首页 / 专利库 / 制造过程 / 计算机集成制造 / 计算机辅助设计 / Dispositif d'insolation pour la génération de masques

Dispositif d'insolation pour la génération de masques

阅读:855发布:2023-02-10

专利汇可以提供Dispositif d'insolation pour la génération de masques专利检索,专利查询,专利分析的服务。并且Dispositif d'insolation pour la génération de masques à partir d'un système de concep­tion assistée par ordinateur, comprenant un tube à rayons cathodiques qui fournit une image du mas­que sur l'écran du tube, ainsi q'un système optique qui projette l'image du masque sur un support à insoler.
Le tube à rayons cathodiques est un tube à haute brillance dont l'écran est muni première­ment d'un luminophore émettant dans l'ultraviolet, et deuxiè­mement d'un circuit de refroidissement du luminophore, ce système optique étant un système optique pour l'ultra­violet qui opère sur l'image ultraviolette fournie par l'écran du tube à haute brillance.,下面是Dispositif d'insolation pour la génération de masques专利的具体信息内容。

1. Dispositif d'insolation pour la génération de masques à partir d'un système de conception assistée par ordi­nateur, qui comprend :
- un tube à rayons cathodiques qui fournit une image du mas­que sur l'écran du tube,
- et un système optique qui projette l'image du masque sur un support à insoler,
caractérisé en ce que
- le tube à rayons cathodiques est un tube à haute brillance dont l'écran est muni premièrement d'un luminophore émet­tant dans l'ultraviolet, et deuxièmement d'un circuit de refroidissement du luminophore,
et en ce que le système optique est un système optique pour l'ultraviolet qui opère sur l'image ultraviolette fournie par l'écran du tube à haute brillance.
2. Dispositif d'insolation selon la revendication 1, caractérisé en ce que le tube à haute brillance est un tube à mémoire qui stocke une image latente du masque sur une grille à mémoire.3. Dispositif d'insolation selon une des revendica­tions 1 ou 2, caractérisé en ce que l'écran du tube à haute brillance présente des repères de positionnement formés de pe­tits plots d'un luminophore émettant dans le visible.
说明书全文

L'invention concerne un dispositif d'insolation pour la génération de masques à partir d'un système de concep­tion assistée par ordinateur, qui comprend :

- un tube à rayons cathodiques qui fournit une image du mas­que optique sur l'écran de tube,

- et un système optique qui projette l'image du masque sur un support à insoler.

Un tel dispositif trouve son application dans la fabrication des dispositifs à semiconducteurs, dans les tech­nologies à couches minces et à couches épaisses, dans la fa­brication photographique...

Une invention de ce genre est connue du document JP 58.18923 qui décrit un dispositif formé d'un tube à rayons cathodiques présentant un écran de verre, muni d'un luminopho­re, devant lequel est placé une plaque de fibres optiques des­tinées à capter les rayons lumineux issus de l'écran et à les conduire sous forme de faisceaux parallèles. Un substrat placé à la sortie de la plaque de fibres optiques est ainsi insolé par la lumière issue de l'écran sur lequel apparaît le motif géométrique du masque généré à l'aide d'un système de concep­tion assisté par ordinateur. Ce dispositif semble prévu pour exploiter le plus directement possible l'image du masque telle qu'elle apparaît sur la console de visualisation du système de conception par ordinateur.

Or ce dispositif présente des inconvénients. Tout d'abord le grandissement du système ne peut être qu'égal à 1, l'image projetée ayant les mêmes dimensions que l'image de l'écran. De plus, l'écran du tube et la plaque de fibres optiques étant en verre, le spectre émis par la couche photo­sensible ne peut se situer que dans le domaine visible. La dé­ finition finale de l'image projetée est donc limitée du fait de la longueur d'onde élevée de la lumière. Egalement, le tube à rayons cathodiques utilisé étant d'un type standard, donc adapté à la vision humaine, présente une brillance faible, mal adaptée à un dispositif d'insolation, ce qui conduit à des du­rées d'insolation élevées et accroît les erreurs de restitu­tion.

