首页 / 专利库 / 显示技术 / 近眼显示器 / OCT引导的青光眼手术的方法和系统

OCT引导的青光眼手术的方法和系统

阅读:920发布:2020-05-11

专利汇可以提供OCT引导的青光眼手术的方法和系统专利检索,专利查询,专利分析的服务。并且本文公开了帮助外科医生在眼睛上进行手术程序的系统和方法。手术程序包括将细长探针从眼睛的开口穿过前房插入到包括小梁网和Schlemm管的目标组织区域。示例性系统包括光学 显微镜 ,其用于外科医生在手术过程中用显微镜图像观察眼睛;光学相干 断层 扫描(OCT)装置,其被配置为在手术过程中对目标组织区域中的目标 位置 进行OCT扫描;以及 图像处理 装置,其被配置为通过重叠目标位置的OCT图像和标识位置的图形视觉元素来生成增强图像,其中所述图形视觉元素与显微镜图像对准,以帮助外科医生将细长探针的远端推进到目标位置。,下面是OCT引导的青光眼手术的方法和系统专利的具体信息内容。

1.一种对患者的眼睛进行手术程序的方法,所述方法包括:
在观察设备上观察实时视图,其中所述实时视图包括(i)所述眼睛的显微镜视图和(ii)具有所述显微镜视图和所述眼睛的显微镜图像的增强图像,所述增强图像还具有目标组织区域的光学相干断层扫描(OCT)图像,其中所述OCT图像与所述显微镜视图或所述显微镜图像对准,其中所述OCT图像能够识别位于所述目标组织中的目标位置,并且其中在所述显微镜视图或所述显微镜图像中看不到实际目标位置;
在所述观察设备上观察所述显微镜视图或所述增强图像的同时,在所述眼睛的前房内将细长探针的远端朝向所述目标组织区域推进,其中所述细长探针的远端最初在所述显微镜视图或所述显微镜图像中可见,其后由于在所述目标组织所在的所述眼睛的区域内的全内反射而在所述显微镜视图或所述显微镜图像中变得不可见;和
在所述细长探针的远端在所述显微镜视图或所述显微镜图像中不可见的同时,以及在从所述增强图像中获取关于所述细长探针的远端相对于所述目标位置的相对位置的信息的同时,使用所述细长探针在所述实际目标位置处执行所述手术程序。
2.根据权利要求1所述的方法,其中标识所述目标位置的图形视觉元素覆盖所述显微镜视图或所述显微镜图像。
3.根据权利要求1所述的方法,其中所述实时视图包括所述增强图像,并且其中与所述显微镜视图或所述显微镜图像对准的所述OCT图像包括关于Schlemm管和所述集合管系统的信息。
4.根据权利要求1所述的方法,其中所述实时视图包括所述增强图像,并且其中与所述显微镜视图或所述显微镜图像对准的所述OCT图像包括关于所述细长探针的远端相对于所述目标位置的相对位置的信息。
5.根据权利要求4所述的方法,其中对应于所述细长探针的远端的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述推进步骤包括随着所述细长探针的远端接近并接触所述目标组织区域,在观察对应于所述细长探针的远端的所述图形视觉元素和对应于所述增强图像上的所述目标位置的所述图形视觉元素的同时,将所述细长探针的远端朝着所述目标组织区域推进。
6.根据权利要求4所述的方法,其中对应于所述细长探针的远端的图形视觉元素和对应于所述眼睛的小梁网的表面的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述方法包括确定当对应于所述细长探针的远端的所述图形视觉元素和对应于所述小梁网的表面的所述图形视觉元素足够接近时,在所述细长探针的远端与所述小梁网的表面之间存在接触。
7.根据权利要求4所述的方法,其中对应于小梁网的表面的图形视觉元素和对应于所述眼睛的小管旁小梁网的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述方法包括确定当对应于所述小梁网的表面的所述图形视觉元素和对应于所述小管旁小梁网的所述图形视觉元素足够接近时所述眼睛的小梁网是否被充分压缩。
8.根据权利要求4所述的方法,其中对应于所述眼睛的Schlemm管的内壁的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述方法包括确定当对应于Schlemm管的内壁的所述图形视觉元素已经从所述显微镜视图或所述显微镜图像中消失时Schlemm管的内壁已经被穿透。
9.根据权利要求2所述的方法,其中引导箭头被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述引导箭头指向标识所述目标位置的所述图形视觉元素。
10.根据权利要求2所述的方法,其中引导箭头覆盖在所述显微镜视图或所述显微镜图像上,其中所述引导箭头指向标识所述目标位置的图形视觉元素,其中所述推进步骤包括在使用所述引导箭头作为引导的同时推进所述细长探针的远端朝向所述目标位置,其中所述执行步骤包括用所述细长探针发出的激光脉冲烧蚀所述目标位置,其中在连接前房到Schlemm管的腔的通道在所述目标位置处形成之后,第二引导箭头覆盖在所述显微镜视图或所述显微镜图像上,其中第二引导箭头指向标识所述眼睛的第二目标位置的第二图形视觉元素,并且所述方法还包括在使用第二引导箭头作为引导时将所述细长探针的远端向第二目标位置推进,并且其中所述方法进一步包括用所述细长探针烧蚀第二目标位置。
11.根据权利要求1所述的方法,其中所述观察设备包括显示设备、显微镜设备、平视显示器、观察监视器、虚拟现实观察设备或增强现实观察设备。
12.根据权利要求1所述的方法,其中标识所述细长探针的远端的图形视觉元素覆盖所述显微镜视图或所述显微镜图像,并且其中所述细长探针的远端相对于所述目标位置的相对位置基于识别所述细长探针的远端的所述视觉元素相对于识别所述目标位置的图形视觉元素的相对位置。
13.根据权利要求1所述的方法,其中由于所述眼睛内的全内反射,所述实际目标位置在所述显微镜视图或所述显微镜图像中不可见。
14.根据权利要求1所述的方法,其中基于术前光学相干断层扫描(OCT)图像、术中光学相干断层扫描(OCT)图像、术前光学相干断层扫描(OCT)图像和术中光学相干断层扫描(OCT)图像,确定所述目标位置,或由外科医生决定。
15.根据权利要求16所述的方法,其中所述术前OCT图像显示Schlemm管和所述眼睛的集合管的网络,并且其中基于所述术前OCT图像确定所述目标位置。
16.根据权利要求1所述的方法,其中根据基于显微镜的OCT图像、基于光纤的OCT图像、或基于显微镜的OCT图像和基于光纤的OCT图像,确定所述目标位置。
17.一种协助外科医生对患者的眼睛进行手术程序的方法,所述外科医生使用具有远端的细长探针,所述方法包括:
向所述外科医生提供实时视图,所述实时视图包括(i)所述眼睛的显微镜视图和(ii)具有所述显微镜视图或所述眼睛的显微镜图像的增强图像,所述增强图像还具有目标组织区域的光学相干断层扫描(OCT)图像,
其中所述OCT图像与所述显微镜视图或所述显微镜图像对准,
其中所述OCT图像使得能够识别位于所述目标组织区域中的目标位置,
其中实际目标位置在所述显微镜视图或所述显微镜图像中不可见,并且
其中当在所述显微镜视图或所述显微镜图像中看不到所述细长探针的远端时,所述增强图像使所述外科医生能够感知关于所述细长探针的远端相对于所述目标位置的相对位置的信息。
18.根据权利要求17所述的方法,其中标识所述目标位置的图形视觉元素覆盖所述显微镜视图或所述显微镜图像。
19.根据权利要求17所述的方法,其中所述实时视图包括所述增强图像,并且其中与所述显微镜视图或所述显微镜图像对准的所述OCT图像包括关于Schlemm管和所述集合管系统的信息。
20.根据权利要求17所述的方法,其中所述实时视图包括所述增强图像,并且其中与所述显微镜视图或所述显微镜图像对准的所述OCT图像包括关于所述细长探针的远端相对于所述目标位置的相对位置的信息。
21.根据权利要求20所述的方法,其中对应于所述细长探针的远端的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中通过对应于所述细长探针的远端的所述图形视觉元素和对应于所述目标位置的所述图形视觉元素提供了关于所述细长探针的远端相对于所述目标位置的相对位置的信息。
22.根据权利要求20所述的方法,其中对应于所述细长探针的远端的图形视觉元素和对应于所述眼睛的小梁网的表面的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述增强图像使得所述外科医生能够基于对应于所述细长探针的远端的所述图形视觉元素和对应于所述小梁网的表面的所述图形视觉元素的相对位置确定在所述细长探针的远端与所述小梁网的表面之间是否存在接触。
23.根据权利要求20所述的方法,其中对应于所述小梁网的表面的图形视觉元素和对应于所述眼睛的小管旁小梁网的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述增强图像使得所述外科医生能够基于对应于所述小梁网的表面的所述图形视觉元素和对应于所述小管旁小梁网的所述图形视觉元素的相对位置确定所述眼睛的小梁网是否被充分压缩。
24.根据权利要求20所述的方法,其中对应于所述眼睛的Schlemm管的内壁的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述增强图像使得所述外科医生能够基于对应于Schlemm管的内壁的所述图形视觉元素是否存在或不存在于所述显微镜视图或所述显微镜图像中确定Schlemm管的内壁是否已经被穿透。
25.根据权利要求18所述的方法,其中引导箭头被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述引导箭头指向标识所述目标位置的所述图形视觉元素。
26.根据权利要求18所述的方法,其中引导箭头被覆盖在所述显微镜视图或所述显微镜图像上,其中所述引导箭头指向标识所述目标位置的所述图形视觉元素,并且其中在烧蚀所述目标位置之后,第二引导箭头被覆盖在所述显微镜视图或所述显微镜图像上,并且其中第二引导箭头指向标识所述眼睛的第二目标位置的第二图形视觉元素。
27.根据权利要求17所述的方法,其中所述实时视图由选自以下的元件提供给所述外科医生:显示设备、显微镜设备、平视显示器、观察监视器、虚拟现实观察设备或增强现实观察设备。
28.根据权利要求17所述的方法,其中标识所述细长探针的远端的图形覆盖所述显微镜视图或所述显微镜图像,并且其中所述细长探针的远端相对于所述目标位置的相对位置基于识别所述细长探针的远端相对于识别所述目标位置的图形视觉元素的相对位置。
29.根据权利要求17所述的方法,其中由于所述眼睛内的全内反射,所述实际目标位置在所述显微镜视图或所述显微镜图像中不可见。
30.根据权利要求17所述的方法,其中基于术前光学相干断层扫描(OCT)图像、术中光学相干断层扫描(OCT)图像、术前光学相干断层扫描(OCT)图像和术中光学相干断层扫描(OCT)图像,确定所述目标位置,或由外科医生决定。
31.根据权利要求30所述的方法,其中所述术前OCT图像显示Schlemm管和所述眼睛的集合管的网络,并且其中基于所述术前OCT图像确定所述目标位置。
32.根据权利要求17所述的方法,其中根据基于显微镜的OCT图像、基于光纤的OCT图像、或基于显微镜的OCT图像和基于光纤的OCT图像,确定所述目标位置。
33.根据权利要求17所述的方法,还包括在检测到所述眼睛的小梁网充分受压时向所述外科医生提供通知,其中基于对应于所述小梁网的表面的图形视觉元素和对应于所述小管旁小梁网的图形视觉元素的相对位置检测充分受压。
34.根据权利要求33所述的方法,还包括在检测到所述眼睛的小梁网的充分受压时自动开始将激光烧蚀能量递送到所述实际目标位置。
35.根据权利要求17所述的方法,还包括在检测到Schlemm管的内壁穿透时向所述外科医生提供通知,其中Schlemm管的内壁穿透由所述细长探针检测并基于所述增强图像中是否存在对应于Schlemm管的内壁的图形视觉元素在所述实时视图中显示。
36.根据权利要求35所述的方法,还包括在检测到Schlemm管的内壁穿透时自动终止将激光烧蚀能量递送到所述实际目标位置。
37.一种用于帮助外科医生对患者的眼睛进行手术程序的计算机程序产品,所述外科医生使用具有远端的细长探针,所述计算机程序产品体现在非暂时性有形计算机可读介质上,其包括:
计算机可执行代码,其用于生成供所述外科医生观察的实时视图,所述实时视图包括(i)所述眼睛的显微镜视图和(ii)具有所述显微镜视图或所述眼睛的显微镜图像的增强图像,所述增强图像还具有目标组织区域的光学相干断层扫描(OCT)图像,其中所述OCT图像与所述显微镜视图或所述显微镜图像对准,
其中所述OCT图像使得能够识别位于所述目标组织区域中的目标位置,
其中实际目标位置在所述显微镜视图或所述显微镜图像中不可见,并且
其中当在所述显微镜视图或所述显微镜图像中看不到所述细长探针的远端时,所述增强图像使所述外科医生能够感知关于所述细长探针的远端相对于所述目标位置的相对位置的信息。
38.根据权利要求37所述的计算机程序产品,其中标识位于所述目标组织区域中的目标位置的图形视觉元素覆盖所述显微镜视图或所述显微镜图像。
39.根据权利要求37所述的计算机程序产品,其中所述实时视图包括所述增强图像,并且其中与所述显微镜视图或所述显微镜图像对准的所述OCT图像包括关于Schlemm管和所述集合管系统的信息。
40.根据权利要求37所述的计算机程序产品,其中所述实时视图包括所述增强图像,并且其中与所述显微镜视图或所述显微镜图像对准的所述OCT图像包括关于所述细长探针的远端相对于所述目标位置的相对位置的信息。
41.根据权利要求37所述的计算机程序产品,其中对应于所述细长探针的远端的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中通过对应于所述细长探针的远端的所述图形视觉元素和对应于所述目标位置的所述图形视觉元素提供了关于所述细长探针的远端相对于所述目标位置的相对位置的信息。
42.根据权利要求37所述的计算机程序产品,其中对应于所述细长探针的远端的图形视觉元素和对应于所述眼睛的小梁网的表面的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述增强图像使得所述外科医生能够基于对应于所述细长探针的远端的所述图形视觉元素和对应于所述小梁网的表面的所述图形视觉元素的相对位置确定在所述细长探针的远端与所述小梁网的表面之间是否存在接触。
43.根据权利要求37所述的计算机程序产品,其中对应于小梁网的表面的图形视觉元素和对应于所述眼睛的小管旁小梁网的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述增强图像使得所述外科医生能够基于对应于所述小梁网的表面的所述图形视觉元素和对应于所述小管旁小梁网的所述图形视觉元素的相对位置确定所述眼睛的小梁网是否被充分压缩。
44.根据权利要求46所述的计算机程序产品,其中对应于所述眼睛的Schlemm管的内壁的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述增强图像使得所述外科医生能够基于对应于Schlemm管的内壁的所述图形视觉元素是否存在或不存在于所述显微镜视图或所述显微镜图像中确定Schlemm管的内壁是否已经被穿透。
45.根据权利要求37所述的计算机程序产品,其中引导箭头被覆盖在所述显微镜视图或所述显微镜图像上,并且其中所述引导箭头指向标识所述目标位置的所述图形视觉元素。
46.根据权利要求38所述的计算机程序产品,其中引导箭头被覆盖在所述显微镜视图或所述显微镜图像上,其中所述引导箭头指向标识所述目标位置的所述图形视觉元素,并且其中在烧蚀所述目标位置之后,第二引导箭头被覆盖在所述显微镜视图或所述显微镜图像上,并且其中第二引导箭头指向标识所述眼睛的第二目标位置的第二图形视觉元素。
47.根据权利要求38所述的计算机程序产品,其中所述实时视图由选自以下的元件提供给所述外科医生:显示设备、显微镜设备、平视显示器、观察监视器、虚拟现实观察设备或增强现实观察设备。
48.根据权利要求37所述的计算机程序产品,其中标识所述细长探针的远端的图形覆盖所述显微镜视图或所述显微镜图像,并且其中所述细长探针的远端相对于所述目标位置的相对位置基于识别所述细长探针的远端相对于识别所述目标位置的图形视觉元素的相对位置。
49.根据权利要求37所述的计算机程序产品,其中由于所述眼睛内的全内反射,所述实际目标位置在所述显微镜视图或所述显微镜图像中不可见。
50.根据权利要求37所述的计算机程序产品,其中基于术前光学相干断层扫描(OCT)图像、术中光学相干断层扫描(OCT)图像、术前光学相干断层扫描(OCT)图像或术中光学相干断层扫描(OCT)图像,确定所述目标位置。
51.根据权利要求50所述的计算机程序产品,其中所述术前OCT图像显示Schlemm管和所述眼睛的集合管的网络,并且其中基于所述术前OCT图像确定所述目标位置。
52.根据权利要求37所述的计算机程序产品,其中根据基于显微镜的OCT图像、基于光纤的OCT图像、或基于显微镜的OCT图像和基于光纤的OCT图像,确定所述目标位置,或由所述外科医生决定。
53.根据权利要求37所述的计算机程序产品,还包括在检测到所述眼睛的小梁网充分受压时向所述外科医生提供通知,其中基于对应于小梁网的表面的图形视觉元素和对应于所述小管旁小梁网的图形视觉元素的相对位置检测充分受压。
54.根据权利要求53所述的计算机程序产品,还包括在检测到所述眼睛的小梁网的充分受压时自动开始将激光烧蚀能量递送到所述实际目标位置。
55.根据权利要求37所述的计算机程序产品,还包括在检测到Schlemm管的内壁穿透时向所述外科医生提供通知,其中Schlemm管的内壁穿透由所述细长探针检测并基于所述增强图像中是否存在对应于Schlemm管的内壁的图形视觉元素在所述实时视图中显示。
56.根据权利要求55所述的计算机程序产品,还包括在检测到Schlemm管的内壁穿透时自动终止将激光烧蚀能量递送到所述实际目标位置。
57.一种对患者的眼睛进行手术程序的方法,所述方法包括:
在观察设备上观察实时视图,其中所述实时视图包括具有所述显微镜视图或所述眼睛的显微镜图像的增强图像,所述增强图像还具有目标组织区域的光学相干断层扫描(OCT)图像,其中所述OCT图像包括有关Schlemm管和集合管系统的信息,并与所述显微镜视图或所述显微镜图像对准。
58.根据权利要求57所述的方法,其中标识位于所述目标组织区域中的目标位置的图形视觉元素被覆盖在所述显微镜视图或所述显微镜图像上,并且其中实际目标位置在所述显微镜视图或所述显微镜图像中不可见,所述方法还包括:
在所述观察设备上观察所述增强图像的同时,在所述眼睛的前房内将细长探针的远端朝向所述目标组织区域推进,其中所述细长探针的远端最初在所述显微镜视图或所述显微镜图像中可见,其后由于在所述目标组织所在的所述眼睛的区域内的全内反射而在所述显微镜视图或所述显微镜图像中变得不可见;和
在所述细长探针的远端在所述显微镜视图或所述显微镜图像中不可见的同时,以及在从所述增强图像中获取关于所述细长探针的远端相对于所述目标位置的相对位置的信息的同时,使用所述细长探针在所述实际目标位置处执行所述手术程序。
59.一种对患者的眼睛进行手术程序的方法,所述方法包括:
在观察设备上观察实时视图,其中所述实时视图包括具有所述显微镜视图或所述眼睛的显微镜图像的增强图像,所述增强图像还具有目标组织区域的光学相干断层扫描(OCT)图像,其中所述OCT图像与所述显微镜视图或所述显微镜图像对准,其中标识位于所述目标组织区域中的目标位置的图形可视元素覆盖所述显微镜视图或所述显微镜图像,并且其中所述实际目标位置在所述显微镜视图或所述显微镜图像中不可见;
