。这些机器具有人的感知,能收集、加工各种信息,主动地进行某种目的的操作,经过学习训练还能从事技术含量更高的工作等。
[0090] 半导体集成电路大约以每3年一代(集成度翻两番)的速度日新月异地发展。尽管目前已有减速的迹象,但信息化、多媒体化、数字化、智能化的进程仍在继续。所有这些都有赖于电子技术及作为其核心的半导体集成电路技术的持续进展。
[0091] 集成电路除在装置、设备中扮演“部件”的角色之外,其自身作为一个体系也在不断发展、进化之中。从这种意义上讲,将集成电路形容为“进化中的细胞”或许更确切些。
[0092] 目前的现状是,一方面半导体IC正日益广泛、深入和快速地应用到现代社会的各个领域,而另一方面人们对IC的了解,对其本质的认识却一知半解,望而却步的情况并不在少数。由于涉及到大量尖端技术,难度极高,且半导体集成电路制作封闭于“与世隔绝”的超净工作间,普通人很难了解其中的奥秘。本书的目的是全方位地介绍半导体及集成电路的基本知识。针对制造现场出现的,生产者和使用者经常考虑的,想要知道的,经常听别人谈起的问题,简要地回答是什么和为什么。
[0093] 为了帮助一般读者清楚地了解半导体及集成电路,既需要做理论分析,又需要直观介绍,采用文段文并茂的形式不失为捷径。而对涉及面广、发展快、内容新,而又相当深奥的半导体、IC等微电子技术,本书在讨论中力求做到深入浅出、通俗易懂,既针对现状又照顾到历史的由来和发展前景。
[0094] 微电子产业自身也是各种各样部门和产业“集成”的结果。而且,作为产业,经济、效益等与技术同样也是必须要考虑的重要问题。书中也兼顾了这方面的内容。
[0095] 1965年,作为美国英特尔公司最初创始人之一的Gordon Moore(戈登•摩尔)预言:单位平方英寸芯片上晶体管的数目每隔18~24个月就要翻一番。“尽管并非物理学意义上的定律,但作为指导集成电路产业化和投资方向”的摩尔定律在今后数年内仍然有效。目前,国际上45nm技术最为先进,65nm技术次之,90nm技术为当下国际主流技术。我国内地集成电路产业技术水平近年来显著提升,最高设计水平已经达到90nm、5000万门水平;制造方面已经有量产的300mm(12英寸)生产线3条、200mm(8英寸)生产线16条,制造工艺已经达到最高90nm、主流技术0.18μm的技术水平。而截至2007年上半年,内地在建、拟建的12英寸生产线5条,8英寸生产线8条。从数量上看,内地12/8英寸芯片生产线已经占其芯片生产线总数的半数;而从产能上看,12/8英寸芯片生产线产能在内地晶圆总产能中所占的比重则已经超过60%。可以说,8英寸以上的高端生产线已经开始成为内地芯片制造行业的主体,内地芯片制造行业正大步地向高端迈进。
[0096] 内地2006、2007、2008年集成电路产业销售额分别达到1006.3、1251.3、1246.82亿元人民币(产量分别为355.8、411.7、417.14亿块),年增长率分别为43.3%、
24.3%、-0.4%。如果不包括受国际金融危机严重影响的2008年,过去几年内地集成电路产业的平均年增长率在30%以上,远远超过全球6%~7%的年均增长速度。目前,中国消费电子产品市场已居全球第2位,IC市场需求量已居全球第一位。中国半导体市场(消费类电子产品为主)已成为全球各大半导体厂商占领市场的制高点和调整产品结构的策源地之一。
[0097] 大部分二极管所具备的电流方向性我们通常称之为“整流(Rectifying)”功能。二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。因此,二极管可以想成电子版的逆止。然而实际上二极管并不会表现出如此完美的开与关的方向性,而是较为复杂的非线性电子特征——这是由特定类型的二极管技术决定的。二极管使用上除了用做开关的方式之外还有很多其他的功能。
[0098] 早期的二极管包含“猫须晶体("Cat's Whisker" Crystals)”以及真空管(英国称为“热游离阀(Thermionic Valves)”)。现今最普遍的二极管大多是使用半导体材料如硅或锗。
[0099] 正向性二极管文段示
外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。当正向电压大于死区电压以后,PN结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。
[0100] 反向性外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。
[0101] 击穿外加反向电压超过某一数值时,反向电流会突然增大,这种现象称为电击穿。引起电击穿的临界电压称为二极管反向击穿电压。电击穿时二极管失去单向导电性。如果二极管没有因电击穿而引起过热,则单向导电性不一定会被永久破坏,在撤除外加电压后,其性能仍可恢复,否则二极管就损坏了。因而使用时应避免二极管外加的反向电压过高。