Le but de l'invention est donc de permettre l'in­solution de masques avec des possibilités de grandissement et de dégrandissement. Il est également de donner à l'image pro­jetée finale une définition spatiale suffisante compatible avec les applications visées, tout en réduisant considérable­ment la durée d'exposition.

Pour cela l'invention telle que définie dans le préambule est remarquable en ce que :

le tube à rayons cathodiques est un tube à haute brillance dont l'écran est muni premièrement d'un luminophore émettant dans l'ultraviolet, et deuxièmement d'un circuit de refroidis­sement du luminophore,

et en ce que le système optique est un système optique pour l'ultraviolet qui opère sur l'image ultraviolette fournie par l'écran du tube à haute brillance.

L'invention met à profit les techniques de plus en plus répandues consistant à réaliser les masques pour l'im­plantation d'un circuit électronique à l'aide d'un ordinateur. Les techniques traditionnelles, qui n'exploitent pas directe­ment l'image formée sur l'écran, font appel à la réalisation d'un masque intermédiaire sur un support solide. Cette étape est supprimée dans l'invention.

Lorsque le circuit électronique est implanté, on dispose d'une image sur l'écran d'une console de visuali­sation. L'image qui y est formée sert à l'utilisateur pour effectuer la mise au point de l'implantation du circuit. Son utilisation directe présente des inconvénients qui viennent d'être analysés.

Lorsque la mise au point du dessin est achevée, on branche électriquement, conformément à l'invention, un tube à haute brillance en parallèle sur la console de visualisation en utilisant les mêmes signaux de balayage et de synchronisa­tion. Ce tube à haute brillance présente généralement des di­mensions réduites, par exemple 90x70mm. L'écran du tube à hau­te brillance est recouvert intérieurement d'un luminophore qui émet dans l'ultraviolet par exemple entre 365 nm et 400 nm.

Par comparaison avec la lumière visible ces lon­gueurs d'onde plus faibles permettent d'accroître la finesse du dessin de l'image finale. L'image formée sur l'écran du tu­be à haute brillance est reprise par un système optique adapté à l'ultraviolet. Il peut assurer un grandissement, un dégran­dissement ou un simple transfert de l'image selon le but pour­suivi.

Pour faciliter l'utilisation du dispositif d'in­solation en ce qui concerne les insolations successives de masques différents, on place à la périphérie de l'écran du tu­be à haute brillance, hors du champ utile, des repères servant à faciliter la superposition des images successives. Ces repè­res sont constitués de petits motifs d'un luminophore émettant dans le visible. Le système optique est corrigé pour laisser passer la lumière émise dans le visible.

Le tube à haute brillance et le système optique sont fixés solidairement dans un châssis.

Pour réaliser l'insolation, il est nécessaire de disposer d'une image fixe pendant la durée de cette insolation avec des fluctuations de position réduites. L'utilisation d'un tube à haute brillance en fournissant un flux lumineux élevé permet une réduction substantielle du temps d'exposition.

Pour assurer la persistance de l'image sur l'é­cran, selon une première variante préférentielle, le tube à haute brillance est un tube à mémoire, qui comprend un canon d'écriture, un ou plusieurs canons d'arrosage, des moyens de collimation et une grille métallique recouverte d'un isolant qui se charge localement de charges électrostatiques. Il est ainsi possible d'effectuer une image électronique latente sur cette grille, à l'aide du canon d'écriture qui est ensuite lue avec les canons d'arrosage appropriés. Ceci permet de disposer d'une puissance électrique accrue donc d'une image plus lumi­neuse et mieux contrastée.

Pour atteindre les performances en haute brillan­ce sans aberrations d'image, le tube délivre une densité de puissance électrique d'excitation du luminophore pouvant at­teindre une valeur au moins égale à sensiblement 2 watts/cm², le canon d'arrosage fournissant une densité de courant homogè­ne inférieure à 0,025 A/cm² dans le plan de sortie du canon d'arrosage.