在所述观察设备上观察所述增强图像的同时,在所述眼睛的前房内将细长探针的远端朝向所述目标组织区域推进,其中所述细长探针的远端最初在所述显微镜视图或所述显微镜图像中可见,其后由于在所述目标组织所在的所述眼睛的区域内的全内反射而在所述显微镜视图或所述显微镜图像中变得不可见,并且其中与所述显微镜视图或所述显微镜图像对准的所述OCT图像包括有关所述细长探针的远端相对于所述目标位置的相对位置的信息;和
在所述细长探针的远端在所述显微镜视图或所述显微镜图像中不可见的同时,以及在获取关于所述细长探针的远端相对于所述目标位置的相对位置的信息的同时,使用所述细长探针在所述实际目标位置处执行所述手术程序。
60.一种协助外科医生对患者的眼睛进行手术程序的计算机系统,所述外科医生使用具有远端的细长探针,所述计算机系统包括:
处理器:
与所述处理器可操作地耦合的电子存储位置;和
处理器可执行代码,其存储在所述电子存储位置上并体现在有形的非暂时性计算机可读介质中,
其中所述处理器可执行代码在由所述处理器执行时使所述处理器生成实时视图以供外科医生观察,所述实时视图包括(i)所述眼睛的显微镜视图或(ii)具有所述显微镜视图或所述眼睛的显微镜图像的增强图像,所述增强图像还具有目标组织区域的光学相干断层扫描(OCT)图像,
其中所述OCT图像与所述显微镜视图或所述显微镜图像对准,
其中标识位于所述目标组织区域中的目标位置的图形视觉元素覆盖所述显微镜视图或所述显微镜图像,
其中实际目标位置在所述显微镜视图或所述显微镜图像中不可见,并且
其中当在所述显微镜视图或所述显微镜图像中看不到所述细长探针的远端时,所述增强图像使所述外科医生能够感知关于所述细长探针的远端相对于所述目标位置的相对位置的信息。
61.一种用于在目标组织区域内执行手术程序的基于纤维的装置,所述目标组织区域位于患者的眼睛的临界之外,所述基于纤维的装置包括:
护套;和
由所述护套包封的一根或多根光纤,所述一根或多根光纤配置为(i)传输足以光烧蚀所述目标组织区域的光能,以及(ii)进行所述眼睛的光学相干断层扫描(OCT)成像;
所述基于纤维的装置被配置为沿着所述探针的纵轴线执行所述目标组织区域的OCT成像。
62.根据权利要求61所述的基于纤维的装置,其中所述目标组织区域包括小梁网、小管旁小梁网、Schlemm管的内壁和Schlemm管。
63.根据权利要求61所述的基于纤维的装置,其中所述基于纤维的装置被配置为当OCT扫描指示所述目标组织区域的小梁网被充分受压时传输足以光烧蚀所述目标组织区域的光能。
64.根据权利要求61所述的基于纤维的装置,其中所述基于纤维的装置能够配置为在OCT扫描表明已穿透Schlemm管的内壁时自动停止光能的传输。
65.根据权利要求61所述的基于纤维的装置,其中所述基于纤维的装置配置为在OCT扫描表明已穿透Schlemm管的内壁时自动停止光能的传输。
66.根据权利要求61所述的基于纤维的装置,其中所述基于纤维的装置配置为在OCT扫描表明已穿透Schlemm管的内壁时通知所述外科医生停止光能的传输。
68.根据权利要求61所述的基于纤维的装置,其中所述基于纤维的装置被配置为由基于显微镜的OCT装置检测。
69.根据权利要求61所述的基于纤维的装置,其中所述基于纤维的装置被配置为由基于显微镜的OCT装置检测,并且可以显示由所述基于纤维的装置和所述基于显微镜的OCT装置两者处理的信息,以使得外科医生能够在所述目标组织区域中操作。
70.一种基于显微镜的光学相干断层扫描(OCT)装置,其用于促进在位于患者的眼睛的临界角之外的目标组织区域中的手术程序,所述基于显微镜的OCT装置包括:
OCT单元,其配置为(i)检测布置在所述眼睛的前房中的探针,和(ii)实现所述眼睛的OCT成像,
其中所述基于显微镜的OCT被配置为执行所述目标组织区域的OCT成像。
71.根据权利要求70所述的基于显微镜的OCT装置,其中所述目标组织区域包括小梁网、小管旁小梁网、Schlemm管的内壁和Schlemm管。
72.根据权利要求70所述的基于显微镜的OCT装置,其中所述基于显微镜的OCT装置被配置为检测基于光纤的装置。
73.根据权利要求70所述的基于显微镜的OCT装置,其中所述基于纤维的装置被配置为当基于显微镜的OCT扫描指示所述目标组织区域的小梁网被充分受压时传输足以光烧蚀所述目标组织区域的光能。
74.根据权利要求70所述的基于显微镜的装置,其中所述基于纤维的装置能够配置为在基于显微镜的OCT扫描表明已穿透Schlemm管的内壁时自动停止光能的传输。
75.根据权利要求70所述的基于显微镜的装置,其中所述基于纤维的装置配置为在基于显微镜的OCT扫描表明已穿透Schlemm管的内壁时自动停止光能的传输。
76.根据权利要求70所述的基于显微镜的装置,其中所述基于纤维的装置配置为在基于显微镜的OCT扫描表明已穿透Schlemm管的内壁时通知所述外科医生停止光能的传输。
77.根据权利要求70所述的基于显微镜的装置,其中所述基于纤维的装置被配置为由所述基于显微镜的OCT装置检测,并且可以显示由所述基于纤维的装置和所述基于显微镜的OCT装置两者处理的信息,以使得外科医生能够在所述目标组织区域中操作。
78.一种计算机程序产品,其用于在手术程序中控制基于显微镜的光学相干断层扫描(OCT)装置和基于纤维的装置,所述手术程序由外科医生在目标组织区域内执行,所述目标组织区域位于患者的眼睛的临界角之外,所述计算机程序产品包括:
计算机可执行代码,其用于指示所述基于显微镜的OCT装置对所述目标组织区域进行OCT成像;和
计算机可执行代码,其用于指示所述基于纤维的装置沿着由所述外科医生控制的探针的纵轴线对所述目标组织区域执行OCT成像。
79.根据权利要求78所述的计算机程序产品,其中所述目标组织区域包括小梁网、小管旁小梁网、Schlemm管的内壁和Schlemm管。
80.根据权利要求78所述的计算机程序产品,还包括计算机可执行代码,其用于指示所述基于纤维的装置在所述基于纤维的装置执行的OCT扫描表明所述目标组织区域的小梁网被充分受压时传输足以光烧蚀所述目标组织区域的光能。
81.根据权利要求78所述的计算机程序产品,还包含计算机可执行代码,其用于指示所述基于显微镜的OCT装置在所述基于显微镜的OCT装置进行的OCT扫描表明所述目标组织区域的小梁网被充分受压时使所述基于纤维的装置能够传输足以光烧蚀所述目标组织区域的光能。
82.根据权利要求78所述的计算机程序产品,还包含计算机可执行代码,其用于指示所述基于纤维的装置结合所述基于显微镜的OCT装置在所述基于纤维的装置结合所述基于显微镜的OCT装置进行的OCT扫描表明所述目标组织区域的小梁网被充分受压时使所述基于纤维的装置能够传输足以光烧蚀所述目标组织区域的光能。
83.根据权利要求78所述的计算机程序产品,还包括计算机可执行代码,其用于在所述基于纤维的装置执行的OCT扫描指示已穿透Schlemm管的内壁时自动停止光能的传输。
84.根据权利要求78所述的计算机程序产品,还包括计算机可执行代码,其用于在所述基于显微镜的OCT装置执行的OCT扫描指示已穿透Schlemm管的内壁时自动停止光能的传输。
85.根据权利要求78所述的计算机程序产品,还包括计算机可执行代码,其用于在所述基于纤维的装置结合所述基于显微镜的OCT装置执行的OCT扫描指示已穿透Schlemm管的内壁时自动停止光能的传输。
86.根据权利要求78所述的计算机程序产品,还包括计算机可执行代码,其用于在所述基于纤维的装置执行的OCT扫描指示已穿透Schlemm管的内壁时通知所述外科医生停止光能的传输。
87.根据权利要求78所述的计算机程序产品,还包括计算机可执行代码,其用于在所述基于显微镜的OCT装置执行的OCT扫描指示已穿透Schlemm管的内壁时通知所述外科医生停止光能的传输。
88.根据权利要求78所述的计算机程序产品,还包括计算机可执行代码,其用于在所述基于纤维的装置结合所述基于显微镜的OCT装置执行的OCT扫描指示已穿透Schlemm管的内壁时通知所述外科医生停止光能的传输。
89.根据权利要求78所述的计算机程序产品,还包括计算机可执行指令,其用于指示所述基于显微镜的OCT装置检测所述基于纤维的装置。
90.根据权利要求78所述的计算机程序产品,其中所述基于纤维的装置被配置为由基于显微镜的OCT装置检测,并且可以显示由所述基于纤维的装置和所述基于显微镜的OCT装置两者处理的信息,以使得外科医生能够在所述目标组织区域中操作。

说明书全文

OCT引导的青光眼手术的方法和系统

[0001] 交叉引用
[0002] 本申请要求2017年6月16日提交的名称为“OCT引导的青光眼手术的方法和系统”的临时专利申请美国临时序列申请第62/521,310号的权益。此申请也涉及2018年1月11日提交的名称为“OCT引导的青光眼手术的方法和系统”的美国系列申请号15/868,904。这些申请中的每一个均通过引用整体并入本文。

背景技术

[0003] 青光眼是一种眼睛疾病,其中对视觉至关重要的眼内结构不可逆地受损。这些结构包括视网膜的部分,尤其是视神经的部分。青光眼是一种可治疗的疾病,在美国被认为是失明的第二大主要原因。数百万人受到影响。青光眼有两种主要类型,开型青光眼和闭角型青光眼。开角型青光眼是最常见的一种类型的青光眼,发生在正常出现的流出通道出现故障而使眼睛无法充分排出液体而导致眼内压升高时。大多数开角型青光眼的眼内压升高(IOP)是由于主要位于小管旁小梁网(TM)和Schlemm管(SC)内壁的房流出受阻。
[0004] 因流出受阻而导致眼压升高的治疗包括局部和全身药物治疗、办公室激光手术并且有固有的侵入性外科手术险(小梁切除术/管分流术)。激光手术的例子包括氩激光小梁成形术(ALT)和选择性激光小梁成形术(SLT)。最近,将侵入性较小的外科手术方法引入治疗范例,通常称为微创性青光眼手术(MIGS)或微创性青光眼手术方法。MIGS降低IOP的当前方法包括通过绕过小管旁小梁网(TM)和SC内壁来增加小梁流出,通过脉络膜上途径增加葡萄膜巩膜流出,减少睫状体的水产生或形成外部结膜下/巩膜上引流途径。
[0005] MIGS的一般概念通常是绕过流出阻塞,并通过眼睛的固有流出系统(其通常在流出阻塞区域之外完好无损且功能正常)恢复流动,而不是创建可能具有明显更大的短和/或长期风险的替代途径。
[0006] MIGS程序通常涉及可视化和进入眼内流出系统。由于角膜的形状和与MIGS手术相关的眼内结构的位置在虹膜似乎与周围角膜相遇的区域中,因此会发生全内反射,并可能阻止外科医生观察那些超出光路的“临界角”范围的流出结构,在本文公开的前房手术过程的上下文中该光路的“临界角”也可以称为前房光学观察路径的“临界角”。根据一些实施例,本文公开的光路可以指的是观察前房角结构,而不是指眼睛的视觉系统的光路,例如在角膜中心到黄斑的附近。因此,对于外科医生执行MIGS程序而言,通常需要允许可视化那些流出结构的设备。直接(允许直的光学路径查看那些结构)和间接(用反射镜查看这些结构)的测角镜(goniolense)可以克服全内反射。但是,在术中使用测角镜可能需要显著的熟练程度和陡峭的学习曲线,这至少在某些情况下可能会限制某些熟练的外科医生成功进行MIGS手术。
[0007] 在这些手术过程中的至少一些中,通过小梁网和Schlemm管的内壁形成手术开口,以使得能够改善流体进入Schlemm管,从而降低眼内压。准确地瞄准Schlemm管的现有方法通常不太理想。因此,在瞄准Schlemm管和眼睛的其他结构中提供改进的一致性和准确性的方法和装置将是有益的。而且,与本公开有关的工作表明,至少一些现有方法可导致在不太理想的位置处,例如在远离集合管的位置处,通向Schlemm管。通过改善相邻眼部结构的可视化,绕过Schlemm管并将水性流体排入脉络膜上腔的替代性MIGS设备也可以受益于瞄准位置的放置。这样的植入设备的例子包括小管内 和iStent注射以及脉络膜上微支架。形成开向Schlemm管的专利通道的准分子激光小梁切开术(ELT)也可以
从眼睛结构的瞄准和可视化的改善中受益。
[0008] 在至少某些情况下,用于在虹膜角膜角附近观察眼睛结构例如小梁网和巩膜突的当前方法和装置可能不太理想。例如,测角镜可能比理想情况下更难使用,并且提供在该区域的手术期间用于观察在虹膜-角膜角附近的眼睛结构的改进方法和装置将是有益的。
[0009] 鉴于以上所述,具有用于在外科手术过程中对眼睛进行成像、瞄准眼睛的流出结构例如Schlemm管以及确定穿过小梁网并进入Schlemm管的开口的目标位置以改善流动的改进方法和装置将是有益的。发明内容
[0010] 本文公开的方法和装置允许进行包括MIGS及其许多变体在内的流出结构的青光眼手术而无需测角镜。根据本发明的一个方面,眼科外科医生可以通过使用光学相干断层(OCT)扫描生成的结构以及手术工具的虚拟图像和表示,识别这些流出结构并在这些结构上进行操作。
[0011] 在一个方面,提供了一种用于帮助医师对眼睛进行手术程序的系统。操作程序包括将细长探针从眼睛的开口穿过前房插入到包括小梁网和Schlemm管的目标组织区域。该系统包括:光学显微镜,其用于外科医生在手术过程中用显微镜图像观察眼睛;一个或多个光学相干断层扫描(OCT)装置,其被配置为在手术过程中实时地对目标组织区域中的一个或多个目标位置进行OCT扫描;以及图像处理装置,其被配置为通过允许观看并在某些情况下重叠(1)一个或多个目标位置的一个或多个OCT图像和/或(2)标识一个或多个目标位置的多个图形视觉元素来生成多个增强图像(真实和虚拟),其中所述多个图形视觉元素与真实显微镜图像对准,以帮助医师将细长探针的远端推进到一个或多个目标位置。
[0012] 在另一方面,本发明的实施例包括在患者的眼睛上执行手术程序的方法。示例性方法可以包括在观察设备上观看实时视图,其中实时视图包括(i)眼睛的显微镜视图和(ii)具有显微镜视图或眼睛的显微镜图像的增强图像。增强图像还可以具有目标组织区域的光学相干断层扫描(OCT)图像。OCT图像可以与显微镜视图或显微镜图像对准。OCT图像可以使得能够识别位于目标组织中的目标位置,并且其中实际目标位置在显微镜视图或显微镜图像中不可见。示例性方法可以进一步包括在观察设备上观察显微镜视图或增强图像的同时,在眼睛的前房内将细长探针的远端朝向目标组织区域推进,其中细长探针的远端最初在显微镜视图或显微镜图像中是可见的,其后由于在目标组织所在的眼睛区域内的全内反射而在显微镜视图或显微镜图像中变得不可见。示例性方法还可包括在细长探针的远端在显微镜视图或显微镜图像中不可见的同时,以及在从增强图像中获取关于细长探针的远端相对于目标位置的相对位置的信息的同时,使用细长探针在实际目标位置处执行手术程序。
[0013] 根据一些实施例,标识目标位置的图形视觉元素可以覆盖显微镜视图或显微镜图像。在一些实施例中,实时视图包括具有眼睛的显微镜视图的增强图像,OCT图像与显微镜视图对准,并且实际目标位置在显微镜视图中不可见。图形视觉元素可以覆盖显微镜视图。在一些实施例中,推进步骤包括在观察设备上观察增强图像的同时,在眼睛的前房内将细长探针的远端朝向目标组织区域推进,其中细长探针的远端最初在显微镜视图中是可见的,其后由于在目标组织区域所在的眼睛区域内的全内反射而在显微镜视图中变得不可见。在一些实施例中,执行步骤包括在细长探针的远端在显微镜视图中不可见的同时,以及在从显微镜视图中获取关于细长探针的远端相对于目标位置的相对位置的信息的同时,使用细长探针在目标位置处执行手术程序。在一些实施例中,实时视图包括所述增强图像,并且与显微镜视图或显微镜图像对准的OCT图像包括关于Schlemm管和集合管系统的信息。在一些实施例中,实时视图包括所述增强图像,并且与显微镜视图或显微镜图像对准的OCT图像包括关于细长探针的远端相对于目标位置的相对位置的信息。
[0014] 在一些情况下,对应于细长探针的远端的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且推进步骤包括随着细长探针的远端接近并接触目标组织区域,在观察对应于细长探针的远端的图形视觉元素和对应于增强图像上的目标位置的图形视觉元素的同时,将细长探针的远端朝着目标组织区域推进。在一些实施例中,对应于细长探针的远端的图形视觉元素和对应于眼睛的小梁网的表面的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且该方法包括确定当对应于细长探针的远端的图形视觉元素和对应于小梁网的表面的图形视觉元素足够接近时,在细长探针的远端与小梁网的表面之间存在接触。在一些实施例中,对应于小梁网的表面的图形视觉元素和对应于眼睛的小管旁小梁网的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且该方法包括确定当对应于小梁网的表面的图形视觉元素和对应于小管旁小梁网的图形视觉元素足够接近时,眼睛的小梁网是否被充分压缩。在一些实施例中,对应于眼睛的Schlemm管的内壁的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且该方法包括确定当对应于Schlemm管的内壁的图形视觉元素已经从显微镜视图或显微镜图像中消失时Schlemm管的内壁已经被穿透。
[0015] 在一些情况下,引导箭头被覆盖在显微镜视图或显微镜图像上,并且引导箭头指向标识目标位置的图形视觉元素。在一些情况下,引导箭头被覆盖在显微镜视图或显微镜图像上,并且引导箭头指向标识目标位置的图形视觉元素。在一些方法中,推进步骤包括在将引导箭头用作引导的同时将细长探针的远端朝着目标位置推进。在某些方法中,执行步骤包括用细长探针发出的激光脉冲烧蚀目标位置,并在连接前房到Schlemm管的腔的通道在目标位置处形成之后,第二引导箭头覆盖在显微镜视图或显微镜图像上,其中第二引导箭头指向标识眼睛的第二目标位置的第二图形视觉元素,并且方法还可以包括在使用第二引导箭头作为引导时将细长探针的远端向第二目标位置推进。方法还可包括用细长探针烧蚀第二目标位置。
[0016] 在一些实施例中,观察设备可以是显示设备、显微镜设备、平视显示器、观察监视器、虚拟现实观察设备或增强现实观察设备。在一些实施例中,标识细长探针的远端的图形视觉元素可以覆盖显微镜视图或显微镜图像,并且细长探针的远端相对于目标位置的相对位置可以基于细长探针的远端相对于识别目标位置的图形视觉元素的相对位置。在某些情况下,由于眼睛内的全内反射,实际目标位置在显微镜视图或显微镜图像中不可见。在某些情况下,基于术前光学相干断层扫描(OCT)图像、术中光学相干断层扫描(OCT)图像、术前光学相干断层扫描(OCT)图像和术中光学相干断层扫描(OCT)图像,确定目标位置,或由外科医生决定。在某些情况下,术前OCT图像显示Schlemm管和眼睛的集合管的网络,并且基于术前OCT图像确定目标位置。在一些情况下,根据基于显微镜的OCT图像、基于光纤的OCT图像、或基于显微镜的OCT图像和基于光纤的OCT图像,确定目标位置。
[0017] 在又另一方面,本发明的实施例包括协助外科医生对患者的眼睛执行手术程序的方法。在这样的程序中,外科医生可以使用具有远端的细长探针。示例性方法包括向外科医生提供实时视图。实时视图可以包括(i)眼睛的显微镜视图和(ii)具有显微镜视图或眼睛的显微镜图像的增强图像。增强图像可以进一步包括目标组织区域的光学相干断层扫描(OCT)图像。OCT图像可以与显微镜视图或显微镜图像对准。OCT图像可以使得能够识别位于目标组织区域中的目标位置。实际目标位置在显微镜视图或显微镜图像中可能不可见。当在显微镜视图或显微镜图像中看不到细长探针的远端时,增强图像可以使外科医生能够感知关于细长探针的远端相对于目标位置的相对位置的信息。