[0102] 二极管是一种具有单向导电的二端器件,有电子二极管和晶体二极管之分,电子二极管现已很少见到,比较常见和常用的多是晶体二极管。二极管的单向导电特性,几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。
[0103] 二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,锗管正向管压降为0.3V,发光二极管正向管压降会随不同发光颜色而不同。主要有三种颜色,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V,黄色发光二极管的压降为1.8—2.0V,绿色发光二极管的压降为3.0—3.2V,正常发光时的额定电流约为20mA。
[0104] 二极管的电压与电流不是线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。
[0105] 二极管的特性曲线与PN结一样,二极管具有单向导电性。硅二极管典型伏安特性曲线(文段)。在二极管加有正向电压,当电压值较小时,电流极小;当电压超过0.6V时,电流开始按指数规律增大,通常称此为二极管的开启电压;当电压达到约0.7V时,二极管处于完全导通状态,通常称此电压为二极管的导通电压,用符号UD表示。
[0106] 对于锗二极管,开启电压为0.2V,导通电压UD约为0.3V。在二极管加有反向电压,当电压值较小时,电流极小,其电流值为反向饱和电流IS。当反向电压超过某个值时,电流开始急剧增大,称之为反向击穿,称此电压为二极管的反向击穿电压,用符号UBR表示。不同型号的二极管的击穿电压UBR值差别很大,从几十伏到几千伏。
[0107] 二极管的反向击穿齐纳击穿
反向击穿按机理分为齐纳击穿和崩击穿两种情况。在高掺杂浓度的情况下,因势垒区宽度很小,反向电压较大时,破坏了势垒区内共价键结构,使价电子脱离共价键束缚,产生电子-空穴对,致使电流急剧增大,这种击穿称为齐纳击穿。如果掺杂浓度较低,势垒区宽度较宽,不容易产生齐纳击穿。
[0108] 雪崩击穿另一种击穿为雪崩击穿。当反向电压增加到较大数值时,外加电场使电子漂移速度加快,从而与共价键中的价电子相碰撞,把价电子撞出共价键,产生新的电子-空穴对。新产生的电子-空穴被电场加速后又撞出其它价电子,载流子雪崩式地增加,致使电流急剧增加,这种击穿称为雪崩击穿。无论哪种击穿,若对其电流不加限制,都可能造成PN结永久性损坏。
[0109] 应用1.整流整流二极管主要用于整流电路,即把交流电变换成脉动的直流电。整流二极管都是面结型,因此结电容较大,使其工作频率较低,一般为3kHZ以下。
[0110] 2.开关二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路
[0111] 3.限幅二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。
[0112] 4.续流在开关电源的电感中和继电器等感性负载中起续流作用。
[0113] 5.检波检波二极管的主要作用是把高频信号中的低频信号检出。它们的结构为点接触型。其结电容较小,工作频率较高,一般都采用锗材料制成。
[0114] 6.阻尼阻尼二极管多用在高频电压电路中,能承受较高的反向击穿电压和较大的峰值电流,一般用在电视机电路中,常用的阻尼二极管有2CN1、2CN2、BSBS44等。
[0115] 7.显示用于VCD、DVD、计算器等显示器上。
[0116] 8.稳压这种管子是利用二极管的反向击穿特性制成的,在电路中其两端的电压保持基本不变,起到稳定电压的作用。常用的稳压管有2CW55、2CW56等。[1]
9.触发
触发二极管又称双向触发二极管(DIAC)属三层结构,具有对称性的二端半导体器件。
常用来触发双向可控硅 ;,在电路中作过压保护等用途。
[0117] 10.照明随着高亮白光二极管的开发和性能提升,LED照明已经成为一个新兴产业,并将逐步成为主要照明光源。
[0118] 作用二极管是最常用的电子元件之一,他最大的特性就是单向导电,也就是电流只可以从二极管的一个方向流过,二极管的作用有整流电路,检波电路,稳压电路,各种调制电路,主要都是由二极管来构成的,其原理都很简单,正是由于二极管等元件的发明,才有我们现在丰富多彩的电子信息世界的诞生,既然二极管的作用这么大那么我们应该如何去检测这个元件呢,其实很简单只要用万用表打到电阻档测量一下正向电阻如果很小,反相电阻如果很大这就说明这个二极管是好的。对于这样的基础元件我们应牢牢掌握住他的作用原理以及基本电路,这样才能为以后的电子技术学习打下良好的基础。[2]工作原理 二极管实物晶体二极管为一个由p型半导体和n型半导体形成的pn结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于pn结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,pn结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。pn结的反向击穿有齐纳击穿和雪崩击穿之分。