Selon une seconde variante on utilise un tube à haute brillance, ne possédant pas de mémorisation. Dans ce cas, la persistance de l'image est assurée en effectuant un balayage récurrent de l'image.

Dans ces deux variantes, compte tenu de la puis­sance électrique dissipée, le tube à haute brillance est muni d'un circuit de refroidissement de l'écran.

En adaptant aux applications le système optique pour l'ultraviolet, il est possible d'assurer un grandisse­ment, un dégrandissement ou un simple transfert à échelle uni­té de l'image. Il est donc possible de réaliser des masques en insolant des laques photosensibles déposées sur des substrats tels que des dispositifs à semiconducteur ou autres.

L'invention sera mieux comprise à l'aide des des­sins, donnés à titre d'exemples non limitatifs qui représen­tent :

  • figure 1 : un schéma du dispositif d'insolation selon l'invention couplé à un système de conception assisté par ordinateur,
  • figure 2 : une courbe de sensibilité d'un lumino­phore émettant dans l'ultraviolet,
  • figure 3 : un dessin d'un tube à haute brillance muni d'une grille mémoire et d'un luminophore émettant dans l'ultraviolet.
  • figure 4 : une représentation des trajectoires électroniques d'un canon d'arrosage.
  • figure 5 : une représentation des trajectoires électroniques des moyens de collimation.

On a représenté sur la figure 1, un système de conception assisté par ordinateur représenté symboliquement par un ordinateur 20 et une console de visualisation 21, tels qu'ils sont utilisés selon l'art antérieur.

L'opérateur effectue la mise au point de son tra­cé de la manière habituelle. Lorsque cette étape est achevée le dispositif d'insolation selon l'invention est alors connec­té en parallèle sur la console de visualisation 21, à l'aide d'un contacteur 22. L'invention comprend un châssis 18 dans lequel sont disposés un tube à haute brillance 10 et un systè­me optique pour ultraviolet 12. Le tube à haute brillance 10 est muni sur sa face de sortie d'un luminophore 13 émettant un rayonnement ultraviolet. Ce luminophore 13 est excité par les électrons issus du canon à électrons 14. Le tube à haute brillance est prévu pour fonctionner avec des courants de faisceaux élevés, ce qui nécessite de refroidir son écran à l'aide d'un circuit de refroidissement 11 dans lequel circule un fluide.

Le tube à haute brillance selon l'invention permet de diminuer les temps d'exposition tout en utilisant les laques sensibles dans l'ultraviolet disponibles commercia­lement, par exemple la laque no 1350 de la Société SHIPLEY (Etats-Unis). Avec une dynamique en tout ou rien obtenue en modulant le wehnelt du tube, d'une manière bistable, on ob­tient un contraste maximal, ce qui est un avantage de l'inven­tion. Il est de plus possible d'inverser la polarité du signal de vidéo, ce qui permet d'obtenir un masque représentant une image positive ou une image négative et ceci sans avoir besoin de changer de type de laque.

Le faisceau lumineux qui sort du tube à haute brillance muni de son circuit de refroidissement pénètre dans un système optique pour ultraviolet 12 qui fournit une image sur un substrat 15 positionné par rapport au système optique par un ensemble micromanipulateur 23.

Le système optique est à adapter à la courbe d'é­mission du luminophore. Ainsi pour une longueur d'onde d'émis­sion de 405 nm, il est possible d'utiliser des objectifs S. Planar no 107739 ou no 107751 de la Société CARL ZEISS (Alle­magne Fédérale).

Le luminophore peut être constitué d'un lumino­phore de type P5, tels ceux fabriqués par les Sociétés RIEDEL DE HAEN (DE), DERBY LUMINESCENT (GB), HS RADIUM (US), dont la courbe de sensibilité est représentée sur la figure 2 entre 300 nm et 600 nm.