[0018] 在某些情况下,标识目标位置的图形视觉元素可以覆盖显微镜视图或显微镜图像。在某些情况下,实时视图包括具有眼睛的显微镜视图的增强图像,OCT图像与显微镜视图对准,实际目标位置在显微镜视图中不可见,并且当在显微镜视图中看不到细长探针的远端时,增强图像使外科医生能够感知关于细长探针的远端相对于目标位置的相对位置的信息。图形视觉元素可以覆盖显微镜视图。根据一些实施例,实时视图包括具有眼睛的显微镜图像的增强图像,OCT图像与显微镜图像对准,实际目标位置在显微镜图像中不可见,并且当在显微镜图像中看不到细长探针的远端时,增强图像使外科医生能够感知关于细长探针的远端相对于目标位置的相对位置的信息。图形视觉元素可以覆盖显微镜图像。
[0019] 根据一些实施例,实时视图包括所述增强图像,并且与显微镜视图或显微镜图像对准的OCT图像包括关于Schlemm管和集合管系统的信息。根据一些实施例,实时视图包括所述增强图像,并且与显微镜视图或显微镜图像对准的OCT图像包括关于细长探针的远端相对于目标位置的相对位置的信息。在一些情况下,对应于细长探针的远端的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且通过对应于细长探针的远端的图形视觉元素和对应于目标位置的图形视觉元素提供了关于细长探针的远端相对于目标位置的相对位置的信息。在一些情况下,对应于细长探针的远端的图形视觉元素和对应于眼睛的小梁网的表面的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且增强图像使得外科医生能够基于对应于细长探针的远端的图形视觉元素和对应于小梁网的表面的图形视觉元素的相对位置确定在细长探针的远端与小梁网的表面之间是否存在接触。在一些情况下,对应于小梁网的表面的图形视觉元素和对应于眼睛的小管旁小梁网的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且增强图像使得外科医生能够基于对应于小梁网的表面的图形视觉元素和对应于小管旁小梁网的图形视觉元素的相对位置确定眼睛的小梁网是否被充分压缩。在一些情况下,对应于眼睛的Schlemm管的内壁的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且增强图像使得外科医生能够基于对应于Schlemm管的内壁的图形视觉元素是否存在或不存在于显微镜视图或显微镜图像中确定Schlemm管的内壁是否已经被穿透。
[0020] 根据一些实施例,引导箭头被覆盖在显微镜视图或显微镜图像上,并且引导箭头指向标识目标位置的图形视觉元素。根据一些实施例,引导箭头被覆盖在显微镜视图或显微镜图像上,该引导箭头指向标识目标位置的图形视觉元素,并且在烧蚀目标位置之后,第二引导箭头被覆盖在显微镜视图或显微镜图像上,并且第二引导箭头指向标识眼睛的第二目标位置的第二图形视觉元素。在一些情况下,通过显示设备、显微镜设备、平视显示器、观察监视器、虚拟现实观察设备或增强现实观察设备将实时视图提供给外科医生。在一些情况下,标识细长探针的远端的图形视觉元素覆盖显微镜视图或显微镜图像,并且细长探针的远端相对于目标位置的相对位置基于识别细长探针的远端相对于识别目标位置的图形视觉元素的相对位置。在某些情况下,由于眼睛内的全内反射,实际目标位置在显微镜视图或显微镜图像中不可见。在某些情况下,基于术前光学相干断层扫描(OCT)图像、术中光学相干断层扫描(OCT)图像、术前光学相干断层扫描(OCT)图像和术中光学相干断层扫描(OCT)图像,确定目标位置,或由外科医生决定。在某些情况下,术前OCT图像显示Schlemm管和眼睛的集合管的网络,并且基于术前OCT图像确定目标位置。
[0021] 根据一些实施例,可以根据基于显微镜的OCT图像、基于光纤的OCT图像、或基于显微镜的OCT图像和基于光纤的OCT图像,确定目标位置。在一些情况下,方法可以进一步包括在检测到眼睛的小梁网充分受压时向外科医生提供通知,其中基于对应于小梁网的表面的图形视觉元素和对应于小管旁小梁网的图形视觉元素的相对位置检测充分受压。在一些情况下,方法还可以包括在检测到眼睛的小梁网的充分受压时自动开始将激光烧蚀能量递送到实际目标位置。在某些情况下,方法可以包括在检测到Schlemm管的内壁穿透时向医生提供通知,其中Schlemm管的内壁穿透由细长探针检测并基于增强图像中是否存在对应于Schlemm管的内壁的图形视觉元素在实时视图中显示。在某些情况下,方法可以包括在检测到Schlemm管的内壁穿透时自动终止将激光烧蚀能量递送到实际目标位置。
[0022] 在另一方面,本发明的实施例包括用于帮助外科医生在患者的眼睛上执行手术程序的计算机程序产品,例如在外科医生使用具有远端的细长探针的情况下。该计算机程序产品可以体现在非暂时性有形计算机可读介质上。示例性计算机程序产品包括用于生成实时视图以供外科医生观察的计算机可执行代码,其中该实时视图包括(i)眼睛的显微镜视图和(ii)具有显微镜视图或眼睛的显微镜图像的增强图像。增强图像可进一步包括目标组织区域的光学相干断层扫描(OCT)图像。OCT图像可以与显微镜视图或显微镜图像对准。OCT图像可以使得能够识别位于目标组织区域中的目标位置。实际目标位置在显微镜视图或显微镜图像中可能不可见。当在显微镜视图或显微镜图像中看不到细长探针的远端时,增强图像可以使外科医生能够感知关于细长探针的远端相对于目标位置的相对位置的信息。在某些情况下,标识位于目标组织区域中的目标位置的图形视觉元素覆盖显微镜视图或显微镜图像。根据一些实施例,实时视图包括具有眼睛的显微镜视图的增强图像,OCT图像与显微镜视图对准,实际目标位置在显微镜视图中不可见,并且当在显微镜视图中看不到细长探针的远端时,增强图像使外科医生能够感知关于细长探针的远端相对于目标位置的相对位置的信息。图形视觉元素可以覆盖显微镜视图。根据一些实施例,实时视图包括具有眼睛的显微镜图像的增强图像,OCT图像与显微镜图像对准,实际目标位置在显微镜图像中不可见,并且当在显微镜图像中看不到细长探针的远端时,增强图像使外科医生能够感知关于细长探针的远端相对于目标位置的相对位置的信息。图形视觉元素可以覆盖显微镜图像。
[0023] 在一些情况下,实时视图包括所述增强图像,并且与显微镜视图或显微镜图像对准的OCT图像包括关于Schlemm管和集合管系统的信息。在某些情况下,实时视图包括所述增强图像,并且与显微镜视图或显微镜图像对准的OCT图像包括关于细长探针的远端相对于目标位置的相对位置的信息。在一些情况下,对应于细长探针的远端的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且通过对应于细长探针的远端的图形视觉元素和对应于目标位置的图形视觉元素提供了关于细长探针的远端相对于目标位置的相对位置的信息。在一些情况下,对应于细长探针的远端的图形视觉元素和对应于眼睛的小梁网的表面的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且增强图像使得外科医生能够基于对应于细长探针的远端的图形视觉元素和对应于小梁网的表面的图形视觉元素的相对位置确定在细长探针的远端与小梁网的表面之间是否存在接触。在一些情况下,对应于小梁网的表面的图形视觉元素和对应于眼睛的小管旁小梁网的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且增强图像使得外科医生能够基于对应于小梁网的表面的图形视觉元素和对应于小管旁小梁网的图形视觉元素的相对位置确定眼睛的小梁网是否被充分压缩。在一些情况下,对应于眼睛的Schlemm管的内壁的图形视觉元素被覆盖在显微镜视图或显微镜图像上,并且增强图像使得外科医生能够基于对应于Schlemm管的内壁的图形视觉元素是否存在或不存在于显微镜视图或显微镜图像中确定Schlemm管的内壁是否已经被穿透。
[0024] 根据一些实施例,引导箭头可以被覆盖在显微镜视图或显微镜图像上,并且引导箭头可以指向标识目标位置的图形视觉元素。在一些实施例中,引导箭头可被覆盖在显微镜视图或显微镜图像上,该引导箭头可指向标识目标位置的图形视觉元素,并且在烧蚀目标位置之后,第二引导箭头可被覆盖在显微镜视图或显微镜图像上,并且第二引导箭头可指向标识眼睛的第二目标位置的第二图形视觉元素。在一些情况下,通过显示设备、显微镜设备、平视显示器、观察监视器、虚拟现实观察设备或增强现实观察设备将实时视图可提供给外科医生。在一些情况下,标识细长探针的远端的图形视觉元素可覆盖显微镜视图或显微镜图像,并且细长探针的远端相对于目标位置的相对位置基于识别细长探针的远端相对于识别目标位置的图形视觉元素的相对位置。在某些情况下,由于眼睛内的全内反射,实际目标位置在显微镜视图或显微镜图像中可能不可见。
[0025] 根据一些实施例,可以基于术前光学相干断层扫描(OCT)图像、术中光学相干断层扫描(OCT)图像、或者术前光学相干断层扫描(OCT)图像和术中光学相干断层扫描(OCT)图像,确定目标位置。在某些情况下,术前OCT图像可显示Schlemm管和眼睛的集合管的网络,并且可基于术前OCT图像确定目标位置。在某些情况下,可以根据基于显微镜的OCT图像、基于光纤的OCT图像、基于显微镜的OCT图像和基于光纤的OCT图像,确定目标位置,或由外科医生的决定。计算机程序产品可以进一步包括计算机可执行代码,其用于在检测到眼睛的小梁网充分受压时向外科医生提供通知,其中基于对应于小梁网的表面的图形视觉元素和对应于小管旁小梁网的图形视觉元素的相对位置检测充分受压。在某些情况下,计算机程序产品还可以包括计算机可执行代码,其用于在检测到眼睛的小梁网的充分受压时自动开始将激光烧蚀能量递送到实际目标位置。在某些情况下,计算机程序产品还可以包括计算机可执行代码,其用于在检测到Schlemm管的内壁穿透时向医生提供通知,其中Schlemm管的内壁穿透由细长探针检测并基于增强图像中是否存在对应于Schlemm管的内壁的图形视觉元素在实时视图中显示。在某些情况下,计算机程序产品还可以包括计算机可执行代码,其用于在检测到Schlemm管的内壁穿透时自动终止将激光烧蚀能量递送到实际目标位置。
[0026] 在另一方面,本发明的实施例包括在患者的眼睛上执行手术程序的方法,其中示例性方法包括在观看设备上观看实时视图,其中实时视图包括具有眼睛的显微镜视图或显微镜图像的增强图像。增强图像可进一步包括目标组织区域的光学相干断层扫描(OCT)图像。OCT图像可以包括关于Schlemm管和集合管系统的信息,并且可以与显微镜视图或显微镜图像对准。在某些情况下,标识位于目标组织区域中的目标位置的图形视觉元素可覆盖显微镜视图或显微镜图像。实际目标位置在显微镜视图或显微镜图像中可能不可见。示例性方法也可以包括在观察设备上观察增强图像的同时,在眼睛的前房内将细长探针的远端朝向目标组织区域推进,其中细长探针的远端最初在显微镜视图或显微镜图像中是可见的,其后由于在目标组织所在的眼睛区域内的全内反射而在显微镜视图或显微镜图像中变得不可见。示例性方法还可包括在细长探针的远端在显微镜视图或显微镜图像中不可见的同时,以及在从增强图像中获取关于细长探针的远端相对于目标位置的相对位置的信息的同时,使用细长探针在实际目标位置处执行手术程序。
[0027] 在又另一方面,本发明的实施例包括在患者的眼睛上执行手术程序的方法,其中示例性方法包括在观看设备上观看实时视图,其中实时视图包括具有眼睛的显微镜视图或显微镜图像的增强图像。增强图像可进一步包括目标组织区域的光学相干断层扫描(OCT)图像。OCT图像可以与显微镜视图或显微镜图像对准。标识位于目标组织区域中的目标位置的图形视觉元素可覆盖显微镜视图或显微镜图像。实际目标位置在显微镜视图或显微镜图像中可能不可见。示例性方法也可以包括在观察设备上观察增强图像的同时,在眼睛的前房内将细长探针的远端朝向目标组织区域推进,细长探针的远端最初在显微镜视图或显微镜图像中是可见的,其后由于在目标组织所在的眼睛区域内的全内反射而在显微镜视图或显微镜图像中变得不可见。与显微镜视图或显微镜图像对准的OCT图像可以包括关于细长探针的远端相对于目标位置的相对位置。示例性方法还可包括在细长探针的远端在显微镜视图或显微镜图像中不可见的同时,以及在获取关于细长探针的远端相对于目标位置的相对位置的信息的同时,使用细长探针在实际目标位置处执行手术程序。
[0028] 在又另一方面,本发明的实施例包括计算机系统,以协助外科医生对患者的眼睛执行手术程序。在手术程序过程中,外科医生可以使用具有远端的细长探针。示例性计算机系统可以包括处理器,与处理器可操作地耦合的电子存储位置以及存储在电子存储位置上并体现在有形的非暂时性计算机可读介质中的处理器可执行代码。处理器可执行代码在由处理器执行时可使处理器生成实时视图以供外科医生观察。实时视图可以包括(i)眼睛的显微镜视图和(ii)具有显微镜视图或眼睛的显微镜图像的增强图像。增强图像可进一步包括目标组织区域的光学相干断层扫描(OCT)图像。OCT图像可以与显微镜视图或显微镜图像对准。实际目标位置在显微镜视图或显微镜图像中可能不可见。当在显微镜视图或显微镜图像中看不到细长探针的远端时,增强图像可以使外科医生能够感知关于细长探针的远端相对于目标位置的相对位置的信息。在某些情况下,标识位于目标组织区域中的目标位置的图形视觉元素可覆盖显微镜视图或显微镜图像。
[0029] 在又一方面,本发明的实施例包括用于在位于超过患者的眼睛的临界角的目标组织区域中执行手术程序的基于纤维的装置。示例性的基于纤维的装置可包括护套以及被该护套封装的一根或多根光纤。一根或多根光纤可以配置为(i)传输足以光烧蚀目标组织区域的光能,以及(ii)进行眼睛的光学相干断层扫描(OCT)成像。基于纤维的装置可以被配置为沿着探针的纵轴线执行目标组织区域的OCT成像。在某些情况下,目标组织区域包括小梁网、小管旁小梁网、Schlemm管的内壁和Schlemm管。在一些情况下,基于纤维的装置被配置为当OCT扫描指示目标组织区域的小梁网被充分受压时传输足以光烧蚀目标组织区域的光能。在某些情况下,基于纤维的装置能够配置为在OCT扫描表明已穿透Schlemm管的内壁时自动停止光能的传输。在某些情况下,基于纤维的装置配置为在OCT扫描表明已穿透Schlemm管的内壁时自动停止光能的传输。在某些情况下,基于纤维的装置配置为在OCT扫描表明已穿透Schlemm管的内壁时通知外科医生停止光能的传输。在一些情况下,基于纤维的装置被配置为由基于显微镜的OCT装置检测。在某些情况下,基于纤维的装置被配置为由基于显微镜的OCT装置检测,并且可以显示由基于纤维的装置和基于显微镜的OCT装置两者处理的信息,以使得外科医生能够在目标组织区域中操作。
[0030] 在另一方面,本发明的实施例包括基于显微镜的光学相干断层扫描(OCT)装置,其用于促进位于超过患者的眼睛的临界角的目标组织区域中的手术程序。示例性的基于显微镜的OCT装置可以包括OCT单元,该OCT单元被配置为(i)检测布置在眼睛的前房中的探针,和(ii)实现眼睛的OCT成像。基于显微镜的OCT被配置为执行目标组织区域的OCT成像。在某些情况下,目标组织区域包括小梁网、小管旁小梁网、Schlemm管的内壁和Schlemm管。在一些情况下,基于显微镜的OCT装置被配置为检测基于纤维的装置。在一些情况下,基于纤维的装置被配置为当基于显微镜的OCT扫描指示目标组织区域的小梁网被充分受压时传输足以光烧蚀目标组织区域的光能。在某些情况下,基于纤维的装置能够配置为在基于显微镜的OCT扫描表明已穿透Schlemm管的内壁时自动停止光能的传输。在某些情况下,基于纤维的装置配置为在基于显微镜的OCT扫描表明已穿透Schlemm管的内壁时自动停止光能的传输。在某些情况下,基于纤维的装置配置为在基于显微镜的OCT扫描表明已穿透Schlemm管的内壁时通知外科医生停止光能的传输。在某些情况下,基于纤维的装置被配置为由基于显微镜的OCT装置检测,并且可以显示由基于纤维的装置和基于显微镜的OCT装置两者处理的信息,以使得外科医生能够在目标组织区域中操作。
[0031] 在又另一方面,本发明的实施例包括用于在手术程序过程中控制基于显微镜的光学相干断层扫描(OCT)装置和基于纤维的装置的计算机程序产品。手术程序可由外科医生在目标组织区域中执行,该目标组织区域位于患者的眼睛的临界角之外。示例性计算机程序产品可以包括用于指示基于显微镜的OCT装置执行目标组织区域的OCT成像的计算机可执行代码,以及指示基于纤维的装置沿着由外科医生控制的探针的纵轴线执行目标组织区域的OCT成像的计算机可执行代码。在某些情况下,目标组织区域包括小梁网、小管旁小梁网、Schlemm管的内壁和Schlemm管。在某些情况下,计算机程序产品还可以包括计算机可执行代码,其用于指示基于纤维的装置在基于纤维的装置执行的OCT扫描表明目标组织区域的小梁网被充分受压时传输足以光烧蚀目标组织区域的光能。在某些情况下,计算机程序产品还可以包含计算机可执行代码,其用于指示基于显微镜的OCT装置在基于显微镜的OCT装置进行的OCT扫描表明目标组织区域的小梁网被充分受压时使基于纤维的装置能够传输足以光烧蚀目标组织区域的光能。在某些情况下,计算机程序产品还可以包含计算机可执行代码,其用于指示基于纤维的装置结合基于显微镜的OCT装置在基于纤维的装置结合基于显微镜的OCT装置进行的OCT扫描表明目标组织区域的小梁网被充分受压时使基于纤维的装置能够传输足以光烧蚀目标组织区域的光能。在某些情况下,计算机程序产品还可以包括计算机可执行代码,其用于在基于纤维的装置执行的OCT扫描指示已穿透Schlemm管的内壁时自动停止光能的传输。在某些情况下,计算机程序产品还可以包括计算机可执行代码,其用于在基于显微镜的OCT装置执行的OCT扫描指示已穿透Schlemm管的内壁时自动停止光能的传输。在某些情况下,计算机程序产品还可以包括计算机可执行代码,其用于在基于纤维的装置结合基于显微镜的OCT装置执行的OCT扫描指示已穿透Schlemm管的内壁时自动停止光能的传输。在某些情况下,计算机程序产品还可以包括计算机可执行代码,其用于在基于纤维的装置执行的OCT扫描表明Schlemm管的内壁已穿透时,通知外科医生停止传输光能。在某些情况下,计算机程序产品还可以包括计算机可执行代码,其用于在基于显微镜的OCT装置执行的OCT扫描表明Schlemm管的内壁已穿透时,通知外科医生停止传输光能。在某些情况下,计算机程序产品还可以包括计算机可执行代码,其用于在基于纤维的装置结合基于显微镜的OCT装置执行的OCT扫描表明Schlemm管的内壁已穿透时,通知外科医生停止传输光能。在某些情况下,计算机程序产品可以进一步包括用于指示基于显微镜的OCT装置检测基于纤维的装置的计算机可执行代码。在某些情况下,基于纤维的装置可被配置为由基于显微镜的OCT装置检测,并且可以显示由基于纤维的装置和基于显微镜的OCT装置两者处理的信息,以使得外科医生能够在目标组织区域中操作。
[0032] 在另一方面,本发明的实施例包括治疗方法,其包括在观察设备上观察增强图像,其中增强图像具有眼睛的显微镜视图或显微镜图像,并且其中增强图像还具有目标组织区域的光学相干断层扫描(OCT)图像。OCT图像可以与显微镜视图或显微镜图像对准。OCT图像可以使得能够识别位于目标组织区域中的目标位置,并且该目标位置在显微镜视图或显微镜图像中可能不可见。相关方法可以包括在观察设备上观察显微镜视图或增强图像的同时,在眼睛的前房内将细长探针的远端朝向目标组织区域推进,其中细长探针的远端最初在显微镜视图或显微镜图像中是可见的,其后由于在眼睛中的全内反射而在显微镜视图或显微镜图像中变得不可见。相关方法还可还包括在细长探针的远端在显微镜视图或显微镜图像中不可见的同时,以及在从增强图像中获取关于细长探针的远端相对于目标位置的相对位置的信息的同时,使用细长探针在目标位置处执行手术程序。