[0119] 类型二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 贴片二极管构造分类半导体二极管主要是依靠PN结而工作的。与PN结不可分割的点接触型和肖特基型,也被列入一般的二极管的范围内。包括这两种型号在内,根据PN结构造面的特点,把晶体二极管分类如下:
点接触型二极管
点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。因此,其PN结的静电容量小,适用于高频电路。但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流。因为构造简单,所以价格便宜。
[0120] 面接触型二极管面接触型或称面积型二极管的PN结是用合金法或扩散法做成的,由于这种二极管的PN结面积大,可承受较大电流,但极间电容也大。这类器件适用于整流,而不宜用于高频率电路中。
[0121] 键型二极管键型二极管是在锗或硅的单晶片上熔接或银的细丝而形成的。其特性介于点接触型二极管和合金型二极管之间。与点接触型相比较,虽然键型二极管的PN结电容量稍有增加,但正向特性特别优良。多作开关用,有时也被应用于检波和电源整流(不大于50mA)。在键型二极管中,熔接金丝的二极管有时被称金键型,熔接银丝的二极管有时被称为银键型。
[0122] 合金型二极管在N型锗或硅的单晶片上,通过合金铟、铝等金属的方法制作PN结而形成的。正向电压降小,适于大电流整流。因其PN结反向时静电容量大,所以不适于高频检波和高频整流。
[0123] 扩散型二极管在高温的P型杂质气体中,加热N型锗或硅的单晶片,使单晶片表面的一部变成P型,以此法PN结。因PN结正向电压降小,适用于大电流整流。最近,使用大电流整流器的主流已由硅合金型转移到硅扩散型。
[0124] 台面型二极管PN结的制作方法虽然与扩散型相同,但是,只保留PN结及其必要的部分,把不必要的部分用药品腐蚀掉。其剩余的部分便呈现出台面形,因而得名。初期生产的台面型,是对半导体材料使用扩散法而制成的。因此,又把这种台面型称为扩散台面型。对于这一类型来说,似乎大电流整流用的产品型号很少,而小电流开关用的产品型号却很多。
[0125] 平面型二极管在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N型硅单晶片上仅选择性地扩散一部分而形成的PN结。因此,不需要为调整PN结面积的药品腐蚀作用。由于半导体表面被制作得平整,故而得名。并且,PN结合的表面,因被氧化膜覆盖,所以公认为是稳定性好和寿命长的类型。最初,对于被使用的半导体材料是采用外延法形成的,故又把平面型称为外延平面型。对平面型二极管而言,似乎使用于大电流整流用的型号很少,而作小电流开关用的型号则很多。
[0126] 合金扩散型二极管它是合金型的一种。合金材料是容易被扩散的材料。把难以制作的材料通过巧妙地掺配杂质,就能与合金一起过扩散,以便在已经形成的PN结中获得杂质的恰当的浓度分布。
此法适用于制造高灵敏度的变容二极管
[0127] 外延型二极管用外延面长的过程制造PN结而形成的二极管。制造时需要非常高超的技术。因能随意地控制杂质的不同浓度的分布,故适宜于制造高灵敏度的变容二极管。
[0128] 肖特基二极管基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。其特长是:开关速度非常快:反向恢复时间trr特别地短。因此,能制作开关二极和低压大电流整流二极管。
[0129] 用途分类1.检波二极管就原理而言,从输入信号中取出调制信号是检波,以整流电流的大小(100mA)作为界线通常把输出电流小于100mA的叫检波。锗材料点接触型、工作频率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型。类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、调制、混频、开关等电路。也有为调频检波专用的特性一致性好的两只二极管组合件。
[0130] 2.整流二极管就原理而言,从输入交流中得到输出的直流是整流。以整流电流的大小(100mA)作为界线通常把输出电流大于100mA的叫整流。面结型,工作频率小于KHz,最高反向电压从25伏至3000伏分A~X共22档。分类如下:①硅半导体整流二极管2CZ型、②硅桥式整流器QL型、③用于电视机高压硅堆工作频率近100KHz的2CLG型。 内部结构