Afin de faciliter la superposition de masques successifs, on réalise des repères de positionnement consti­tués de petits plots de luminophore émettant dans le visible qui se substituent à ces endroits au luminophore de base. Ces repères sont disposés à la périphérie de l'écran. Pour cela le système optique est corrigé dans le visible pour laisser pas­ser une longueur d'onde spécifique, par exemple le vert, afin qu'il soit possible visuellement de positionner des masques successifs.

Selon une variante préférentielle de l'invention, le tube à haute brillance est un tube à mémoire tel que repré­senté schématiquement sur la figure 3.

Le tube à haute brillance 10 comprend un canon d'écriture 31 qui fournit un faisceau d'électrons focalisé par des grilles internes au canon et défléchi par des plaques 32 ou des bobines, selon un faisceau d'électrons d'écriture 33. Ce faisceau arrive sur une grille à mémoire 34 qui a un pas fin d'environ 60 microns et une transparence d'environ 50%. Le diamètre du faisceau d'électrons d'écriture 33 est d'environ 30 microns au niveau de la grille à mémoire 34 avec des élec­ trons ayant une énergie de l'ordre de 1500 eV. Cette grille présente, du coté où arrive le faisceau 33, une fine couche d'oxyde, par exemple 4 à 5 microns d'oxyde de magnésium qui présente la propriété d'émettre des électrons secondaires. Ce­ci se traduit par la fixation de charges électrostatiques sur la grille mémoire motivant son appellation. Les électrons se­condaires émis sont collectés par une grille collectrice 35 placée juste devant la grille à mémoire, entre celle-ci et les plaques 32. Cette grille collectrice 35 est à pas très lâche (environ 600 microns) et à haute transparence (environ 80%). Elle sert également à définir le champ électrique de l'espace grille collectrice-grille mémoire-écran afin de définir la dy­namique de brillance de l'image.

Après l'écriture, l'étape suivante du fonctionne­ment d'un tube à mémoire consiste à lire les charges électro­statiques présentes sur la grille à mémoire. Ceci s'effectue à l'aide de un ou plusieurs canons d'arrosage 36 (flood en an­glais) qui opèrent avec des courants bien plus élevés que ce­lui délivré par le canon 31. Le faisceau d'électrons de lectu­re est très uniforme et bien collimaté, par des moyens de col­limation 37, avec des électrons de faible énergie, environ 5 à 6 eV. Ainsi, avec un courant de 10 mA délivré par les canons d'arrosage, une tension entre écran et grille mémoire de 30 kV et une transparence de grille mémoire de 50% on obtient une puissance électrique de 150 watts dissipée sur l'écran.

La figure 4 représente les trajectoires électro­niques et les répartitions de potentiel d'un canon d'arrosage utilisable dans un tube à haute brillance à mémoire. Compte tenu de la symétrie du canon, seule une coupe de la moitié du canon est représentée. A titre d'exemple, pour un courant de 20 mA les quatre électrodes G1, G2, G3, G4 sont portées aux potentiels suivants, par rapport à la cathode :

VG₁ = 40 volts ; VG₂ = 550 volts ;

VG₃ = -200 volts ; VG₄ = 500 volts.

La géométrie de l'ensemble "cathode-électrode G1-­ électrode G2" et le choix des potentiels relatifs VG₂/VG₁ dé­finissent des conditions d'émission homogène, voisines de cel­les d'une diode à électrodes planes parallèles, car ils défi­nissent une configuration des potentiels telle que le plan sensiblement médian de l'électrode mince G1 est de potentiel uniforme VG₁. Le potentiel VG₁ et l'ouverture de l'électrode G2 définissent une lentille divergente pour le faisceau. L'é­lectrode G3, associée aux deux électrode G2 et G4 forme avec celles-ci une lentille convergente qui réduit l'angle d'ouver­ture du faisceau dont le diamètre a préalablement été élargi par la lentille divergente précédente. L'angle i, dans le plan de sortie du canon, est ainsi réduit à une valeur inférieure à sensiblement 8°. Pour cela le potentiel VG₃ de l'électrode G3 est négatif par rapport à la cathode placée au potentiel VK = 0. Si l'on désire utiliser le tube avec des flux lumineux inférieurs à ses performances maximales, il est possible de réduire le potentiel négatif VG₃ et même de le rendre égal au potentiel VK de la cathode.