[0033] 通过引用并入
[0034] 本说明书中提到的所有出版物、专利、专利申请、期刊文章、书籍、技术参考文献等均以引用的方式并入本文,其程度如同每个单独的出版物、专利、专利申请、期刊文章、书籍、技术参考文献等被具体地并单独地指出通过引用并入一样。附图说明
[0035] 本发明的新颖特征在所附的权利要求书中具体阐述。通过参考下面的详细描述,将获得对所提供的系统和方法的特征和优点的更好的理解,下面的详细描述阐述了利用本发明原理的示例性实施例以及附图,附图中:
[0036] 图1是示出了解剖结构的眼睛的示意性截面图;
[0037] 图2是与眼睛的前房相邻的解剖结构的局部透视图,描绘了角膜-巩膜角和水性流体的流动;
[0038] 图3是眼睛的示意性截面图,其示出了从角膜缘穿刺点朝着眼睛的前房中的小梁网横穿前房的光纤探针。
[0039] 图4和图5示意性地示出了根据本发明实施例的用于帮助医师对眼睛执行手术程序的系统;
[0040] 图6示出了眼睛和光纤探针的真实图像以及示例性的增强(虚拟)图像和增强(虚拟)视图;
[0041] 图6A描绘了根据本发明实施例的患者眼睛和光学设备的各方面。
[0042] 图6B-C示出了根据本发明实施例的增强视图或图像的各方面。
[0043] 图7A-7F示出了在手术过程中由外科医生或使用者观看的示例性真实和增强/虚拟图像;
[0044] 图8示出了根据本发明实施例的根据基于光纤的OCT的示例性系统;
[0045] 图9示出了使用图8中的系统获得的示例性增强(虚拟)图像和增强(虚拟)视图;
[0046] 图10示出了根据本发明实施例的根据基于显微镜的OCT的示例性系统;
[0047] 图11示意性地示出了根据本发明实施例的OCT引导系统1100的实例;
[0048] 图12A-D示出了可以与提供的系统结合使用的器械的实例;
[0049] 图13示出了根据实施例的用于确定目标位置和探针位置的方法的流程图
[0050] 图13A-B分别描绘了根据本发明的实施例的治疗方法和辅助方法的方面。
[0051] 图14示出了可以配置为实现本申请中公开的任何分析和控制系统的分析和控制系统;和
[0052] 图15示出了术前OCT图像以及的增强术前OCT图像的实例,其示出了集合管和目标位置。

具体实施方式

[0053] 在下面的详细描述中,参考构成其一部分的附图。在附图中,除非上下文另外指出,否则相似的符号通常标识相似的组件。在详细描述、附图和权利要求中描述的说明性实施例并不意味着是限制性的。在不脱离本文提出的主题的范围的情况下,可以利用其他实施例,并且可以进行其他改变。容易理解的是,可以以各种不同的配置来布置、替换、组合、分离和设计如本文一般地描述的以及在附图中示出的本公开的各方面,所有这些都被明确地在本文考虑。
[0054] 所述方法和装置非常适合与多种替代性MIGS方法组合来治疗青光眼,例如、iStent Inject、 和其他。尽管在一些实施例中提到不用测角镜的治疗,但是本文公开的方法和装置也非常适合与测角镜组合使用。
[0055] 本文公开的方法和系统可以允许更大量的眼科外科医生成功地执行MIGS手术。例如公开的方法和装置可以允许外科手术更均匀且一致地形成开口,以使得例如水性流体能够从眼睛的前房改善的流出到Schlemm管中。另外,公开的系统和方法可以通过允许外科医生识别Schlemm管开口的目标位置以增加流出量而改善手术效果。在某些情况下,目标位置可包括组织的表面或层,或者在组织的位置,例如小梁网、小管旁小梁网(JCTM)、Schlemm管的内壁、Schlemm管的外壁、巩膜或其期望的组合。
[0056] 当前公开的方法和装置可以包括手术显微镜图像与感测设备的组合,所述感测设备使得外科医生可以同时观看实时平视显示图像。这些实时图像可以使外科医生瞄准并治疗眼睛内的位置,而仅使用手术显微镜可能无法轻易可视化这些位置,例如包括小梁网和Schlemm管的结构。本文公开的方法和装置可以允许外科医生观察被全内反射遮挡或阻挡的角结构。例如,公开的方法和装置可以允许使用OCT光学相干断层扫描(OCT)技术收集那些否则可见性不良或不可见的结构(例如集合管系统)的图像或信息。外科医生可以通过放置那些结构(例如集合管系统)的图像,例如通过与可见标记对准的较早获得的集合管系统的OCT图像,同时查看眼睛的真实图像和眼部结构的叠加投影图像,以使外科医生能够识别并瞄准优选的手术部位。以这种方式,外科医生所观看的图像包括结合以增强手术靶向性的真实(光学)和投影(虚拟)图像。还可以向外科医生/观察者提供其他信息,例如否则不可见结构的虚拟图像以及一个或多个符号,以指示距离和运动,例如从探针尖端到小梁网再到Schlemm管。在一些实施例中,OCT成像可用于识别眼睛的集合管,并使外科医生能够通过这些目标位置(例如,通过使用诸如治疗参考标记的图形视觉元素来识别目标位置)来识别部位,这些位置显示给使用者以协助在眼睛小梁网的适当位置创建开口以增加流动。本发明的实施例包括各种OCT扫描方式或图的任一种,包括术前和/或术中OCT图或流出系统(例如Schlemm管和集合管)的图像,例如图15中所描绘的,其可以覆盖在显微镜图像或视图上。在一些情况下,一个或多个OCT图像可以用于生成角结构的虚拟图像,例如,如图6的图像
610所示。在一些情况下,例如如图6的特征620所示,一个或多个OCT图像可以用于生成各种结构与手术器械(例如,纤维/探针)之间的关系的图形描绘。
[0057] 这样的显示器可以耦合到手术显微镜,以呈现来自显示器的单眼或双眼虚拟图像,其在视觉上与例如眼睛的双眼真实光学图像结合。本文公开的方法和装置非常适合用于利用提供从眼睛排出液体的开口的ELT手术和植入设备手术。然而,提供的系统和方法还可以应用于可以利用基于光纤的OCT的各种其他手术程序,例如使用内窥镜的任何和所有手术。
[0058] 尽管特别涉及使用准分子激光小梁切除术(ELT)治疗青光眼,但本文公开的方法和系统可用于许多其他类型的手术。例如,本文公开的实施例可以与其他手术程序一起使用,包括与整形外科、神经外科、神经科、鼻喉科(ENT)、腹腔、胸腔、心血管、心内膜和其他应用有关的内窥镜手术。当前公开的方法和装置可以利用OCT来提高瞄准精度,并提供虚拟可视化,以使外科医生能够在显微镜或内窥镜不容易可视化的区域中执行手术。这样的应用包括将虚拟可视化增强到真实图像以辅助3维空间中的手术准确性的任何内窥镜检查程序,其一个实例是血管变弯或弯曲的血管内程序。某些方面也可以用于治疗和修饰其他器官,例如脑、心脏、、肠、皮肤、肾脏、肝脏、胰腺、胃、子宫、卵巢、睾丸、膀胱、耳朵、鼻子、嘴巴、软组织例如骨髓、脂肪组织、肌肉、腺和粘膜组织、脊柱和神经组织、软骨、坚硬的生物组织(例如牙齿、骨骼)以及体腔和通道,例如鼻窦、输尿管、结肠、食道、肺脏通道、血管和喉咙。例如,本文公开的设备可以通过现有的体腔插入,或者通过在身体组织中形成的开口插入。
[0059] 在美国专利第4,846,172号和第9,820,883号中描述了用于执行青光眼手术的设备,其全部内容通过引用并入本文。
[0060] 为了理解所描述的实施例,提供了眼睛E的解剖结构的简要概述。如图1中示意性所示,眼睛的外层包括巩膜17。角膜15是透明组织,其使光能够进入眼睛。前房7位于角膜15和虹膜19之间。前房7包含不断流动的透明液体,称为房水1。晶状体4由连接到睫状体20的纤维小带支撑并在眼内移动。沿周向附接到巩骨突的虹膜19包括中央瞳孔5。瞳孔5的直径控制穿过晶状体4到达视网膜8的光量。后房2位于虹膜19和睫状体20之间。
[0061] 如图2所示,眼睛的解剖结构还包括小梁网(TM)9,其是在虹膜19插入巩膜突之前位于眼内的海绵状组织的三角带。可移动的小梁网的形状各不相同,并且尺寸微小。它在横截面上为大致三角形,厚度从约100-200μm变化。它由具有微米级孔的不同纤维层组成,这些孔形成用于房水从前房流出的流体路径。小梁网9已经在其前边缘Schwalbe线18测量为厚度约100μm,在角膜15和巩膜17的接近连接处。
[0062] 小梁网的底部加宽至约200μm,其中它和虹膜19附着在巩膜突上。小梁网的高度可以为约400μm。穿过小梁网9中的孔的通道穿过非常薄的多孔组织,称为小管旁小梁网13,其又邻接血管结构Schlemm管11的内壁。Schlemm管的高度可以大约为200μm,约为小梁网高度的一半。Schlemm管(SC)11充满房水和血液成分的混合物,并连接到一系列集合管(CC)12,这些集合管将房水排入静脉系统。因为房水1由睫状体不断产生,并通过瞳孔流入前房,房水从前房穿过TM和JCTM的孔进入SC和房水静脉,小梁网、小管旁小梁网或Schlemm管中的任何阻塞可防止房水轻易地从眼前房逸出。由于眼睛本质上是闭合的球形,因此导致眼睛内眼内压升高。眼内压升高会导致视网膜和视神经受损,从而最终导致失明。
[0063] 发生在大多数开角型青光眼(即以测角镜检查容易观察到的小梁网为特征的青光眼)中房水流出的阻塞通常位于小管旁小梁网(JCTM)13的区域,位于小梁网9和Schlemm管11(更具体地Schlemm管的内壁)之间。
[0064] 当例如在小管旁小梁网13处形成阻塞时,眼内压随着时间逐渐增加。因此,当前青光眼治疗方法的目标是通过降低或延迟眼内压的进行性升高,预防视神经损害。许多人正在寻找降低和控制眼内压的有效方法。通常,已经采用了各种药物治疗来控制眼内压。尽管这些治疗方法可以在一段时间内有效,但许多患者的眼内压通常会继续升高。但是,患者通常无法遵循规定的治疗方案。结果,青光眼控制不当会导致视神经不可逆损害的风险增加,并最终导致视丧失。
[0065] 图3是人眼E的内部解剖结构的侧视截面图,示出了与治疗青光眼的方法的实施例有关的光纤探针23。在施加局部、眼球周围和/或眼球后麻醉之后,在角膜15中形成小的自密封穿刺切口14。前房可通过使用液体流的腔室保持器或粘弹性剂来稳定。然后可以定位光纤探针23,并使其穿过切口14进入前房7,直到光纤探针23的远端接触并稍微压缩期望的目标TM组织。
[0066] 由激光单元31(图4所示)产生的光烧蚀激光能量从光纤探针23的远端传递到与要烧蚀的组织接触。待烧蚀的组织可以包括小梁网9、小管旁小梁网13和Schlemm管11的内壁。在Schlemm管11的近侧内壁中的孔以不穿孔Schlemm管的远侧外壁的方式形成。在一些实施例中,在目标组织中产生另外的孔。因此,产生的一个或多个孔有效恢复房水排出的相对正常速率。
[0067] 光纤探针23可以包括一根或多根被包封护套包封的光纤。单个光纤的直径应该足够大以传输足够的光能,以有效地导致目标组织的光烧蚀,并且在一些实施例中,能够对目标组织进行OCT成像。在一些实施例中,光纤直径在约4-6μm的范围内。单个光纤或多个光纤可以以例如直径范围为约100μm至约1000μm的束使用。芯和护套可以包裹在外部金属套筒或屏蔽层中。在一些实施例中,套筒由不锈制成。在一些实施例中,套筒的外径小于约100μm。在一些实施例中,直径可以小至100μm,因为其中较小的光纤用激光传输系统实现。在一些情况下,光纤直径可以为约200μm并且光纤探针23可以具有更大的直径,例如500μm以封装一根或多根光纤。在一些实施例中,套筒可以是柔性的,使得它可以弯曲或成角度。
[0068] 图4和图5示意性地示出了根据本发明实施例的用于帮助医师对眼睛E执行手术程序的系统400。手术操作可包括将细长探针23从眼睛的开口穿过前房插入到包括小梁网和Schlemm管的目标组织区域。在一些实施例中,系统400可以包括光学显微镜409,以供外科医生在手术过程中实时观察眼睛。集成在光学显微镜409中的可以是光学相干断层扫描(OCT)装置。显微镜可以包括例如外科手术显微镜。系统400可以包括OCT单元401,其被配置为在手术期间对目标组织区域中的一个或多个目标位置执行OCT扫描。例如,本文所述的OCT单元401可包括显微镜OCT 403或光纤OCT 402及其组合。由OCT单元403或402捕获的图像可以由控制单元410的图像处理装置412处理,以生成医师实时可视化的多个增强图像。增强图像可以被显示在平视显示器407的显示器上,并且与来自具有内部分束器的显微镜的光学图像组合以形成单眼或双眼图像,这是本领域普通技术人员已知的。如本文其他地方讨论的,显微镜视图可以包括例如“真实”图像、“真实”图像和覆盖的虚拟图像、或OCT图像。当显微镜视图包括覆盖的图像时,可以使用启用对准的元素将覆盖的图像与“真实”图像对准。根据一些实施例,外科医生可以首先在显微镜或来自显微镜的视频图像中观看诸如探针的手术器械“真实”图像。在某些情况下,外科医生可以观察增强图像或视图。如果在“真实”图像上覆盖了OCT,则外科医生可以同时观察“真实”图像和覆盖的OCT图像。增强图像可以通过显微镜的目镜(或多个目镜)或目镜和/或显微镜的显示器呈现给医师,并且在某些配置中可以在监视器屏幕上观看。这可有利于允许外科医生通过显微镜的目镜保持手术部位的立体视图,同时例如以立体或单眼方式同时一并观看叠加或相邻的图像或信息。
OCT扫描实时图像,从而使3D OCT图像的创建和/或基于OCT的实时信息可以叠加到一个或两个目镜的实时视图上。在一些实施例中,该系统和方法提供实时视图,其包括在这些手术期间来自前房外部和内部的真实和虚拟图像。
[0069] 光学显微镜409可以与OCT单元401光学耦合。光学显微镜409可以包括双目显微镜,例如立体显微镜,其包括成像透镜元件以将物体成像到目镜或目镜408上并且同时成像到相机405上。相机405被配置为捕获眼睛的光学图像505。光学图像505可以被发送到控制单元410以进行处理。相机405可以包括光学元件(例如透镜、反射镜、滤光器等)。相机可以捕获彩色图像、灰度图像等。
[0070] 可以以适当的图像分辨率获取光学图像505。图像帧分辨率可以由一帧中的像素数来定义。图像分辨率可以小于或等于约160x120像素、320x240像素、420x352像素、480x320像素、720x480像素、1280x720像素、1440x1080像素、1920x1080像素、2048x1080像素、3840x2160像素、4096x2160像素、7680x4320像素、15360x8640像素或更大的像素帧,或在由前面像素范围的任意两个组合定义的范围内。成像设备或相机可具有小于1微米、2微米、3微米、5微米、10微米、20微米等的像素尺寸。相机405可以是例如4K或更高分辨率的彩色相机。
[0071] 捕获的光学图像505可以是以特定捕获速率捕获的图像帧序列。在一些实施例中,可以以诸如约24p、25p、30p、48p、50p、60p、72p、90p、100p、120p、300p或更高、50i或60i的标准视频帧速率捕获图像序列。在一些实施例中,可以以每0.0001秒、0.0002秒、0.0005秒、0.001秒、0.002秒、0.005秒、0.01秒、0.02秒、0.05秒、0.1秒、0.2秒、0.5秒、1秒、2秒、5秒或
10秒小于或等于大约一张图像的速率捕获图像序列。在某些情况下,捕获速率可以在控制单元410的引导下根据使用者输入和/或外部条件而改变(例如,照明亮度)。
[0072] 光学图像505可以被实时捕获,从而以减小的等待时间,即以数据的获取和图像的渲染之间的延迟可以忽略的方式产生图像。实时成像允许外科医生感觉到平滑的运动流,这与手术过程中外科医生对手术器械(例如,细长探针和探针尖端)的触觉运动一致。实时成像可以包括以快于每秒30帧(fps)的速率生成图像,以连续运动来模仿自然视觉,并以两倍的速率生成图像以避免闪烁(感知强度变化)。在许多实施例中,等待时间可以包括从OCT系统的光照射眼睛直到向使用者显示信息为止的时间间隔,并且例如可以不超过约100ms。在许多情况下,等待时间包括显示器上显示的图像不超过一帧或两帧。对于包括从插入眼睛的探针的远端开始的A扫描成像的实施例,等待时间可以小于图像帧速率,例如不大于约
10ms。
[0073] 在一些实施例中,光学显微镜409可以耦合到电子显示设备407。电子显示器407可以是平视显示设备(HUD)。HUD可以是或可以不是显微镜系统409的组件。HUD可以光学耦合到一个或两个目镜的视场(FOV)中。显示设备可以被配置为将由控制单元410生成的增强图像507投影到使用者或外科医生。显示设备可以经由一个或多个光学元件(诸如分束器或半反射镜420)耦合至显微镜,使得除了显示设备407代表和呈现的真实图像增强图像之外查看目镜408的医师也可以感知。通过外科医生或使用者的单目镜可以看到显示设备。可选地,HUD可以通过两个目镜408可见,并且作为与例如由显微镜的组件形成的光学图像相结合的双目图像对于外科医生可见。
[0074] 显示设备或平视显示器407与控制单元410通信。显示设备可以将由控制单元410产生的增强图像实时地投影到使用者。如本文所述,实时成像可以包括在没有实质等待时间的情况下捕获图像,并且允许外科医生感知平滑运动流,该平滑运动流与外科医生在手术期间对手术器械的触觉运动一致。在某些情况下,显示设备407可以从控制单元接收一个或多个控制信号,用于调整显示器的一个或多个参数,例如亮度、放大率、对准等。由外科医生或使用者通过目镜或目镜408观看的图像可以是眼睛的直接光学视图、在显示器407上显示的图像、或两者的组合。因此,调整HUD上图像的亮度可影响外科医生通过目镜的视野。例如,显示器407上显示的处理过的信息和标记可以与物体的显微镜视图保持平衡。
[0075] 平视显示器407可以是例如液晶显示器(LCD)、LED显示器、有机发光二极管(OLED)、扫描激光显示器、CRT等,这是本领域技术人员已知的。
[0076] 在一些实施例中,HUD 407可以包括外部显示器。例如,在一些实施例中,可能无法通过目镜感知HUD。HUD可紧邻光学显微镜放置。HUD可以包括例如显示屏。HUD可以包括发光二极管(LED)屏幕、OLED屏幕、液晶显示器(LCD)屏幕、等离子屏幕或任何其他类型的屏幕。显示设备407可以是或可以不是触摸屏。外科医生可以同时从HUD观看手术部位的实时光学图像和OCT提供的深度信息。
[0077] OCT单元401可以耦合到光学显微镜409。OCT单元401可以包括显微镜OCT单元403、基于光纤的OCT单元402或两者的组合。OCT单元401可以包括扫频源OCT(SS-OCT)、频谱域OCT(SD-OCT)、傅立叶域OCT(FD-OCT)或时域OCT(TD-OCT),如在本领域中关于OCT系统已知的。OCT系统可以包括用于观察眼睛的组织结构例如Schlemm管和/或集合管的合适分辨率,并且可以包括例如在小于1到10微米的范围内,例如在大约3到6微米的范围内的分辨率。OCT单元401可以包括适合于产生OCT图像信息和干涉测量信息的低相干光源。OCT单元401可以产生具有深度信息的OCT图像,并将OCT图像发送到控制单元410。OCT单元可以至少部分地由控制单元控制。控制单元对OCT单元的控制可以包括例如OCT扫描的启动、参数设置或可定制的控制参数。
[0078] OCT单元可以包括显微镜OCT单元403。显微镜OCT单元403可以包括光学显微镜409的组件或与光学显微镜共享组件。在某些情况下,显微镜OCT单元403可以包括适于这种用途的独立OCT单元。显微镜OCT单元可以与眼睛保持一定距离而不接触眼睛。显微镜OCT单元可以可操作地耦合到光学显微镜。显微镜OCT单元可以利用光学显微镜的一个或多个光学元件,例如物镜。显微镜OCT单元403可以与光学显微镜系统409相容。例如,显微镜OCT单元403可以被配置为允许OCT焦平面的实时调整以保持与显微镜视图的共焦。在另一实例中,显微镜OCT单元403可能够适应光学显微镜的一个或多个光学元件的光焦度的变化,诸如透镜如物镜或显微镜的其他透镜的放大率。显微镜OCT单元403可以被配置为使用具有光源(例如,NIR光源)和检测器(例如,线扫描CCD)的引擎(例如SDOCT引擎)获取OCT图像。根据OCT的不同类型,可以使用不同的光谱仪,例如CCD或光电二极管阵列检测器。显微镜OCT单元403可被配置为根据扫描原理产生作为A扫描、B扫描或C扫描的OCT图像。例如,通过执行快速傅立叶变换(FFT),可以重建作为深度的函数的轴向扫描(即A扫描)。通过在x方向上移动反射镜,可以创建一系列A扫描线,这些线可以堆叠在一起以创建B扫描图像或二维图像。