3.限幅二极管
大多数二极管能作为限幅使用。也有象保护仪表用和高频齐纳管那样的专用限幅二极管。为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。
也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。
[0131] 4.调制二极管通常指的是环形调制专用的二极管。就是正向特性一致性好的四个二极管的组合件。
即使其它变容二极管也有调制用途,但它们通常是直接作为调频用。
[0132] 5.混频二极管使用二极管混频方式时,在500~10,000Hz的频率范围内,多采用肖特基型和点接触型二极管。
[0133] 6.放大二极管用二极管放大,大致有依靠隧道二极管和体效应二极管那样的负阻性器件的放大,以及用变容二极管的参量放大。因此,放大用二极管通常是指隧道二极管、体效应二极管和变容二极管。
[0134] 7.开关二极管有在小电流下(10mA程度)使用的逻辑运算和在数百毫安下使用的磁芯激励用开关二极管。小电流的开关二极管通常有点接触型和键型等二极管,也有在高温下还可能工作的硅扩散型、台面型和平面型二极管。开关二极管的特长是开关速度快。而肖特基型二极管的开关时间特短,因而是理想的开关二极管。2AK型点接触为中速开关电路用;2CK型平面接触为高速开关电路用;用于开关、限幅、钳位或检波等电路;肖特基(SBD)硅大电流开关,正向压降小,速度快、效率高。
[0135] 8.变容二极管用于自动频率控制(AFC)和调谐用的小功率二极管称变容二极管。日本厂商方面也有其它许多叫法。通过施加反向电压, ;使其PN结的静电容量发生变化。因此,被使用于自动频率控制、扫描振荡、调频和调谐等用途。通常,虽然是采用硅的扩散型二极管,但是也可采用合金扩散型、外延结合型、双重扩散型等特殊制作的二极管,因为这些二极管对于电压而言,其静电容量的变化率特别大。结电容随反向电压VR变化,取代可变电容,用作调谐回路、振荡电路、相环路,常用于电视机高频头的频道转换和调谐电路,多以硅材料制作。
[0136] 9.频率倍增用二极管对二极管的频率倍增作用而言,有依靠变容二极管的频率倍增和依靠阶跃(即急变)二极管的频率倍增。频率倍增用的变容二极管称为可变电抗器,可变电抗器虽然和自动频率控制用的变容二极管的工作原理相同,但电抗器的构造却能承受大功率。阶跃二极管又被称为阶跃恢复二极管,从导通切换到关闭时的反向恢复时间trr短,因此,其特长是急速地变成关闭的转移时间显着地短。如果对阶跃二极管施加正弦波,那么,因tt(转移时间)短,所以输出波形急骤地被夹断,故能产生很多高频谐波。
[0137] 10.稳压二极管是代替稳压电子二极管的产品。被制作成为硅的扩散型或合金型。是反向击穿特性曲线急骤变化的二极管。作为控制电压和标准电压使用而制作的。二极管工作时的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成许多等级。在功率方面,也有从200mW至100W以上的产品。工作在反向击穿状态,硅材料制作,动态电阻RZ很小,一般为2CW型;
将两个互补二极管反向串接以减少温度系数则为2DW型。
[0138] 11.PIN型二极管(PIN Diode)这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。PIN中的I是"本征"意义的英文略语。当其工作频率超过100MHz时,由于少数载流子的存贮效应和"本征"层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。在零偏置或直流反向偏置时,"本征"区的阻抗很高;在直流正向偏置时,由于载流子注入"本征"区,而使"本征"区呈现出低阻抗状态。因此,可以把PIN二极管作为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。
[0139] 12.雪崩二极管(Avalanche Diode)它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路中。
[0140] 13.江崎二极管(Tunnel Diode)它是以隧道效应电流为主要电流分量的晶体二极管。其基底材料是砷化镓和锗。其P型区的N型区是高掺杂的(即高浓度杂质的)。隧道电流由这些简并态半导体的量子力学效应所产生。发生隧道效应具备如下三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。江崎二极管为双端子有源器件。其主要参数有峰谷电流比(IP/PV),其中,下标"P"代表"峰";而下标"V"代表"谷"。江崎二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中。
