首页 / 专利库 / 人工智能 / 进化算法 / 一种基于聚类分析和优化神经网络的风电功率短期组合预测方法

一种基于聚类分析和优化神经网络的电功率短期组合预测方法

阅读:758发布:2020-05-12

专利汇可以提供一种基于聚类分析和优化神经网络的电功率短期组合预测方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于 聚类分析 和优化神经网络的 风 电功率短期组合预测方法,步骤如下:S1:根据风机产生的风功率大小、不同风速风向下风机效率以及尾流效应,确定出风电输出功率的影响因素;S2:根据K-means聚类 算法 对输入样本进行聚类,并对输入样本进行分类;S3:建立每类输入样本对应的BP神经网络 预测模型 ,同时通过思维 进化算法 ,对每个BP神经网络预测模型进行优化;S4:将输入样本输入至相应的优化后的BP神经网络预测模型中,对风电功率进行预测,获得未来风机出 力 曲线。本发明利用思维进化算法对初始权值和 阈值 进行寻优,从而不仅可以对风况进行识别,为每一类分别建立预测模型,还可在提高风电功率预测速度的同时,提高预测的 精度 。,下面是一种基于聚类分析和优化神经网络的电功率短期组合预测方法专利的具体信息内容。

1.一种基于聚类分析和优化神经网络的电功率短期组合预测方法,其特征在于,所述风电功率短期组合预测方法包括如下步骤:
S1:根据风机产生的风功率大小、不同风速风向下风机效率以及尾流效应,确定出风电输出功率的影响因素;
S2:根据K-means聚类算法对输入样本进行聚类,并根据所述风电输出功率的影响因素,对所述输入样本进行分类;
S3:根据所述分类后的输入样本,建立每类输入样本对应的BP神经网络预测模型,同时通过思维进化算法,对每个所述BP神经网络预测模型进行优化;
S4:根据所述输入样本的所属类别,将所述输入样本输入至相应的优化后的BP神经网络预测模型中,调用所述优化后的BP神经网络预测模型的参数,对风电功率进行预测,获得未来风机出曲线。
2.根据权利要求1所述的一种基于聚类分析和优化神经网络的风电功率短期组合预测方法,其特征在于,在所述步骤S1中,所述风机产生的风功率大小、不同风速风向下风机效率以及尾流效应的计算公式,具体为:
其中:P为风机输出功率,Cp为风机的功率系数,A为风机的扫掠面积,ρ为空气密度,v为风速,η为风电的效率系数,Pm为实测风电的输出功率,Pf为风电在不受尾流影响情况下的输出功率。
3.根据权利要求1或2所述的一种基于聚类分析和优化神经网络的风电功率短期组合预测方法,其特征在于,在所述步骤S2中,对所述输入样本进行分类,具体如下:
S2.1:根据所述风电输出功率的影响因素,确定出聚类的类别数数目;
S2.2:向K-means的风类型聚类模型中输入所述聚类的类别数数目和待聚类的样本数据对象;
S2.3:从所述待聚类的样本数据对象中,选取出初始聚类中心,所述初始聚类中心的数目和聚类的类别数数目相同;
S2.4:计算除初始聚类中心外的其他每个所述待聚类的样本数据对象和各个初始聚类中心之间的距离,并从所述距离中,选出每个所述待聚类的样本数据对象对应的最小距离,并将所述最小距离对应的初始聚类中心所属的类作为待聚类的样本数据对象的所属类;
S2.5:根据所述待聚类的样本数据对象的所属类,计算所述每类数据对象的平均值,并将所述平均值作为每类数据的新聚类中心;
S2.6:重复步骤S2.4-步骤S2.5,直至聚类中心不再发生变化,获取得到最佳聚类结果。
4.根据权利要求3所述的一种基于聚类分析和优化神经网络的风电功率短期组合预测方法,其特征在于,K-means聚类算法的目标函数具体为:
其中:y为K-means聚类算法的目标函数,||xij-cj||2为聚类样本点xij到第j组聚类中心cj的距离量度法,j为聚类组号,k为聚类的类别数数目,ni为第i类样本数据对象中的样本点个数。
5.根据权利要求3所述的一种基于聚类分析和优化神经网络的风电功率短期组合预测方法,其特征在于,在所述步骤S3中,对每个所述BP神经网络预测模型进行优化,具体如下:
S3.1:根据所述分类后的输入样本,将每一类中的风速和风向作为所述BP神经网络预测模型的输入,将每一类中的功率作为所述BP神经网络预测模型的输出,建立每类输入样本对应的BP神经网络预测模型;
S3.2:根据所述BP神经网络预测模型的结构,计算出编码长度,所述编码长度的计算公式具体为:
s=nl+ml+l+m
其中:s为编码长度,n为输入节点数,m为输出节点数,l为隐含层节点数;
S3.3:定义迭代次数和初始种群大小,预分配优胜子群体和临时子群体大小,确定子群体大小,所述子群体大小的计算公式,具体为:
其中:SG为子群体中个体的数量,popsize为初始种群大小,bestsize为优胜子群体大小,tempsize为临时子群体大小;
S3.4:计算各个个体和种群的得分函数,并根据所述得分函数进行排序,设置优胜个体和临时个体,所述各个个体和种群的得分函数的计算公式,具体为:
其中:val为各个个体和种群的得分函数,SE为均方差,T为期望输出,A2为每次迭代后输出层的输出值;
S3.5:对各个所述子种群执行趋同和异化操作;
S3.6:判断迭代次数是否满足预设的最大迭代次数,若满足则执行下一步骤,若不满足,则返回步骤S3.5;
S3.7:对所述最大迭代次数下获取得到的最优个体进行解析,获取得到每个所述BP神经网络预测模型的初始权值和阈值
6.根据权利要求5所述的一种基于聚类分析和优化神经网络的风电功率短期组合预测方法,其特征在于,在所述步骤S4中,采用归一化绝对平均误差和归一化均方根误差作为预测误差的评价指标,所述归一化绝对平均误差和归一化均方根误差的计算公式,具体为:
其中:eNMAE为归一化绝对平均误差,eNRMSE为归一化均方根误差,Pcap为风力机的额定容量,m为样本个数, 为预测输出,yi为实际输出。