通过在两个x-y方向上移动反射镜,可以生成完整的三维体图像或C扫描图像(3D)。反射镜可以耦合到本领域普通技术人员已知的任何合适的致动器,例如检流计、平移台、MEMs致动器或压电晶体。在一些实施例中,显微镜OCT单元403可以被激活以获取B模式图像,以提供关于探针相对于沿着眼睛的前后平面的目标位置的位置的信息。在某些情况下,显微镜OCT单元403可以执行C扫描以生成目标组织区域的三维图像。
[0079] OCT单元可以包括基于光纤的OCT单元402。根据一些实施例,术语“基于光纤的OCT单元”和“基于光纤的装置”可以互换使用。基于光纤的OCT单元402可以包括光纤或光纤阵列,以引导眼睛结构内部的激光脉冲并捕获内部眼睛结构的图像。基于光纤的OCT单元可以执行OCT成像,同时还传递激光脉冲。光纤可以插入眼睛内并与眼睛内部的组织接触。在一些实施例中,光纤可以是与光纤探针23中用于传输激光的光纤相同的光纤。替代地,光纤可以是单独的光纤,诸如标准单模或多模光纤。单独的光纤可以被容纳在相同的光纤探针23中。例如,光纤可以被封装在探针23的封装护套中,该封装护套被构造成使单根光纤变硬。这使得能够精确识别探针23的尖端相对于Schlemm管、TM和其他目标组织的位置。在一些实施例中,可以采用用于将反向散射的信号返回到相应的检测器的单独的光纤。二向色镜32可用于将反向散射的信号偏转到检测器。在一些实施例中,OCT单元的光纤和光纤探针可以同轴地用作同轴内窥镜,以识别探针的远端相对于目标组织的位置。可替代地,光纤可以与光纤探针是非同轴的。在一些情况下,探针可包括位于治疗纤维周围的OCT检测纤维阵列。
[0080] 基于光纤的OCT单元402可以被配置为生成轴向扫描图像(A扫描图像)。提供关于探针的远端相对于目标部位或目标位置的相对位置的实时信息可能是有益的。可以以诸如在10Hz至5kHz的范围内的高频来获取A扫描图像。A扫描图像可以由控制单元410处理以生成包括与目标组织和探针尖端的多个位置相对应的多个位置或距离标记的图像。在某些情况下,可以对多个A扫描图像求平均以生成图像以提高准确性。可以将来自A扫描的图像叠加到光学图像上,以提供沿着探针的轴向方向光纤尖端相对于目标组织的位置信息。
[0081] 系统400可以进一步包括使用者界面413。使用者界面413可以被配置为接收使用者输入并向使用者输出信息。使用者输入可以与诸如探针23的外科工具操作的控制有关。使用者输入可与光学显微镜的操作有关(例如,显微镜设置、相机获取等)。使用者输入可以与关于OCT单元的各种操作或设置有关。例如,使用者输入可以包括目标位置的选择、治疗参考标记的选择、增强图像的显示设置、可定制的显示偏好等。使用者界面可以包括诸如触摸屏的屏幕以及诸如手持控制器鼠标、操纵杆、键盘轨迹球触摸板、按钮、口头命令、手势识别姿态传感器、热传感器、触摸-电容式传感器、脚踏开关或任何其他设备的任何其他使用者交互式外部设备。
[0082] 在一些实施例中,基于显微镜的OCT 403用于引导探针23和可视化。在一些实施例中,基于光纤的OCT 402用于引导探针23和可视化。在一些实施例中,在系统中采用基于显微镜的OCT和基于光纤的OCT两者,并用于引导探针23和可视化。基于显微镜的OCT和基于光纤的OCT可以沿着眼睛的一个或多个平面执行OCT扫描。在一些情况下,当两个OCT都被采用时,基于显微镜的OCT可以被配置为沿着眼睛的前后平面执行第一OCT扫描,而基于光纤的OCT可以被配置为沿横向于前后平面的轴线执行第二OCT扫描。在某些情况下,可以单独使用基于显微镜的OCT和基于光纤的OCT。
[0083] 基于显微镜的OCT和基于光纤的OCT可以包含或可以不包含相似的扫描分辨率。在某些情况下,与基于光纤的OCT相比,基于显微镜的OCT可执行的扫描分辨率更高。例如,由基于显微镜的OCT执行的B扫描可以比由基于光纤的OCT执行的A扫描具有更高的分辨率。可替代地,基于光纤的OCT的扫描分辨率可以高于基于显微镜的OCT。可以基于源光谱的带宽来确定轴向分辨率。可以确定扫描分辨率以提供足够快的帧速率以确保实时反馈。每个OCT系统的分辨率可以在本文所述的范围内。
[0084] 基于显微镜的OCT和基于光纤的OCT可以具有或可以不具有相同的帧/扫描速率。在某些情况下,基于显微镜的OCT进行B扫描,而基于光纤的OCT进行A扫描,并且不需要对手术部位进行体积扫描。这样可以提供更高的实时位置反馈。基于显微镜的OCT提供的横截面视图的帧速率和基于光纤的OCT提供的轴向视图的帧速率可能会受到各种因素的影响,例如扫描场的大小、分辨率或扫描速率。在某些情况下,通过基于显微镜的OCT获得的二维OCT图像(B扫描)可用于提供探针相对于目标组织或目标位置的粗略位置,在这种情况下,分辨率较高且速度较慢帧速率可能就足够了。在某些情况下,通过基于光纤的OCT获得的轴向扫描图像(A扫描)可以提供探针远端相对于小型结构(例如SC、CC、TM)的精细和精确位置,因此可能期望更高的帧速率。在某些情况下,可能期望高帧速率以最小化运动伪像并增强图像质量。例如,基于光纤的OCT的轴向扫描可以具有至少100fps或更高的一维A扫描帧/扫描速率,其中结构图像分辨率在例如大约1微米至大约20微米的范围内。在许多实施例中,A扫描帧速率在从大约1kHz到大约10kHz的范围内。OCT系统可以被配置为在接触探针尖端并且达距探针尖端至少约10mm,例如与探针尖端至少约6mm的距离时测量组织。这些距离可使探针尖端在距目标部位或目标位置最多6mm的范围内瞄准Schlemm管。在一些实施例中,OCT装置可以包括基于相位的OCT,其配置为检测细长探针的远端的运动,例如在约20nm至约1μm的运动。
[0085] 该系统可以向外科医生提供增强的信息,该信息叠加到手术部位的光学图像的实时视图。通过允许外科医生查看补充信息而无需将他们的眼睛移开显微镜的观察光学器件或平视显示器,这对减少手术程序的中断是有益的。增强信息可以包括它们在其上操作的眼睛的各个区域的放大的视野。增强信息可以包括深度视图,该深度视图包括探针相对于目标组织的位置信息。增强信息可以包括细长探针的导航方向。增强信息可以基本实时地提供给外科医生。增强信息可以包括实时OCT图像。增强信息可以包括基于实时OCT图像和/或静态OCT图像生成的多个视觉图形元素。在本申请中,术语“视觉图形元素”和“图形视觉元素”可以互换使用。增强的信息可以包括静止图像和/或运动图像和/或信息(例如文本、图形、图表、曲线等),以覆盖在显示在屏幕上的操作显微镜手术视野或光学显微镜图像中。
[0086] 在一些情况下,增强信息可以覆盖或叠加到由光学显微镜获得的光学图像上以形成增强图像。增强图像可以显示在屏幕上,例如平视显示器、单独的观察监视器或两者。在一些情况下,增强信息可以覆盖在直接光路图像上,使得外科医生通过显微镜的目镜可见的视场包括光路图像和覆盖的增强信息二者。在某些情况下,增强信息可以以画中画格式叠加到光学图像上。
[0087] 控制单元410可以被配置为生成包括增强信息的增强层。增强层可以是包括一个或多个图形元素的基本透明的图像层。在本申请中,术语“图形元素”和“图形视觉元素”可以互换使用。增强层可以叠加在显微镜的光学视图、光学图像或视频流上,和/或显示在显示设备上。增强层的透明性允许使用者观看光学图像,并在其顶部覆盖图形元素。在一些实施例中,增强层可以包括实时OCT图像或由耦合至光学显微镜的OCT单元获得的其他信息。
[0088] 如上所述,光学显微图像数据和增强信息的融合可以包括将增强信息并入光学显微图像中。增强的图像数据可以包括与深度信息、目标位置和各种其他补充信息相关联的一个或多个图形元素。图形元素可以例如用分束器覆盖在光学显微图像上。图形元素可以直接覆盖在光学显微图像中可见的任何对象的图像上。图形元素还可包括围绕光学显微图像中任何物体的图像的任何形状、边界或轮廓。物体可以是例如插入眼睛的器械(例如探针)、探针的一部分、目标组织(例如SC、CC、TM、JCTM、巩膜)等。
[0089] 在一些实施例中,图形元素可以被配置为随着探针或器械的位置或定向相对于目标位置的改变而动态地改变。例如,图形元素可以指示光学图像中所示的探针的远端的位置,或者诸如SC内壁、TM等的组织之间的相对位置或间隔。图形元素可以被配置为随着探针尖端与目标位置之间的相对距离改变和/或当探针尖端压在组织(例如,小梁网表面)上时在光学图像上基本实时地或接近实时地动态地示出组织壁之间的间隔或尖端与目标位置之间的距离的变化。
[0090] 在一些实施例中,增强的信息可以包括探针相对于目标位置的取向。图形元素可以指示探针相对于目标位置的取向。图形元素可以被配置为随着探针和目标位置之间的取向改变而基本实时地或接近实时地在光学图像上动态示出探针相对于目标位置的取向。在某些情况下,图形元素可以指示细长探针的方向或轴向位置。为了指示取向(例如,方向),可以以箭头的形式提供图形元素。箭头可以被配置为基于探针的移动/推进而动态地改变。
[0091] 可以使用对象识别技术或图案匹配技术(例如特征点识别)将增强层或至少一些图形元素映射或匹配到光学图像。特征点可以是图像的一部分(例如巩膜界标、集合管模式、虹膜界标等),其可以与图像的其余部分和/或图像中的其他特征点唯一地区分开。可以在扰动下(例如,当改变图像的照度和亮度时)相对稳定的图像部分中检测特征点。
[0092] 图6示出了示例性的增强图像或增强视图600。如上所述,增强图像600可以由使用者或外科医生通过显微镜的目镜双目观看,并且可以显示在平视显示器、外部显示设备或耦合到使用者界面的显示器上。增强的图像或视图可以包括光学图像505或通过光学显微镜的目镜的光路视图。光学图像505可以包括眼睛的俯视图。光学图像或光学视图可以显示眼睛的前部。光学图像或光学视图可以进一步示出细长的探针23。增强的图像或视图600可以包括多个图形视觉元素和邻近或覆盖在光学图像上的一个或多个OCT图像,例如通过使用分束器将显示器光学耦合至显微镜的光路。多个图形视觉元素可以包括与不同对象相对应的不同形状和/或颜色,从而可以容易地将光学图像中示出的不同对象彼此区分开。
[0093] 多个图形视觉元素可包括映射到一个或多个目标位置的一个或多个治疗参考标记601、602、603。如本文其他地方所讨论的,治疗参考标记601、602、603可以对应于外科医生在光学图像或光路视图505中光学上看不见的目标位置。根据一些实施例,目标位置可以位于内部,并且目标位置的治疗可以涉及内部方法。在一些情况下,可基于术前OCT图像确定或识别一个或多个目标位置。如本文其他地方讨论,术前和/或术中OCT图像可使用内部方法和/或外部方法获得。根据一些实施方案,可以基于目标组织区域中的位置选择治疗参考标记或目标位置,所述区域将在通过其形成通道(例如,穿过小梁网、小管旁小梁网和Schlemm管的内壁的通道,从而在前房和Schlemm管之间提供流体连通)之后提供显著的流出增加。这样的选择可以基于对集合管网络或场中某些区域的识别,这些区域比较密集,或者包含更大的血管或者更大的血管分布,或者阻塞较小,或者对应于Schlemm管提供的周向流动区域。在实时光学成像期间,可通过检测从术前OCT图像识别的目标位置的图案(例如,一个或多个特定集合管),将一个或多个治疗参考标记601、602、603叠加到目标位置。在某些情况下,可以提示使用者或外科医生通过使用者界面413选择目标位置或治疗参考标记。在某些情况下,可以提示使用者或外科医生对选定的目标位置进行排队或排序以进行治疗。因此,使用者或外科医生可以指定期望的顺序,在该顺序中将在手术过程中治疗目标位置。例如,使用者或外科医生可以指定治疗参考标记601对应于将首先被治疗的目标位置,治疗参考标记602对应于将被第二治疗的目标位置,并且治疗参考标记603对应于将被第三治疗的目标位置。如本文其他地方所讨论的,例如参考图15,可以基于已经被确定为对应于更大的集合管、更密集的集合管网络或场和/或更大的流出的位置(例如,目标组织区域中的位置)选择治疗参考标记。在某些情况下,可以自动方式选择治疗参考标记。在某些情况下,可以手动选择治疗参考标记。系统可以配置为引导外科医生将激光纤维依次引导到每个选定的治疗参考标记。在某些情况下,例如在使用者选择目标位置的过程开始时,可以同时显示多个治疗参考标记。在某些情况下,随着外科手术的进行,可以顺序地显示多个治疗参考标记。
[0094] 多个图形视觉元素还可包括与细长探针23同轴的探针线604。探针线604示出了探针相对于一个或多个目标位置的取向。多个图形视觉元素还可包括与细长探针的远端重叠的远侧末端标记605。当探针在眼睛的前房内移动时,探针线和远侧末端标记两者都可以相对于光学图像或视图505中所示的细长探针的实际位置和取向动态地改变位置。因此,例如,外科医生可以在进入前房时使用显微镜观察探针23,并且可以在相对于眼睛移动时观察探针。OCT检测机构可以检测探针23,并且自动化系统或处理器可以响应于该检测而生成探针线604。类似地,自动化系统或处理器可以生成引导箭头612。
[0095] 多个图形视觉元素可以进一步包括从远侧末端标记605朝着一个或多个治疗参考标记(例如,标记601)延伸的一个或多个引导箭头或标记612。一个或多个引导箭头612可被配置为在手术过程中引导医师将细长探针的远端对准以指向一个或多个目标位置,或引导医师在手术过程中将细长探针朝着一个或多个目标位置推进。如本文其他地方所讨论的,一个或多个目标位置对于外科医生在光学图像或光学视图505中可能不是光学可见的。例如,在选择目标位置时,可以生成从探针的远端(或远侧末端标记605)指向所选目标位置(或相应的治疗参考标记)的引导箭头612,从而医生可以使探针平行于或同轴于引导箭头前进。一个或多个引导箭头612可从前房内沿不同方向径向指向包括小梁网和Schlemm管的目标组织区域。如本文其他地方所讨论的,Schlemm管的高度可以是小梁网的高度的大约一半。在一些情况下,当探针的远端位于距目标位置预定距离处时,例如当探针的远端位于距目标位置约6mm或更短时,一个或多个引导箭头可自动出现。可选地,一个或多个引导箭头可以响应于指示从多个目标位置中选择的目标位置的使用者输入而出现。
[0096] 增强层可以进一步包括覆盖光学图像的一个或多个OCT图像。OCT图像或基于OCT的图像可以提供深度信息或探针相对于在垂直于光学像平面(例如,基本上垂直于光学像平面)的方向上延伸的平面中的目标位置的位置。在一些实施例中,可以基于OCT图像610、620生成一个或多个放大的视野。例如,与光学图像相比,基于OCT的图像可以放大至少2到5倍。例如,如图6所示,将由显微镜OCT获得的二维OCT图像610覆盖在光学图像505上。在某些情况下,用于生成图像610的扫描是在术中进行的。在整个本申请中,术语“显微镜OCT”和“基于显微镜的OCT”可以互换使用。如本文其他地方所述的二维OCT图像610-4、610-5、610-
6、610-7和610-8可以包括二维OCT图像610的实施例、变型或示例,并且可以基本上包括类似的特征。例如,可以基于术中扫描生成这些图像中的一个或多个。在一些情况下,OCT图像
610可以包括B扫描图像。替代地或组合地,OCT图像610可以是三维图像(C扫描)。在一些情况下,可以以画中画格式在光学图像上显示实时或基本实时的OCT图像。替代地或组合地,可以将从OCT图像获得的信息覆盖到光学图像上。在一些实施例中,当探针的远端在到所选目标位置的预定距离内时,可以执行基于显微镜的OCT扫描以产生二维OCT图像610。如本文所述,基于显微镜的OCT扫描可以沿着由当前目标位置(例如,对应于治疗参考标记601的目标位置)和向眼睛的开口(例如,向角膜的小切口(穿刺))限定的平面延伸。
[0097] 二维图像610可以包括B扫描OCT图像和一个或多个视觉图形元素。B扫描OCT图像可以包括例如密度图。水平轴线可以对应于横向扫描的方向,垂直轴线可以对应于扫描深度。可以在OCT图像上的特定像素处绘制灰度,该灰度与特定深度和横向扫描位置处的深度轮廓的大小相对应。可以通过控制单元410的图像处理装置对B扫描OCT图像进行后处理,以进行图像增强、图像压缩等。在一些情况下,可以通过平均多个B扫描OCT图像生成二维图像610,使得可以以比B扫描OCT图像的获取帧速率低的速率更新二维图像。可替代地,可以以与B扫描OCT图像的获取帧速率相同的帧速率更新二维图像610。
[0098] 可以沿着沿探针23的长轴的OCT图像平面获得B扫描OCT图像。B扫描OCT图像平面可以沿着眼睛的前后平面与探针线604对准。例如,可以通过分析与视频一起获取的光学图像确定探针轴线,并控制基于显微镜的OCT以将OCT图像平面与探针的长轴线对准。显微镜OCT平面可以以沿着探针轴线延伸的线显示给使用者,该线显示在显示器上并且光学耦合到显微镜图像。
[0099] 在某些情况下,可以在探针线与至少一个治疗参考标记相交的区域中自动执行二维OCT扫描(B扫描)。OCT扫描区域可以包括沿着探针细长轴的眼睛的前后平面。OCT扫描区域可以包括前后平面的一部分,例如包括探针的远端的一部分和探针前面的区域。OCT扫描区域可不包括探针的整个长度。在一些情况下,在检测到探针线与一个或多个引导箭头基本同轴对准并且朝向一个或多个治疗参考标记定向时,可以自动执行二维OCT扫描。在某些情况下,在检测到细长探针的远端与目标位置相距预定距离时,可以自动执行二维OCT扫描。例如,预定距离可以在大约1mm至6mm的范围内。
[0100] 二维OCT图像610可以进一步包括覆盖在OCT图像上的多个图形视觉元素。例如,一个或多个治疗参考标记601-1可以被映射到OCT图像中的目标位置。如本文其他地方所讨论的,OCT图像可以或可以不被图形视觉元素覆盖。在某些情况下,图形视觉元素可以与OCT图像分开,并且不覆盖它。根据一些实施例,OCT图像可以覆盖在显微镜图像上。例如,OCT图像可以通过显微镜、显示器或与显示器结合的显微镜覆盖在显微镜图像上。多个图形视觉元素还可包括探针标记611,其至少指示探针尖端相对于与深度横截面中的治疗参考标记器601-1相对应的目标位置的位置。这提供给医生深度信息,从而指导医生在眼睛的前后平面(即深度)中调节探针的前进方向。在一些实施例中,引导箭头613也可以覆盖在OCT图像上,以引导探针朝向目标位置运动,例如,由此外科医生可以可视化沿着引导箭头613朝向治疗参考标记601-01前进的探针标记611。在某些情况下,探针标记611可以指示或识别探针的长轴线的方向,例如相对于对应于治疗参考标记物601-1的目标位置。在某些情况下,探针标记611可以与探针的长轴线同轴。
[0101] 在一些情况下,二维OCT图像610可以提供关于另一OCT扫描的信息。例如,基于探针尖端与目标组织位置之间的相对位置信息,可以激活基于光纤的OCT扫描,并且可以将图形元素覆盖到指示基于光纤的OCT扫描的扫描范围的OCT图像610上(例如图7C中的箭头614)。扫描范围可以在例如1度至45度的范围内。可替代地,基于光纤的OCT扫描可以包括A扫描。