[0141] 14.快速关断(阶跃恢复)二极管(Step Recovary Diode)它也是一种具有PN结的二极管。其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成"自助电场"。由于PN结在正向偏压下,以少数载流子导电,并在PN结附近具有电荷存贮效应,使其反向电流需要经历一个"存贮时间"后才能降至最小值(反向饱和电流值)。阶跃恢复二极管的"自助电场"缩短了存贮时间,使反向电流快速截止,并产生丰富的谐波分量。利用这些谐波分量可设计出梳状频谱发生电路。快速关断(阶跃恢复)二极管用于脉冲和高次谐波电路中。
[0142] 15.肖特基二极管 ;(Schottky Barrier Diode) 二极管电路它是具有肖特基特性的"金属半导体结"的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。
[0143] 16.阻尼二极管具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用。
[0144] 17.瞬变电压抑制二极管TVP管,对电路进行快速过压保护,分双极型和单极型两种,按峰值功率(500W-
5000W)和电压(8.2V~200V)分类。
[0145] 18.双基极二极管(单结晶体管)两个基极,一个发射极的三端负阻器件,用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等优点。
[0146] 19.发光二极管用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿、蓝单色光。随着技术的进步,近来研制成了白光高亮二极管,形成了LED照明这一新兴产业。
[0147] 20.、硅功率开关二极管硅功率开关二极管具有高速导通与截止的能力。它主要用于大功率开关或稳压电路、直流变换器、高速电机调速及在驱动电路中作高频整流及续流箝拉,具有恢复特性软、过载能力强的优点、广泛用于计算机、雷达电源、步进电机调速等方面。
[0148] 21.旋转二极管主要用于无刷电机励磁、也可作普通整流用。
[0149] 特性分类点接触型二极管,按正向和反向特性分类如下。
[0150] 1.一般用点接触型二极管这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。
[0151] 2.高反向耐压点接触型二极管是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、
1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。
[0152] 3.高反向电阻点接触型二极管正向电压特性和一般用二极管相同。虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。
[0153] 4.高传导点接触型二极管它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。这类二极管,在负荷电阻特别低的情况下,整流效率较高。
[0154] 导电特性二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。
[0155] 正向特性在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门坎电压”,又称“死区电压”,锗管约为0.1V,硅管约为0.5V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。
[0156] 识别小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。
[0157] 半导体是一种具有特殊性质的物质,它不像导体一样能够完全导电,又不像绝缘体那样不能导电,它介于两者之间,所以称为半导体。半导体最重要的两种元素是硅(读“gui”)和锗(读“zhe”)。我们常听说的美国硅谷,就是因为起先那里有好多家半导体厂商。
[0158] 1.二极管应该算是半导体器件家族中的元老了。很久以前,人们热衷于装配一种矿石收音机来收听无线电广播,这种矿石后来就被做成了晶体二极管。
[0159] 发光分类1.按发光管发光颜色分按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。
另外,有的发光二极管中包含二种或三种颜色的芯片。根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管和达于做指示灯用。
[0160] 2.按发光管出光面特征分按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