Avantageusement, le potentiel VK est inférieur au potentiel VG1 de l'électrode G1, lui-même inférieur au poten­tiel VG₂ de la grille G2.

La figure 5 est une représentation simplifiée des trajectoires électroniques des moyens de collimation. Le plan d'entrée des moyens de collimation coïncide sensiblement avec le plan de sortie P1 du canon d'arrosage. Dans ce plan les trajectoires électroniques semblent issues d'une source ponctuelle virtuelle 26 caractérisant le canon d'arrosage. A l'intérieur des moyens de collimation deux trajectoires carac­téristiques 41, 42 sont représentées. La trajectoire 42 a une pente toujours croissante et présente dans le plan de sortie P3 une inclinaison j+ caractérisant une courbe située sous la normale au point d'impact. La trajectoire 41 a une pente croissante suivie d'une pente décroissante. Cette trajectoire 41 présente une inclinaison j- caractérisant une trajectoire située au-dessus de la normale au point d'impact. Cette tra­ jectoire 41 montre l'influence des potentiels appliqués aux électrodes des moyens de collimation qui collimatent les tra­jectoires électroniques sur le plan de sortie.

Des trajectoires électroniques qui seraient in­terceptées par les électrodes, E0, E1, E2, E3 ou E4 qui cons­tituent les moyens de collimation, donneraient alors naissance à des courants dans ces électrodes qui seraient ainsi perdus pour l'image finale. Afin d'éviter cette perte de courant dans les électrodes et d'assurer aux inclinaisons j+ et j- une va­leur inférieure à sensiblement 2°, les moyens de collimation sont réalisés de la manière suivante.

La première électrode EO est constituée d'une bague cylindrique de rayon RO = 71,5 mm et de longueur LO sen­siblement égale à RO afin de blinder les trous de sortie des canons vis à vis des champs des moyens de collimation. Dans l'exemple choisi, son potentiel est d'environ 500 volts puis­qu'il représente le potentiel de sortie du canon d'arrosage.

Les électrodes E1, E2, E3 sont sensiblement identiques. Elles sont constituées d'une bague cylindrique de rayons R1 = R2 = R3 = 71,5 mm. Leurs longueurs sont voisines.

L'électrode E4 a une forme de coupelle de rayon R4 = R3 sur laquelle la grille collectrice est montée à l'aide d'un cadre rectangulaire. La demi-diagonale utile est de l'or­dre de 60 mm sur l'étendue de laquelle les moyens de collima­tion doivent opérer. Préférentiellement, le potentiel de l'é­lectrode E4 est identique au potentiel VGC de la grille col­lectrice. La profondeur x de la coupelle constituant cette électrode finale E4 est x = 27 mm, de sorte que x/R vaut sen­siblement 0,38, ce qui confère à la lentille de collimation ses qualités dans un large domaine de variation des potentiels selon les variantes d'utilisation.

Les potentiels des électrodes E0, E1 sont supé­rieurs au potentiel VGC, ce qui définit une optique globale­ment décélératrice. De la sorte, les électrons issus du canon d'arrosage et réfléchis par la grille à mémoire, traversant à nouveau la grille collectrice proportionnellement à la trans­parence, n'y seront pas finalement repoussés : ils sont essen­tiellement collectés par les électrodes E0 et E1, ce qui évite tout échauffement de la grille collectrice.

Dans cette optique, les potentiels V2 et V3 des électrodes E2 et E3 peuvent être inférieurs à VGC.