[0102] 如上所述,可以由基于光纤的OCT单元402执行基于光纤的OCT扫描。基于光纤的OCT扫描可以沿着沿眼睛的轴线的探针线605执行。基于光纤的OCT单元402可以被配置为在检测到细长探针的远端与目标位置相距第二预定距离时自动执行OCT扫描。第二预定距离可以在例如大约1mm至大约6mm的范围内。在某些情况下,可以在基于显微镜的OCT扫描之后执行基于光纤的OCT扫描。在某些情况下,可以独立于基于显微镜的OCT扫描执行基于光纤的OCT扫描。在一个实例中,当在光学图像标识的x-y平面或显微镜OCT图像标识的横截面或两者结合中检测到探针线与引导箭头对准时,可以激活基于光纤的OCT扫描。或者,可以手动激活基于光纤的OCT扫描。
[0103] 在一些实施例中,可以生成基于基于光纤的OCT扫描的图像620或其他信息,并将其以画中画类格式覆盖在光学图像上。在一些情况下,用于产生图像620的扫描是在手术中进行的。在一些实施例中,图像620可以由显微OCT产生。图像620可以包括或可以不包括基于光纤的OCT图像。图像620可以定位成靠近探针的尖端。图像620可以定位在光学视图内的任何位置中或在增强图像上。如本文其他地方(例如,图7D-F和9)所述的OCT图像620-5、620-6、620-7、620-8、620-9、620-90和620-91可以包括OCT图像620的实施例、变型、或实例,并且可以包括基本相似的特征。例如,可以基于术中扫描生成这些图像中的一个或多个。
[0104] 图像620可以包括基于光纤的OCT扫描或显微镜的OCT扫描生成的多个图形视觉元素608、609-1、609-2、609-3、609-4、609-5。在一些实施例中,在细长探针的远端与目标位置之间执行基于光纤的OCT扫描,以生成包括小梁网和Schlemm管的一部分的目标位置的OCT A扫描。多个图形视觉元素可以包括一个或多个A扫描距离标记608、609-1、609-2、609-3、609-4和609-5。A扫描距离标记可以提供探针尖端与组织结构之间的相对位置的放大的距离视图。当在光学显微镜装置收集的图像中不再可见远端时,A扫描距离标记使医生能够观察细长探针的远端,并且还可以帮助医师引导细长探针的远端朝向目标位置,还可以指导外科医生考虑对小梁网施加压力。在某些情况下,由于细长探针的远端由于靠近眼睛的虹膜角膜角的转角的全内反射而被遮盖导致细长探针的远端在显微镜图像中不再可见时,可能会生成A扫描距离标记。
[0105] A扫描距离标记可以包括多个图形视觉元素,其示出细长探针的远端(由距离标记608标识)、小梁网的表面(由609-1标识)、小管旁小梁网(JCTM)(由距离标记609-2标识)、Schlemm管的内壁(由距离标记609-3标识)、Schlemm管的外壁(由距离标记609-4标识)、或巩膜(由距离标记609-5标识)的一个或多个之间的相对距离。根据一些实施例,由于JCTM是非常薄的膜并且邻近于Schlemm管的内壁定位,所以距离标记609-2和609-3可以彼此靠近以至于难以区分。在图6中,图形元素显示为线和圆,但是可以使用任何其他形状或颜色来标记相对距离。多条线可以包括不同的颜色、图案或厚度。多条线可以在视觉上彼此区分。
将A扫描距离标记叠加在眼睛的显微镜图像上。显微镜图像显示了眼睛的俯视图,A扫描距离标记显示了目标位置的放大轴向视图。在某些情况下,目标位置的轴向视图放大至少2到
5倍。
[0106] 如图6所示,例如,多个图形视觉元素可以包括与细长探针的远端相对应的第一线或距离标记608、与小梁网的表面相对应的第二线或距离标记609-1、对应于小管旁小梁网(JCTM)的第三线或距离标记609-2、对应于Schlemm管内壁的第四线或距离标记609-3、对应于Schlemm管外壁的第五线或距离标记609-4和对应于巩膜的第六线或距离标记609-5。取决于特定的组织结构,可以产生任何数量的线或标记。图形视觉元素中的一个或多个可以相对于彼此移动以反映相应对象的实时相对位置。例如,当细长探针的远端朝着目标位置前进时,第一线608可看起来相对于第二至第六线中的每条移动。多条线使医师知道细长探针的远端相对于小梁网、JCTM、Schlemm管的内壁、Schlemm管的外壁和巩膜的位置在哪里。多条线允许医师以精确的方式使细长探针的远端朝向包括小梁网和Schlemm管内壁的目标位置前进。在一些情况下,多条线允许医师使细长探针的远端前进以对小梁网施加轻微的压缩,从而避免过度压缩小梁网。在某些情况下,小梁网的压缩将小梁网的厚度例如从大约
150微米的原始厚度减小减小到大约90微米。在某些情况下,多条线允许医师知道Schlemm管的内壁是否已被穿透,并且避免穿透Schlemm管的外壁。例如,当Schlemm管的内壁已穿透时,线609-2和609-3可能会从增强图像中消失,表明探针尖端已通过SC的内壁(或SC的内壁以其他方式已被穿透),并且在某些情况下,一旦Schlemm管的内壁已被穿透,医生可以收回细长探针。例如,在检测到Schlemm管的内壁穿透后,激光发射可自动停止。在某些情况下,当穿刺SC的内壁时,图像中可显示下一个目标位置,以告知外科医生接着将探针对准何处,以在Schlemm管的内壁中以如上所述的方式创建另一个烧蚀通道。目标信息可以从新目标位置的光纤A扫描生成。附加地或可选地,可以从新目标位置的显微镜B扫描生成目标信息。
[0107] 如上所述,可以通过线609-3的消失指示Schlemm管的内壁的穿透,该线是对应于Schlemm管的内壁的图形视觉元素(例如,A扫描距离标记)。在某些情况下,本发明的实施例被配置成使得当探针尖端穿透Schlemm管的内壁时,线609-3从图像620消失。根据一些实施例,可以假设一旦小梁网被压缩并且启动激光脉冲,则探针尖端不会显著移动。在某些情况下,本发明的实施例被配置成使得当激光脉冲穿透Schlemm管的内壁时,线609-3从图像620消失。在一些情况下,配置本发明的实施例,使得当远离探针尖端的烧蚀的组织结构被转换成气体并进入Schlemm管时,线609-3从图像620消失。根据一些实施例,激光脉冲可以穿透Schlemm管的内壁,或者气体烧蚀产物可以进入Schlemm管,而探针尖端不穿透Schlemm管。根据一些实施例,可以通过小梁网、小管旁小梁网和Schlemm管的内壁的烧蚀产生烧蚀通道,以形成孔。小梁网的压缩可通过评估对应于小梁网表面的线609-1和对应于小管旁小梁网(JCTM)的线609-2之间的距离进行监控。根据一些实施例,可以通过评估距离标记之间的距离来监视Schlemm管的内壁的穿透,该距离标记可以是A扫描距离标记,例如线609-3和线
609-4之间的距离。例如,当Schlemm管的内壁被穿透并且气体进入Schlemm管时,可发生Schlemm管的局部和瞬时膨胀(例如由于进入的气体),以及Schlemm管的内外壁之间的距离可增加。在穿透之后的某个时间,随着Schlemm管的塌陷,Schlemm管的内壁和外壁之间的距离可以减小(例如,从管扩张时的初始距离约200微米到当Schlemm管坍塌时的后面距离约
20微米)。
[0108] 如本文其他地方所讨论的,眼睛内的全内反射阻止外科医生观察超出前段光学观察路径的“临界角”的流出结构。如图6A所示,外科医生可以使用诸如光学显微镜、照相机、摄像机等的光学设备640a观察诸如中央虹膜619a的结构。这是因为来自中央虹膜619a的光650a穿过角膜615a射出眼睛680a,并且被光学设备640a接收或检测。相反,在使用光学设备
640a时,由于角膜的圆顶形状,在全内反射之后,虹膜角膜角670a内和附近的结构例如小梁网672a是不可见的。这是因为来自虹膜角膜角670a的光660a在眼睛的前表面结构(其包括角膜和泪膜690a)和空气695a(或其他折射率与前眼表面折射率不同的材料)之间的界面处经历了全内反射,并因此来自诸如小梁网672a的结构的光不会通过角膜离开眼睛680a,并且不能被光学设备640a接收或检测。
[0109] 当执行某些微创性青光眼手术(MIGS)程序和其他医学治疗时,外科医生将经常在眼睛680a的前房607a内的各个位置移动诸如探针之类的器械。当器械如字母V所示位于前房607a的中央或内部区域内(例如,在中央虹膜619a和瞳孔605a附近)时,外科医生可直接或通过显微镜光学地看到该器械。例如,可以在由光学设备640a提供的光路视图或光路图像中看到器械。在这种意义上,区域V表示前房内的区域或空间,其对于外科医生是光学可见的,并且例如可以在由光学设备640a提供的图像中看到。
[0110] 如字母N所示,当器械(或其一部分,例如远端)朝着前房的周围或外部区域(例如,小梁网672a附近的线655a的周围)定位时,器械(或其一部分)对医生是光学上不可见的。例如,在光学设备640a提供的视图或图像中将不能看到器械(或其一部分)。从这个意义上讲,区域N代表前房内的区域,该区域对于外科医生是不可见的,并且例如在光学设备640a所提供的视图或图像中看不到。
[0111] 虚线655a提供了将空间V(可见)与空间N(不可见)分开的边界的代表性图示,并且对应于本文其他地方讨论的“临界角”。相关地,虚线656a提供了空间N的外围或外部边界的代表性图示。
[0112] 当前查看位于“临界角”之外的结构的方法需要使用称为“测角镜”的设备,该设备通过改变弯曲的角膜表面的光学器件来改变光路。为此目的使用的隐形眼镜主要有两类:允许直接进入虹膜角膜角670a的那些,以及使用反射镜进入虹膜角膜角670a的间接例如反射视图的那些。使用这种设备能够使观察虹膜角膜角结构需要技术设置以实时操作这些隐形眼镜并在间接测角镜的情况下在心里反转镜像。
[0113] 有利地,本发明的实施例提供了系统和方法,其使外科医生能够在外围前房(例如整个区域N)中的各个期望或目标位置中有效且准确地移动和定位诸如准分子激光小梁切开术(ELT)设备之类的手术器械或探针,否则其视图或图像会由于全内反射而被遮盖或遮挡。而且,本发明的实施例还使外科医生能够在位于空间N外围的各个期望或目标位置中有效且准确地移动和定位诸如激光小梁切开术(ELT)设备之类的手术器械或探针(例如,通过小梁网672a和Schlemm管611a的内壁625a)。
[0114] 例如,根据本发明的实施例,详细描述了系统和方法,其为外科医生提供了结构的增强视图或图像,其可以用测角镜光学地可视化,但是在本案中,其而是不用测角镜进行成像(例如组织或组织层,如小梁网672a),并且此外还可以包含不能由测角镜可视化的结构图像,包括目标组织区域(例如组织或组织层,例如小管旁小梁网、Schlemm管的内壁、Schlemm管的外壁和巩膜)的目标位置的OCT图像。如果可以看到,则这种图像可以由类似于结构的图形图像表示,并且还可以由例如标识目标位置和相对位置的图形视觉元素表示。相关地,在某些情况下,标识目标位置的图形视觉元素可用于标识特定的组织或组织层,例如小梁网、小管旁小梁网、Schlemm管的内壁、Schlemm管的外壁、或巩膜。
[0115] 可以通过将OCT图像和图形元素叠加来生成增强视图或图像,并且可以将图形元素与光路视图或光路图像对准。增强的视图或图像还可以包括与器械和/或目标位置相对应的图形元素。例如,增强的视图或图像可以包括与探针或探针尖端的位置相对应的探针标记。在某些情况下,增强视图或图像可以包括与探测线或引导箭头相对应的图形元素。图形元素在向外科医生提供用于导航光学上看不见的空间N和其他区域或结构(例如,位于小梁网672a下方或周围的下表面组织或组织层,例如Schlemm管611a的内壁625a)的可见引导线索中特别有用。
[0116] 以这种方式,为外科医生提供了增强的视图或图像,其中借助于一个或多个单独的或与一个或多个OCT图像组合的图形视觉元素使得目标位置和/或器械(或其部分)对外科医生“可见”,其中目标位置和/或器械(或其部分)在光学视图中或在没有测角镜的光学图像中是不可见的。因此,本文公开的系统和方法使外科医生能够进行流出结构(例如,MIGS)的青光眼手术,而不必使用测角镜。
[0117] 图6A的小图(1)示出了本文所述的临界角特征的其他方面。如这里所示,来自角膜615a后方位置的相对于介质边界685a(例如泪膜690a与空气695a之间的界面)的法线675a具有入射角“a”的光650a以部分折射越过该边界。相反,来自前房607a内更外围位置的相对于法线675a具有入射角“b”的光660a不越过边界685a,而是反射回到前房607a中。根据一些实施例,临界角“c”可以被定义为阈值入射角,在该阈值入射角之上存在全内反射。因此,可以看出,在光660a下,存在全内反射,这阻止了外科医生观察到位于前眼部光学观察路径的临界角“c”之外的某些流出结构。根据一些实施例,临界角“c”为约46度,使得来自位于前房内的组织结构或设备的光(其在边界685a处超过46度的角)被反射回到前房中。在某些情况下,可以基于患者群体的平均值确定临界角的值。在某些情况下,可以基于针对所治疗的特定患者的特定值确定临界角的值。在某些情况下,临界角可以对应于距小梁网表面约3mm至约mm之间的距离。
[0118] 图6B示出了示例性的增强图像或增强视图600b。如本文其他地方所描述的,使用者或外科医生可以通过显微镜的目镜观看增强的图像,例如,以邻近或覆盖光学可见结构的平视显示器。这样的增强图像可以显示在平视显示器、外部显示设备或耦合到使用者界面的显示器上。根据一些实施例,可以在诸如显示设备、显微镜设备、平视显示器、观察监视器、虚拟现实观察设备、增强现实观察设备等的观察设备的各种观看的任一种上观看增强图像600。如此处所示,增强图像或视图600b可以包括光学图像505b或通过光学显微镜的目镜的光路视图,并且光学图像505b包括具有巩膜17b的眼睛607b的前视图或俯视图。光学图像或光学视图还示出了细长探针23b,该探针已经穿过角膜穿刺切口并插入眼睛的前房。
[0119] 增强图像或视图600b还包括OCT图像610b。如此处所示,OCT图像610b对应于眼睛的侧视图或截面图。此外,增强图像或增强视图600b可以包括另一个OCT图像620b。如此处所示,图像620b对应于眼睛的前视图或俯视图。
[0120] 虚线655b提供了边界的代表性图示,该边界将光学上可见的前房内的空间V与光学上不可见的前房内的空间N分开,并且该边界对应于在本文别处讨论的“临界角”可见性。相关地,虚线656b提供了前房内空间N的外围或外部边界的代表性图示。
[0121] 本发明的实施例提供了系统和方法,其使外科医生能够在外围前房(例如整个空间N)中的各个期望或目标位置中有效且准确地移动和定位诸如探针之类的手术器械,否则其光学图像或视图会由于全内反射而被遮挡,并且也将手术器械导航到光学上不可见的其他区域或结构(例如,位于小梁网672b下方或周围的下表面组织或组织层)。例如,如本文其他地方所讨论的,OCT图像610b和620b可以包括布置在虚线655b的外围或者至少部分地布置在虚线655b的外围的图形视觉元素。
[0122] 如此处所示,OCT图像610b包括与细长探针23b相对应的图形视觉元素611b,其布置在空间V中,空间V是前房室内的对于外科医生光学可见的空间。由于OCT遮蔽现象,细长探针后的虹膜的部分在图像610b中(例如,在图形视觉元素611b下方)可能不可见,从而物体会引起光学遮蔽,其遮挡OCT图像中的下层组织。相关地,OCT图像620b包括对应于细长探针23b的远端623b的图形视觉元素608b,其类似地布置在空间V中。虚线624b表示探针远端623b的位置。
[0123] 如本文其他地方所讨论的,例如参考图6C,当外科医生将细长探针的远端从空间V移动到空间N时,探针23b的远端将从光学图像或视图505b中消失,而OCT图像610b允许外科医生在从空间V移动到空间N时通过观察图形视觉元素611b无缝地跨过该过渡将探针可视化,并且可选地进入其他区域或结构(例如,布置在小梁网672b下方或周围的下表面组织或组织层)。同样,OCT图像620b允许外科医生在从空间V移动到空间N时通过观察图形视觉元素608b无缝地跨过该过渡将探针可视化,并且可选地进入其他区域或结构(例如,布置在小梁网下方或周围的下表面组织或组织层)。根据一些实施例,边界本身(即虚线655b)在这里仅出于说明目的而被描述,并且不在增强图像或视图600b中的任何地方显示。
[0124] 图6C示出了示例性的增强图像或增强视图600c。如光学视图或图像505c的虚线624c所示,探针23c的远端(未示出)现在已经从空间V(图6B中所示的位置)前进到空间N。增强图像或视图600c还包括OCT图像610c。如此处所示,OCT图像610c对应于眼睛的侧视图或截面图。由于OCT遮挡现象,细长探针后的虹膜的部分在图像610c中(例如,在图形视觉元素
611c下方)可能不可见。此外,增强图像或增强视图600c可以包括另一个OCT图像620c。如此处所示,图像620c对应于眼睛607c的前视图或俯视图。
[0125] 虚线655c提供了边界的代表性图示,该边界将光学上可见的前房内的空间V与光学上不可见的前房内的空间N分开,并且该边界对应于在本文别处讨论的“临界角”可见性。根据一些实施例,边界本身(即虚线655c)在这里仅出于说明目的而被描述,并且不在增强图像或视图600c中的任何地方显示。相关地,虚线656c提供了前房内空间N的外围或外部边界的代表性图示。
[0126] OCT图像610c和620c可以包括布置在虚线655c外围或者至少部分布置在虚线655c的外围的图形视觉元素。如此处所示,OCT图像610c包括对应于细长探针23c的图形视觉元素611c,其布置在空间V(前房内的对医生光学可见的空间)中并延伸到空间N(前房内的对医生光学不可见的空间)。相关地,OCT图像620c包括对应于细长探针23c的远端的图形视觉元素608c,其布置在空间N中。
[0127] 因为外科医生已经将细长探针23c的远端从空间V移动到空间N,所以探针的远端已经从光学图像或视图505c消失。但是,在该运动期间,OCT图像610c允许外科医生通过观察图形视觉元素611c的远端部分612c从空间V到空间N,在从空间V到空间N的过渡过程中无缝地可视化探针。如本文中其他地方所讨论的,外科医生可以由覆盖有OCT图像610c的其他图形视觉元素引导,以使探针在空间N中的各个位置移动。在该引导的导航过程中,通过观察图形视觉元素611c(和可选地,远端部分612c)相对于其他图形视觉元素的移动,外科医生可以使用OCT图像610c可视化探针23c相对于眼睛607c的解剖结构的位置和/或定位。例如,其他图形视觉元素可以对应于布置在小梁网672c下方或外围的下表面组织或组织层。
[0128] 同样,OCT图像620c允许外科医生通过观察图形视觉元素608c从空间V到空间N,在从空间V到空间N的过渡过程中无缝地可视化探针的运动。如本文中其他地方所讨论的,外科医生可以由覆盖有OCT图像620c的其他图形视觉元素引导,以使探针在空间N中的各个位置移动。在该引导的导航过程中,通过观察图形视觉元素608c相对于其他图形视觉元素的移动,外科医生可以使用OCT图像620c可视化探针23c相对于眼睛607c的解剖结构的位置和/或定位。例如,其他图形视觉元素可以对应于布置在小梁网下方或外围的下表面组织或组织层。在某些情况下,由于细长探针的远端由于靠近眼睛的虹膜角膜角的转角的全内反射而被遮盖导致细长探针的远端在显微镜图像中不再可见时,可以生成图形视觉元素608c。
[0129] 因此,本发明的实施例非常适合用于在虹膜角膜角附近的眼睛的结构中和周围进行观察和导航,例如小梁网和Schlemm管,否则它们将涉及更困难的技术,例如需要使用测角镜的技术。同样地,本文公开的系统和方法可以通过向外科医生提供那些否则不怎么可见或不可见的结构例如集合管系统的图像或信息,允许外科医生查看被全内反射阻挡的角结构。可以通过使用OCT光学相干断层扫描(OCT)技术生成此类图像或信息。
[0130] 图图7A-7F示出了医师或使用者在手术过程中感知的示例性增强图像700、710、720、730、740、750、760、770、780和790。如图7A(图像700)所示,可以将与一个或多个目标位置相对应的一个或多个治疗参考标记601、602、603覆盖在眼睛的光学图像上或通过光学显微镜的目镜的光路视图上,以供医师观察并选择。在此处显示的光学图像或视图中,可以看到从瞳孔到小梁网的前房内眼睛的解剖结构。然而,如本文其他地方所讨论的,在虹膜角膜角处或附近的周边结构,例如小梁网,在光学图像或视图中可能不可见。因此,根据一些实施例,此处提供的光学图像或视图仅用于说明目的,并且实际上将不包括这种外围结构。可以从术前OCT图像或其他图像确定一个或多个目标位置,然后将其映射到实时光学图像,如本文其他地方所述。在选择目标位置时,可以产生从远侧末端标记605朝着与所选择的目标位置相对应的所选择的治疗参考标记601延伸的引导箭头612(在图像710中示出),以引导医师进行探针定向以与引导箭头纵向对准。在某些情况下,在选择了第一治疗参考标记601(或对应的目标位置)之后,与未选择的目标位置对应的治疗参考标记602、603可从视图中消失。继续图7B(图像720),探针可以朝着与治疗基准标记601相对应的选定目标位置前进,该治疗基准标记601由与探针的长轴线和引导箭头612同轴的探针线604引导。当检测到探针尖端在距目标位置预定距离之内时,或者当探针线与导向箭头对准时,如图7C所示(图像
730),可以执行OCT扫描。相关地,可以在检测到探针尖端超出“临界角”可见度的情况下执行OCT扫描,因此可以生成图像610-4。如本文其他地方所述,该检测可以基于实时光学图像。OCT扫描可以是基于显微镜的OCT扫描,并且在某些情况下,二维图像可以覆盖在光学图像上。在一些情况下,当期望3D扫描(即,C扫描)时,指示基于显微镜的OCT的扫描范围的箭头614可以覆盖到光学图像上。扫描范围或体积可以由从光纤尖端指向目标位置的两个箭头614限定。可选地,基于显微镜的OCT可以是2-D扫描(即,B扫描)。扫描平面可以沿着探针的纵轴线和眼睛的前后平面。扫描范围可以是从光纤尖端到目标位置,如箭头612所示。在一些情况下,箭头614可以指示基于光纤的OCT的扫描范围。类似地,箭头614可以定义基于光纤的OCT的3D扫描或2D扫描的扫描范围。扫描范围可以在由角度714限定的范围内,例如从1度到45度。
[0131] 如图像740中所示,基于显微镜的OCT图像610-4可以包括引导箭头613,以引导医生在眼睛的前后平面内调整探针的方向和前进方向。可替代地,引导箭头可以指示3D OCT扫描范围。此OCT图像补充了从光学图像可能无法感知的位置信息。如本文其他地方所述,可以将至少指示探针尖端相对于与治疗参考标记601-1相对应的目标位置的位置的探针标记611覆盖在基于显微镜的OCT图像上。如本文其他地方所讨论的,Schlemm管的高度可以约为小梁网的高度的一半。根据一些实施例,引导箭头613指向朝向Schlemm管的方向。治疗参考标记601-1的位置可以对应于Schlemm管的位置。
[0132] 如图7D(图像750)所示,当对应于细长探针的远端的远侧末端标记605接近对应于目标位置的治疗参考标记601并且被检测到在距治疗参考标记601预定距离之内(或检测到远端在距目标位置预定距离之内),可以执行第二OCT扫描。第二OCT扫描可以是基于光纤的OCT扫描,其可以用于生成图像620-5。在一些情况下,第二OCT扫描可以是B扫描,并且指示扫描范围的箭头可以覆盖在光学图像610-5上。可选地,第二OCT扫描可以是沿着探针的轴向的A扫描,并且扫描范围可以不显示在增强图像上。第二OCT扫描的放大图(A扫描或图像620-5)可以以画中画的形式叠加在光学图像上。为了清楚起见,图7D示出了A扫描图像620-
5的放大图,其示出了可以覆盖在增强图像上的多个A扫描距离标记。可以基于A扫描结果生成诸如线的多个A扫描距离标记,并将其覆盖到光学图像上。距离标记(例如,光纤尖端位置标记608、TM距离标记609-1)可以动态更改位置或间距,以反映探针的远端与小梁网表面、JCTM、Schlemm管的墙壁、Schlemm管的外壁或巩膜之间的相对位置。
[0133] 探针尖端和相关标记的准确和精确定位测量可以与各种眼科手术结合使用。在示例中,可以在增强图像的指导下执行ELT过程。如示例中所示,多个A扫描距离标记可以包括与细长探针或光纤尖端的远端相对应的距离标记608,与小梁网的表面相对应的距离标记609-1,对应于小管旁小梁网(JCTM)的距离标记602-2,对应于Schlemm管的内壁的距离标记
609-3,对应于Schlemm管的外壁的距离标记609-4或与巩膜相对应的距离标记609-5。关于眼睛的整体结构,Schlemm管的外壁可以相对固定,而相对于整个眼睛结构,Schlemm管的内壁可以与小梁网一起移动。由于正常的生理过程,Schlemm管的内壁和外壁之间的距离会动态波动,例如在20微米(例如仅充满房水)和200微米(例如充满房水和红细胞)之间。ELT激光探针的精度可以约为每个脉冲1.7微米,因此可以有效烧蚀Schlemm管的内壁而不会烧蚀Schlemm管的外壁。如本文其他地方所讨论的,当对应于Schlemm管的内壁的距离标记609-3由于内壁的穿透而消失时,可以将信号传输激光器以停止烧蚀脉冲的递送,并且可以提供信号给外科医生,表明穿透已经完成。以这种方式,系统可以提供自动停止信号、信息停止信号或两者。
[0134] 参照图7D(图像760),在OCT图像610-6中,随着显微镜图像示出远侧末端标记605朝着治疗参考标记601移动,实时图像可以示出探针标记611朝着小梁网9移动,并因此外科医生可以查看当探针尖端朝目标前进时显示的探针运动。如OCT图像620-6中所示,当探针尖端朝着目标前进时,光纤尖端距离标记608可以移近与对应于目标组织区域的距离标记,所述目标组织区域可以包括小梁网和Schlemm管,如由距离标记609-1(对应于小梁网)、609-2(对应于小管旁小梁网)、609-3(对应于Schlemm管内壁),609-4(对应于Schlemm管外壁)和609-5(对应于巩膜)描绘的。为了清楚起见,图7D示出了A扫描图像620-6的放大图,其示出了可以覆盖在增强图像上的多个A扫描距离标记。
[0135] 如图7E所示(放大图像770),当探针尖端与小梁网接触时,探针标记物与小梁网接触,如OCT图像610-7所示,并且距离标记609-1可从OCT图像620-7中消失。当探针尖端与小梁网接触时,可以执行目标组织的光烧蚀。耦合到能量源的探针可以被配置为在检测到细长探针的远端正在压缩小梁网的一部分时将多个脉冲传递到目标位置。如本文所述,多个脉冲被配置成通过光烧蚀产生穿过小梁网并进入Schlemm管的孔。为了清楚起见,图7E示出了A扫描图像620-7的放大图,其示出了可以覆盖在增强图像上的多个A扫描距离标记。
[0136] 如图7E中(放大图像780)所示,OCT图像620-8中的A扫描距离标记可以指示Schlemm管内壁的穿透。例如,当如OCT图像610-8所示穿透了Schlemm管的内壁时,线609-2和609-3可能会从增强图像780中消失,表明探针尖端已通过Schlemm管的SC的内壁(或Schlemm管的内壁以其他方式已被穿透),并且在某些情况下,一旦Schlemm管的内壁已被穿透,医生可以收回细长探针。根据一些实施例,基于光纤的OCT可以用于检测目标组织区域内的组织结构,并且可以用于检测Schlemm管的内壁何时被烧蚀和穿透。相关地,由于烧蚀过程将组织转化为气体,因此可将Schlemm管中的气体(以前仅填充有液体,例如血浆或房水)的检测用作识别何时Schlemm管的内壁已被渗透的另一标记。例如,在检测到Schlemm管的内壁穿透后,激光发射可自动停止。替代地,在另一实例中,处理器可以通知使用者手动停止激光发射。为了清楚起见,图7E示出了A扫描图像620-8的放大图,其示出了可以覆盖在增强图像上的多个A扫描距离标记。
[0137] 控制单元410可以包括操纵和控制单元414,其被配置为在检测到细长探针的远端正在压缩小梁网的一部分时自动地控制能量源以递送多个脉冲。可替代地,操纵和控制单元414可以被配置为在检测到细长探针的远端正在压缩小梁网的一部分时向医师发出警报以手动控制能量源以递送多个脉冲。在一些情况下,操纵和控制单元414可以被配置为基于A扫描距离标记来确定小梁网的一部分被细长探针的远端压缩的量。例如,基于与小梁网的表面相对应的第一距离标记和与JCTM相对应的第二距离标记之间的相对距离的变化来确定小梁网的压缩量。在另一实例中,操纵和控制单元414被配置为基于A扫描距离标记确定小梁网的该部分是否被压缩至预定厚度。在一些情况下,操纵和控制单元414可以被配置为在确定小梁网的一部分已压缩到预定厚度时控制能量源以递送多个脉冲以引起小梁网的部分和Schlemm管的内壁的光烧蚀。
[0138] 回到图7E,能量源可以在检测到Schlemm管的内壁已经被激光脉冲穿透后停止将多个脉冲传递到目标位置。可以通过对应于Schlemm管的内壁的线标记609-3的消失来指示Schlemm管的内壁穿透。在一些情况下,操纵和控制单元414可以被配置为部分地基于A扫描距离标记之间的相对距离的变化检测小梁网的该部分的光烧蚀是否已经穿透了Schlemm管的内壁。在一些情况下,操纵和控制单元414还被配置为在检测到Schlemm管的内壁被穿透时向医师发出警报以使细长探针从目标位置缩回。该警报可以是任何形式,例如文本、覆盖在光学图像上的图形视觉元素或可听警报。
[0139] 如图7F(图像790)所示,操纵和控制单元可以进一步被配置为在成功完成当前操作之后向医师发出警报以定位与眼睛的另一目标位置的映射位置相对应的另一治疗参考标记。例如,当检测到Schlemm管的内壁被穿透并且激光脉冲被停止时,对应于下一个目标位置的后续治疗参考标记602可以出现,并且可以指导外科医生移动至下一个治疗位置,如本文其他地方所述。对于随后的目标位置,可以重复上述步骤中的一些或全部。为了清楚起见,图7F示出了A扫描图像620-9的放大图,其示出了可以覆盖在增强图像上的多个A扫描距离标记。
[0140] 图8示出了根据实施例的系统800的另一实例。系统800可以与图4中所描述的系统400基本相似,并且可以包括系统400的一个或多个组件。系统800可以仅利用基于光纤的OCT 402来利用OCT测量眼睛E。显微镜409可以包括与图4中描述的相同的光学显微镜。在这种情况下,OCT单元401可以仅包括基于光纤的OCT 402,并且OCT单元可以不共享显微镜409的光学组件。探针提供的A扫描信息可用于确定距小梁网的距离。外科医生可以使用显示屏上提供的A扫描信息将探针与Schlemm管对准。例如,A扫描信息可以给外科医生显示与Schlemm管的距离的指示以及关于光纤探针的远端是否与Schlemm管对准的指示。
[0141] 图9示出了在使用系统800的手术期间向使用者示出的示例性放大图像或光学视图900和910。将引导箭头、探针标记、探针尖端标记605、治疗参考标记叠加到光学图像或视图上的步骤可以类似于图7A和7B中在图像700、710和720中所描述的那些。可以将探针的方向和行进方向调整为使得探针轴向标记与引导箭头对准。探针在x-y平面上的对准可以通过使用眼睛的光学图像的俯视图实现。探针相对于前-后平面中的目标位置的位置可以通过术前OCT图像估计或计算。当检测到探针尖端(对应于远侧末端标记605)在距目标位置(对应于治疗参考标记601)预定距离之内时,可以执行基于光纤的OCT扫描。如上所述,基于光纤的OCT扫描可以是轴向扫描(即,A扫描)或B扫描。基于光纤的OCT扫描可以与本文其他地方所述的相同。OCT结果的放大图620-90可以覆盖在光学图像上。如前所述,OCT图像620可以包括多个A扫描距离参考标记,诸如608、609-1。可选地,当执行B扫描时,OCT图像可以包括二维OCT实时图像。OCT图像620-90和620-91可用于指导医生沿轴向推进尖端,并提供有关探针尖端相对于一个或多个组织结构(例如,小梁网609-1)的相对位置的信息。例如,如图像910中所示,随着尖端前进,OCT图像620-91中的距离标记608可以朝着其他距离标记移动。为了清楚起见,图9示出了A扫描图像620-90和620-91的放大图,其示出了可以覆盖在增强图像上的多个A扫描距离标记。
[0142] 图10示出了根据本发明的实施例的系统1000的另一实例。系统1000可以仅利用基于显微镜的OCT单元403。系统1000中的OCT单元可以包括基于显微镜的OCT。在这种情况下,可以通过由基于显微镜的OCT单元403执行的OCT扫描来提供覆盖在光学图像上的基于OCT的增强信息。例如,当检测到探针尖端在距目标位置预定距离之内时,可以执行基于显微镜的OCT扫描。扫描平面可以沿着眼睛E的前后平面并且沿着探针延长轴线,如本文其他地方所述。OCT扫描可以是高分辨率扫描。例如,结构扫描分辨率可以是在约1μm到大约5μm的范围内。扫描可以提供相对于目标位置或组织结构(例如,小梁网、近小管小梁网(JCTM)、Schlemm管的内壁、Schlemm管的外壁或巩膜)的探针尖端的位置信息。在一些情况下,可以产生带有诸如图像610之类的标记的实时OCT图像并将其覆盖在光学图像上。在一些情况下,除了图像610之外,还可以根据基于显微镜的OCT生成探针尖端和组织结构的相对位置的放大图,例如图像620,并将其覆盖在光学图像上。
[0143] 图11示意性地示出了根据本发明实施例的OCT引导系统1100的实例。系统1100可以包括与图4中描述的系统400相同的组件。除了系统1100可以不包括用于光纤探针的单独的激光器单元之外。如本文中其他地方所述,系统1100可用于引导插入到眼睛E内部的任何手术工具。例如,系统1100可以提供指导以定位用于植入物的支架位置。植入设备的实例包括分别对准脉络膜上腔和Schlemm管的 微支架和 。在这种情况下,用于OCT扫描的光纤可以与手术工具1101同轴,所述手术工具1101可以不包括用于ELT手术的光纤。
[0144] 图12A-D示出了可以与提供的系统结合使用的器械的实例;各种器械可能未耦合到激光源。设备可以包括基本细长的形状。如图12A所示的眼睛的前视图中所示,增强信息可以以与本文其他地方所述类似的方式覆盖在眼睛和器械的光学视图或图像505上。例如,可以将一个或多个治疗参考标记601和与器械24同轴的箭头或探针线604叠加到光学图像上。如这里所示,眼睛包括虹膜19、小梁网9和角膜15。可以理解,代替描绘角膜15,该图像还可以描绘巩膜代替角膜。在此处所示的光学图像或视图505中,可以看到从内瞳孔到虹膜角膜角的前房内眼睛的解剖结构。然而,如本文其他地方所讨论的,在虹膜角膜角处或附近的周边结构,例如小梁网9,在光学图像或视图中可能不可见。因此,根据一些实施例,此处提供的光学图像或视图仅用于说明目的,并且实际上将不包括这种外围结构。
[0145] 可以显示引导箭头612以引导器械24的前进方向和定向。在一些情况下,用于OCT扫描的光纤可以是同轴的或封闭在器械24的壳体中,以提供器械的远端相对于治疗位置的相对位置。在一些情况下,细长探针24可以包括一个或多个装载在其上的支架1220a,并且支架1220a可以被植入小梁网9中并且被配置为将前房连接到Schlemm管并在Schlemm管中形成永久开口。在此描述的系统的实施例可以被配置为借助于与眼睛的真实显微镜图像对准的图形视觉元素(例如,治疗参考标记和箭头)帮助医师推进和在目标位置植入一个或多个支架1220a。例如,所公开的系统可以被配置为借助于与显微镜图像对准的图形视觉元素(例如,治疗参考标记601、探针线604、和/或引导箭头612)帮助医师将支架1220a推进和侧路滑动入Schlemm管中并且在Schlemm管中永久定位支架。
[0146] 在一些情况下,该系统可以被配置成借助于与显微镜图像对准的图形视觉元素,帮助医师沿着细长探针的细长轴线推进多个支架,将多个支架注射到Schlemm管中,并且将多个支架永久地放置在Schlemm管中。例如,如图12B的小图(1)所示,细长探针1210b包括壳体1212b和插入机构1214b。如小图(2)中所示,插入机构1214b可装载有支架1220b,并且支架1220b可包括头部1222b、胸腔1224b、凸缘1226b和流出孔1228b。图12B小图(3)描绘了从前房观看时已经植入小梁网9中的两个支架1220b。如此处所示,每个支架1220b的凸缘1226b包括入口孔1227b,该入口孔与一个或多个流出孔(未示出)流体连通。因为支架1220b没有从小梁网9朝向前房的中央部分明显延伸,所以由于在眼睛的角膜虹膜角附近的角部的全内反射而使支架在显微镜图像或视图中不可见。如本文其他地方所公开的OCT引导实施例非常适合于协助外科医生将支架(当加载在细长探针上时)输送到小梁网9。例如,参考图6所讨论的OCT引导实施例可以用于帮助引导外科医生将支架植入小梁网中的目标位置。
在某些情况下,目标位置可以对应于集合管的位置,或者基于多个集合管的分布或密度。返回参考图12B,如小图(4)所示,当将支架1220b植入眼睛时,凸缘1226b位于前房7中,胸部(不可见)位于小梁网9中,并且头部1222b位于Schlemm管11中。因为入口孔与流出孔流体连通,房水可以从前房流入Schlemm管中。
[0147] 如图12C小图(1)-(7)所示,在某些情况下,细长探针1210c可以包括装载在其上的微支架1220c,并且微支架1220c可以被配置为在前房7和睫状体上间隙27之间形成永久性导管。在一些情况下,支架1220c可包括套筒1221c(例如套筒)、入口1222c、保持特征1223c和出口1224c。本文公开的系统可以被配置为借助于与显微镜图像对准的图形视觉元素帮助医师将微支架1220c推进到睫状体上间隙27。例如,该系统可以被配置为使用由本文中其他地方描述的任何OCT设备产生的睫状体间隙27的实时OCT图像帮助医师将微支架
1220c推进到睫状体间隙27。该系统还可以被配置为借助于与显微镜图像对准的图形视觉元素帮助医师将微支架1220c的近侧轴环部分或套筒1221c定位在前房角28中。如本文其他地方所公开的OCT引导实施例非常适合于协助外科医生将支架(当加载在细长探针上时)递送至前房角。例如,参考图6所讨论的OCT引导实施例可以用于帮助引导外科医生将支架植入前房角中的目标位置。
[0148] 在某些情况下,如图12D的小图(1)-(4)所示,细长探针1210d可以包括凝胶支架1220d,其配置用于装载在其上的结膜下过滤。如小图(1)所示,可以通过角膜15中的切口插入注射器或细长探针2120d,并使其穿过前房7。如小图(2)所示,细长探针可以进一步进入结膜下间隙27。小图(3)示出了凝胶支架1220d的远端部分部署进入结膜下间隙。小图(4)描绘了处于植入位置的凝胶支架1220d,其功能是将房水从前房7排入结膜下间隙27。凝胶支架1220d可以被配置为产生穿过巩膜的通道,以允许房水从前房流入结膜下间隙。本文公开的系统可以被配置为借助于与显微镜图像对准的图形视觉元素帮助医师定位和植入凝胶支架1220d。例如,如本文其他地方所公开的OCT引导实施例非常适合于协助外科医生将支架(当装载在细长探针上时)递送至结膜下间隙。相关地,参考图6所讨论的OCT引导实施例可以用于帮助引导外科医生将支架植入结膜下间隙中的目标位置。
[0149] 图13示出了根据实施例的用于确定目标治疗位置和探针位置的方法1300的流程图。该方法可以使用本文描述的系统中的一个或多个。在第一步骤1301中,可以通过光学显微镜的照相机或摄像机获得眼睛的前部图像。在第二步骤1303中,将一个或多个目标位置(或与目标位置相对应的治疗参考标记)覆盖或映射到使用者的光学图像或光学视图上。可以基于包括眼睛的OCT图像的参考图像数据确定一个或多个目标位置。眼睛的OCT图像可以在外科手术之前使用OCT装置获得。在一些情况下,眼睛的OCT图像可以包括包含集合管网络的眼睛的前段的图像,并且可以识别来自OCT图像的至少两个象限中的一个或多个单独的集合管。术前OCT图像可具有高分辨率。