Lorsque l'image latente a été inscrite sur l'iso­lant de la grille mémoire à l'aide du canon d'écriture, elle doit être lue par le canon d'arrosage. Les électrons qui tra­versent la grille collectrice placée par exemple au potentiel VGC = 200 volts pénètrent dans le champ de la grille mémoire. Celle-ci a son support métallique polarisé à une valeur VGS qui correspond au cut-off du faisceau d'arrosage en absence d'image inscrite (état initial). Typiquement, VGS = -5 à -8 volts par rapport à la cathode, selon la géométrie de la gril­le et évidemment, selon le champ d'écran. Par contre, sa face isolante est par exemple à un potentiel VGM = -2 volts en rai­son de la charge positive en mémoire sur l'isolant après ins­cription (coefficient d'émission secondaire supérieur à 1). Le potentiel de l'écran étant par exemple de 25 KV, pour at­teindre cet écran, les électrons vont traverser la grille mé­moire, dans laquelle chaque élément de grille muni de son iso­lant, va constituer une microlentille électronique. L'ouvertu­re de cette microlentille commandée par VGM et l'inclinaison des trajectoires électroniques sur la grille collectrice vont gouverner le passage des électrons à travers ces microlentil­les. On définit ainsi un coefficient de transmission T1 de la grille mémoire. A pleine ouverture des microlentilles cette transmission est typiquement de 60%.

Le système d'effacement fonctionne pour des ima­ges récurrentes. Pour une image fixe, il convient de l'effacer après l'exposition de la laque photosensible. Dans ce cas, la polarisation du support de grille mémoire est portée au poten­tiel VGS = 0 volt tout en bloquant le canon d'inscription. Ainsi les charges sont neutralisées, l'isolant prend le poten­ tiel de la cathode, et la cible est prête pour une nouvelle inscription. L'efffacement avec un canon d'arrosage spécifique est également possible.

Sur la figure 3, le faisceau d'électrons issu du canon d'arrosage arrive sur une mince couche d'aluminium 39, reliée à la très haute tension (THT), placée sur le luminopho­re 13 émettant dans l'ultraviolet déposé sur l'écran 17. Les dimensions du spot sur le luminophore sont de l'ordre de 60 microns. Les plaques de déflexion 32 agissent en synchronis­me avec la console de visualisation. Pour disposer à la fois d'un temps d'exposition court et d'un contraste élevé, on opé­re en modulant d'une manière bistable la tension de grille (wehnelt). Ainsi avec une laque classique telle que la laque nO 1350 de la Société SHIPLEY, on obtient des temps d'exposi­tion de l'ordre de 10 secondes. En réduisant ainsi le temps d'exposition, on diminue les imprécisions de restitution qui apparaissent généralement par les légères vibrations des sys­tèmes d'insolation habituels.

Pour accroître les performances de haute brillan­ce et d'homogénéité de brillance du tube, il est possible soit d'utiliser une cathode de plus grande dimension, qui nécessite une optique électronique de canon d'arrosage de même type que celui décrit mais de dimensions adaptées, soit d'utiliser plu­sieurs canons d'arrosage.

Selon une seconde variante il s'agit d'un tube à haute brillance dépourvu de la fonction mémoire, donc des ca­nons d'arrosage et des grilles collectrice et à mémoire. La puissance électrique dissipée est alors plus faible de l'ordre de 60 watts. Pour obtenir une image stabilisée sur l'écran pendant la durée nécessaire à l'insolation, il faut utiliser un balayage récurrent. Avec la même laque que précédemment la durée d'exposition est de 30 secondes à 1 minute.

Le dispositif d'insolation qui vient d'être dé­crit selon deux variantes, permet de gagner des étapes dans la réalisation des circuits. Dans le cas des couches minces ou de substrats semiconducteurs, il permet d'insoler directement le substrat recouvert de sa laque photosensible. Dans le cas des couches épaisses il permet d'insoler les écrans de sérigraphie qui servent à déposer les encres.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