[0150] 图15示出了术前OCT图像1500的示例,以及示出了集合管和目标位置的增强术前OCT图像1510和1520。如实例中所示,术前OCT图像可以是3D图像。可以从高分辨率术前图像中识别一个或多个集合管和/或目标位置。如本文其他地方所讨论的,小梁网9与集合管12的系列或网络流体连通(通过Schlemm管)。OCT图像1500描绘了与表面下组织相关的小梁网9的位置9a,其中集合管12的数量或密度相对较高。相反,小梁网9的位置9b与表面下组织相关,其中集合管12的数量或密度相对较低。
[0151] 在某些情况下,诸如引导箭头613之类的增强信息可以覆盖在术前图像上。例如,术前OCT图像1510覆盖有引导箭头613,该引导箭头613可用于将细长探针引导向目标位置。如图15所示,术前OCT图像1510也可以与显微镜视图或显微镜图像1505组合,其中可以看到虹膜19和细长探针23。
[0152] 如本文其他地方所讨论的,治疗参考标记可以对应于或可以被映射到OCT图像中的目标位置。在某些情况下,可以在OCT图像中标识或指定一个或多个目标位置。在某些情况下,一个或多个目标位置(例如621、622)位于与一个或多个单独的集合管相对应的位置(或替代地,与一个或多个包含集合管的密集网络或场的区域相对应的位置),其与小梁网和Schlemm管的内壁接近。如此处所示,治疗参考标记601可以覆盖在目标位置621处的OCT图像和/或显微镜视图或图像上,并且治疗参考标记602可以覆盖在在目标位置622处的OCT图像和/或显微镜视图或图像上。在一些情况下,一个或多个单独的集合管(或网络区域)的位置可以相对于眼睛中诸如虹膜的至少一个可区分的解剖结构进行对准。多个目标位置可以由使用者手动估计或由处理器自动估计。如本文其他地方所述,可以允许使用者或医师通过使用者界面选择目标位置。根据一些实施例,图15中描绘的用于识别目标位置和/或治疗参考标记的技术可以与随后的测角镜促进的治疗结合使用。根据一些实施例,图15中描绘的用于识别目标位置和/或治疗参考标记的技术可以被用于与本文参考例如图6讨论的其他OCT引导技术结合使用。如图15所示,OCT图像可以用于识别和/或瞄准集合管或集合管的网络。可以根据集合管较大和/或集合管网络或场更密集的位置(例如4点钟位置)来选择目标位置,这与集合管更小和/或集合管网络较不密集的位置(例如2点钟位置)相反。在某些情况下,可以将目标位置指定为Schlemm管中靠近集合管较大,集合管网络或场更密集和/或集合管、网络或场最少受阻(例如,流出量最大)。在某些情况下,可以根据这些大小、密度和/或阻碍或流量参数对目标位置进行排次序或排序。在某些情况下,OCT图像可用于确定Schlemm管中的流动为圆周和/或流量被分割的位置,并且可以选择目标位置以对应于流动为圆周的位置。在某些情况下,外科医生可以使用OCT图像,例如图15所示的图像,以在不考虑目标位置分配或图形视觉元素覆盖的情况下,关于在何处放置或移动治疗探针或设备做出决定。例如,OCT图像可以示出集合管、网络和/或场域,并且外科医生可以基于这样的解剖特征做出探针定位或运动决定。OCT图像可以使外科医生能够识别在组织中定位的目标位置或期望的治疗位置,而不需要例如用图形视觉元素或治疗参考标记来标出或标记该目标位置或治疗位置。
[0153] 返回参考图13,在第三步骤1305中,可以将一个或多个引导图形元素叠加到光学图像上,使得医师可以调整探针的前进方向和/或取向以至少在光学图像平面中朝着所选目标位置移动。在第四步骤1307中,当检测到探针尖端在距目标位置预定距离之内时,可以沿着探针的纵轴和眼睛的前后平面获得基于显微镜的OCT图像。接下来1309,可以将基于显微镜的OCT图像和相关的标记覆盖在光学图像上,以引导医师调整OCT图像平面中的探针方向和前进方向。在第六步骤1311中,可以沿着探针的轴线执行基于光纤的OCT扫描。基于光纤的OCT扫描可以是A扫描或B扫描,以在探针尖端距目标位置预定距离之内时在探针尖端与组织之间提供相对位置。基于光纤的OCT图像和/或基于OCT图像生成的距离标记可以叠加到光学图像1313上。在第八步骤1315中,可以在治疗位置处实时显示或查看治疗,以便至少部分地基于增强信息来调整探针的运动。
[0154] 虽然图13示出了根据一些实施例的方法,但本领域普通技术人员将认识到许多变型可采纳。例如,可以以任何顺序执行步骤。某些步骤可以被删除,某些步骤可以重复,并且某些步骤可以包括其他步骤的子步骤。该方法还可以根据本文提供的本公开的其他方面进行修改
[0155] 如图13A所示,本发明的实施例包括用于在患者的眼睛的目标位置处执行手术过程的方法。一种示例性的治疗方法1300a包括如步骤1310a所示在观察设备上观察实时视图,如步骤1320a所示在观察该观察设备的同时使眼睛前房内的细长探针的远端向目标组织区域推进,以及如步骤1310c所示,在细长探针的远端在观察设备提供的显微镜视图或显微镜图像中不可见时,并且从显微镜视图或显微镜图像感知关于细长探针的远端相对于目标位置的相对位置的信息时,使用细长探针执行手术程序。根据一些实施例,目标位置位于患者眼睛的目标组织区域中。在某些情况下,实时视图包括眼睛的显微镜视图或增强图像。增强图像可以包括眼睛的显微镜视图或眼睛的显微镜图像。增强图像可进一步包括目标组织区域的光学相干断层扫描(OCT)图像。OCT图像可以与显微镜视图或显微镜图像对准。对应于目标位置的图形视觉元素可以覆盖显微镜视图或显微镜图像。目标位置在显微镜视图或显微镜图像中可能不可见。根据一些实施例,方法包括在观察设备上观察显微镜视图或增强图像的同时,将细长探针的远端在眼睛的前房内朝向目标组织区域前进。在某些情况下,细长探针的远端最初在显微镜视图或显微镜图像中是可见的,其后由于在眼睛的区域中的全内反射而在显微镜视图或显微镜图像中变得不可见。在某些情况下,眼睛的该区域包括目标组织区域。在某些情况下,该区域超出了“临界角”可见性,如本文其他地方所讨论的。
[0156] 如图13B所示,本发明的实施例包括协助外科医生对患者的眼睛执行手术程序的方法。如此处所示,方法1300b包括向外科医生提供实时视图,如步骤1310b所示。在某些情况下,实时视图包括眼睛1320b的显微镜视图。在一些情况下,实时视图包括增强图像,诸如增强图像1330b或增强图像1340b。在一些情况下,增强图像1330b(形式(A))可以包括眼睛1320b的显微镜视图。在一些情况下,增强图像1340b(形式(B))可以包括眼睛1350b的显微镜图像。增强图像的任一形式(即,增强图像1330b或增强图像1340b)可以包括眼睛1360b的目标组织区域的OCT图像。OCT图像1360b可以使得能够识别目标位置。在一些实施例中,外科医生1390可以查看显微镜视图1320b,然后查看增强视图1330b或增强视图1340b。因此,可以为外科医生1390提供实时视图的两个不同形式,即显微镜视图1320b和增强图像
1330b,或者显微镜视图1320b和增强图像1340b。根据一些实施例,OCT图像1360b可以与显微镜视图1320b或显微镜图像1350b对准。根据一些实施例,在显微镜视图1320b或显微镜图像1350b中不可见实际目标位置。根据一些实施例,当在显微镜视图1320b或显微镜图像
1350b中细长探针的远端不可见时,增强图像(1330b或1340b)使外科医生1390b能够感知关于细长探针的远端相对于目标位置的相对位置的信息。
[0157] 在一些实施例中,当最初将治疗探针插入患者眼睛的前房中时,外科医生1390b观看显微镜图像1320b。随后,OCT图像1360b(例如,示出集合管或网络)可以覆盖在显微镜图像1320b上,例如使用如本文其他地方所讨论的对准技术。然后,外科医生可以决定在何处递送治疗(例如,将激光烧蚀能量施加到小梁网、小管旁小梁网和Schlemm管的内壁)。在某些情况下,这可涉及外科医生使用图形视觉元素或治疗参考标记来标记或标出治疗位置。在某些情况下,计算机系统可以确定将图形视觉元素或治疗参考标记放置在何处。在上述步骤之后,外科医生可以在眼睛的前房内移动或定位治疗探针,随后的OCT成像协议可用于(例如通过图形视觉元素的叠加)促进将探针引导或导航到目标或期望的治疗位置。在某些情况下,在将探针放入前房之前,可以将图形视觉元素覆盖到显微镜视图或图像上。在某些情况下,在将探针放入前房后,可以将图形视觉元素覆盖到显微镜视图或图像上。在某些情况下,在将探针放入前房之前,可以将图形视觉元素覆盖到OCT图像上。在某些情况下,在将探针放入前房后,可以将图形视觉元素覆盖到OCT图像上。
[0158] 控制单元410(如图4、5、8、10或11所示的)可包括一个或多个处理器(例如,图14中描绘的处理器1405),其配置有用于执行图13、13A和13B中所示的一个或多个步骤的指令以及如本文其他地方所述的操作。类似地,控制单元410可以包括计算机系统(例如,图14中描绘的计算机系统1401)的任何其他组件或与之连接。
[0159] 尽管本文所公开的某些方法和设备是在烧蚀的背景下描述的,但使用者界面和显示器可以配置为指导植入物的外科手术放置,如本文所述。例如,可以参考集合管示出目标位置,并且例如可以将植入物的手术位置引向Schlemm管附近的目标位置。平视显示器上显示的箭头和其他特征可用于指示将要放置在眼睛中的多个外科植入物的多个位置,例如用以形成通向Schlemm管的开口的植入物。可以通过例如机械地(例如,用锋利的器械)在Schlemm管中形成开口,然后将植入物放置在目标位置,放置植入物。
[0160] 可以使用具有硬件软件和/或固件的计算机或其他处理器,执行本文描述的每个计算或操作。各种方法步骤可以由模执行,并且模块可以包括被布置为执行本文描述的方法步骤的各种数字和/或模拟数据处理硬件和/或软件中的任何一种。模块可以可选地包括数据处理硬件,其适于通过具有与其相关联的适当的机器编程代码来执行这些步骤中的一个或多个,用于两个或多个步骤(或两个或多个步骤的一部分)的模块被集成到单个处理器板中或在各种各样的集成和/或分布式处理体系结构的任一种中分成不同的处理器板。这些方法和系统将经常采用体现机器可读代码的有形介质,该机器可读代码具有用于执行如本文其他地方所述的方法步骤的指令。所描述的系统的所有特征都可以经修改后适用于所描述的方法,反之亦然。
[0161] 处理器可以是诸如中央处理单元(CPU)、图形处理单元(GPU)或通用处理单元的硬件处理器。处理器可以是任何合适的集成电路,例如计算平台或微处理器、逻辑设备等。尽管参考处理器描述了本公开,但是其他类型的集成电路和逻辑设备也可以应用。处理器或机器可不受数据操作能力的限制。处理器或机器可以执行512位、256位、128位、64位、32位或16位数据操作。
[0162] 在一些实施例中,处理器可以是计算机系统的处理单元。图14示出了可以被配置为实现本申请中公开的任何计算系统或方法的计算机系统1401。计算机系统1401可以包括移动电话平板电脑、可穿戴设备、膝上型计算机、台式计算机、中央服务器等。
[0163] 计算机系统1401包括中央处理单元(CPU,这里也称为“处理器”和“计算机处理器”)1405,其可以是单核或多核处理器,或用于并行处理的多个处理器。CPU可以是如上所述的处理器。计算机系统1401还包括存储器或存储器位置1410(例如,随机存取存储器只读存储器、闪存)、电子存储单元1415(例如,硬盘)、用于与一个或多个其他系统通信的通信接口1420(例如,网络适配器)、以及外围设备1425,例如高速缓存、其他存储器、数据存储和/或电子显示适配器。在某些情况下,通信接口可以允许计算机与另一个设备(例如成像设备或音频设备)进行通信。该计算机可能够从耦合的设备接收输入数据以进行分析。存储器1410、存储单元1415、接口1420和外围设备1425通过诸如主板的通信总线(实线)与CPU 1405通信。存储单元1415可以是用于存储数据的数据存储单元(或数据存储库)。计算机系统1401可以借助于通信接口1420可操作地耦合到计算机网络(“网络”)1430。网络1430可以是Internet、因特网和/或外部网,或与因特网通信的内部网和/或外部网。在某些情况下,网络1430是电信和/或数据网络。网络1430可以包括一个或多个计算机服务器,其可以启用分布式计算,例如计算。在某些情况下,网络1430可以在计算机系统1401的帮助下实现对等网络,该对等网络可以使耦合到计算机系统1401的设备能够充当客户端或服务器。
[0164] CPU 1405可以执行一系列机器可读指令,其可以体现在程序或软件中。指令可以存储在诸如存储器1410的存储器位置中。指令可以指向CPU 1405,其可以随后对CPU 1405进行编程或以其他方式配置CPU 1405以实现本公开的方法。CPU 1405执行的操作的示例可以包括获取、解码、执行和回写。
[0165] CPU 1405可以是诸如集成电路的电路的一部分。系统1401的一个或多个其他组件可以包括在电路中。在某些情况下,该电路是专用集成电路(ASIC)。
[0166] 存储单元1415可以存储文件,例如驱动程序、库和保存的程序。存储单元1415可以存储使用者数据,例如使用者偏好和使用者程序。在某些情况下,计算机系统1401可以包括计算机系统1401外部的一个或多个其他数据存储单元,例如位于通过内部网或Internet与计算机系统1401通信的远程服务器上的。
[0167] 计算机系统1401可以通过网络1430与一个或多个远程计算机系统通信。例如,计算机系统1401可以与使用者的远程计算机系统通信。远程计算机系统的实例包括个人计算机、平板或平板电脑、智能电话、个人数字助理等。使用者可以通过网络1430访问计算机系统1401。
[0168] 可以通过存储在计算机系统1401的电子存储位置上例如在存储器1410或电子存储单元1415上的机器(例如,计算机处理器)可执行代码的方式实现本文所述的方法。机器可执行或机器可读代码可以以软件的形式提供。在使用期间,代码可以由处理器1405执行。在一些情况下,可以从存储单元1415检索代码并将其存储在存储器1410上,以供处理器
1405随时访问。在某些情况下,可以排除电子存储单元1415,并且将机器可执行指令存储在存储器1410中。
[0169] 可以对代码进行预编译并配置用于具有适用于执行代码的处理器的机器,或者可以在运行时进行编译。可以以可以选择以使代码能够以预编译或编译时的方式执行的编程语言提供代码。
[0170] 本文提供的系统和方法(例如计算机系统1401)的各个方面可以体现在编程中。可以将技术的各个方面视为通常以机器可读介质的类型承载或体现的机器(或处理器)可执行代码和/或关联数据的形式的“产品”或“制品”。机器可执行代码可以存储在电子存储单元例如存储器(例如,只读存储器、随机存取存储器、闪存)或硬盘上。“存储”类型介质可以包括计算机、处理器等的任何或所有有形存储器,或其相关模块,例如可以随时提供非暂时性存储用于软件编程的各种半导体存储器、磁带驱动器、磁盘驱动器等。软件的全部或部分有时可以通过Internet或其他各种电信网络进行通信。例如,这样的通信可以使得能够将软件从一个计算机或处理器加载到另一计算机或处理器,例如从管理服务器或主机加载到应用服务器的计算机平台。因此,可以承载软件元素的另一种类型的介质包括光波、电波和电磁波,例如在本地设备之间的物理接口上、通过有线和光学座机网络以及在各种空中链路上使用的。诸如有线或无线链路、光学链路等的携带此类波的物理元件也可以被视为承载软件的介质。如本文所使用的,除非限于非暂时性的有形“存储”介质,否则诸如计算机或机器“可读介质”的术语是指参与向处理器提供指令以供执行的任何介质。
[0171] 因此,诸如计算机可执行代码的机器可读介质可以采取许多形式,包括但不限于有形存储介质、载波介质或物理传输介质。非易失性存储介质包括例如光盘或磁盘,例如任何计算机中的任何存储设备等,诸如可用于实现附图中所示的数据库等。易失性存储介质包括动态存储器,例如这种计算机平台的主存储器。有形传输介质包括同轴电缆线和光纤,包括构成计算机系统内总线的电线。载波传输介质可以采用电信号或电磁信号或声波或光波的形式,例如在射频(RF)和红外(IR)数据通信期间生成的那些。因此,计算机可读介质的常见形式包括:软盘、软磁盘、硬盘、磁带、任何其他磁介质、CD-ROM、DVD或DVD-ROM、任何其他光学介质、打孔卡纸磁带、带孔图案的任何其他物理存储介质、RAM、ROM、PROM和EPROM、FLASH-EPROM、任何其他存储芯片或盒带、传输数据或指令的载波、传输此类载体的电缆或链接或计算机可以从中读取编程代码和/或数据的任何其他介质。这些形式的计算机可读介质中的许多可以涉及将一个或多个指令的一个或多个序列传送给处理器以执行。
[0172] 计算机系统1401可包括电子显示器1435或与之通信,该电子显示器包括用于提供例如管理界面的使用者界面1440。UI的实例包括但不限于图形使用者界面(GUI)和基于Web的使用者界面。使用者界面1440可以与如图4中所描述的使用者界面413相同。或者,使用者界面可以是单独的使用者界面。
[0173] 计算机系统1401可以包括各种其他计算机组件,以促进与诸如显微镜系统、照相机、OCT单元、激光单元、外部处理器或存储器的外部设备的通信。通信模块可以包括用于指令和数据传输例如双倍数据速率的适当装置。可以采用各种方式进行通信,例如外围组件互连卡、计算机总线,包括但不限于PCI express、PCI-X、HyperTransport等。可以根据外部设备与中央处理单元1405的带宽和兼容性的要求选择合适的通信手段。例如,一个数据总线可以用于到激光单元31的命令传输(例如,AXI4lite总线),并且不同的数据总线(例如,AXI4总线)可以用于图像数据传输。替代地或附加地,可以采用无线通信。
[0174] 可以通过一种或多种算法实现本公开的方法和系统。可以在中央处理单元1405执行时通过软件实现算法。
[0175] 如在此使用的,术语“覆盖”、“覆盖在”、“叠加”、“叠加在”等在一些实施例中还可以包含其他图像或信息组合技术,包括“底衬”、“底衬在”、“下邻”和类似方法。应当理解,可以组合或混合可以存在于单层或多层中的图像、图形视觉元素和/或信息等的合成或融合图像、视图、信息或显示可以由这些技术中的任何一种生成或提供。
[0176] 本文公开的任何系统、设备或方法实施例可以涉及或包括使用例如以下文献中公开的系统、设备或方法:美国专利公开号2004/0082939、2012/0283557、2016/0095751和2017/0202708以及美国专利号4,846,172、6,251,103、8,540,659、8,679,089、9,603,741、
9,642,746、9,820,883和9,833,357,其每个内容均通过引用并入本文。
[0177] 尽管提及用显示器上显示的标记确定集合管的位置,但是可以在手术之前使用本文公开的方法和设备在与集合管相对应的位置处标记眼睛。外科医生可以根据置于眼睛上的标记使用这些标记在Schlemm管上开孔。例如,可以用墨水标记眼睛以识别优选手术治疗的位置,以及在小梁网中对应于优选手术治疗的位置处形成的开口。尽管已经在本文中示出和描述了本发明的优选实施例,但是对于本领域技术人员显而易见的是,这些实施例仅作为示例提供。在不脱离本发明的情况下,本领域技术人员现在将想到许多变型、改变和替代。应当理解,本文描述的本发明的实施例的各种替代方案可以用于实施本发明。旨在由以下权利要求书限定本发明的范围,并且由此覆盖这些权利要求范围内的方法和结构及其等同物。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