说明书全文

一种基于聚类分析和优化神经网络的电功率短期组合预测

方法

技术领域

[0001] 本发明涉及风电功率预测技术领域,尤其涉及一种基于聚类分析和优化神经网络的风电功率短期组合预测方法

背景技术

[0002] 随着科技和产业的现代化,可再生能源使用率逐渐上升。风能可再生能源重要的一部分,但是发电具有很大的随机性,制约了风力发电的大规模发展。为了更加有效地利用好风能,减少风力发电对电力系统的影响,研究精度高的、适用于风电的功率预测方法对电力行业的发展具有重要意义。
[0003] 传统的BP神经网络预测方法存在易陷入局部最优、收敛速度较慢的缺点,虽然有过一些将优化算法与神经网络结合的方法,使之在精度和收敛速度方面均有提高,但是仍然存在局部收敛及优化时间较长的问题。

发明内容

[0004] 发明目的:针对现有的BP神经网络预测方法存在局部收敛及优化时间长的问题,本发明提出了一种基于聚类分析和优化神经网络的风电功率短期组合预测方法。
[0005] 技术方案:为实现本发明的目的,本发明所采用的技术方案是:
[0006] 一种基于聚类分析和优化神经网络的风电功率短期组合预测方法,所述风电功率短期组合预测方法包括如下步骤:
[0007] S1:根据风机产生的风功率大小、不同风速风向下风机效率以及尾流效应,确定出风电输出功率的影响因素;
[0008] S2:根据K-means聚类算法对输入样本进行聚类,并根据所述风电输出功率的影响因素,对所述输入样本进行分类;
[0009] S3:根据所述分类后的输入样本,建立每类输入样本对应的BP神经网络预测模型,同时通过思维进化算法,对每个所述BP神经网络预测模型进行优化;
[0010] S4:根据所述输入样本的所属类别,将所述输入样本输入至相应的优化后的BP神经网络预测模型中,调用所述优化后的BP神经网络预测模型的参数,对风电功率进行预测,获得未来风机出力曲线。
[0011] 进一步地讲,在所述步骤S1中,所述风机产生的风功率大小、不同风速风向下风机效率以及尾流效应的计算公式,具体为:
[0012]
[0013] 其中:P为风机输出功率,Cp为风机的功率系数,A为风机的扫掠面积,ρ为空气密度,v为风速,η为风电的效率系数,Pm为实测风电的输出功率,Pf为风电在不受尾流影响情况下的输出功率。
[0014] 进一步地讲,在所述步骤S2中,对所述输入样本进行分类,具体如下:
[0015] S2.1:根据所述风电输出功率的影响因素,确定出聚类的类别数数目;
[0016] S2.2:向K-means的风类型聚类模型中输入所述聚类的类别数数目和待聚类的样本数据对象;
[0017] S2.3:从所述待聚类的样本数据对象中,选取出初始聚类中心,所述初始聚类中心的数目和聚类的类别数数目相同;
[0018] S2.4:计算除初始聚类中心外的其他每个所述待聚类的样本数据对象和各个初始聚类中心之间的距离,并从所述距离中,选出每个所述待聚类的样本数据对象对应的最小距离,并将所述最小距离对应的初始聚类中心所属的类作为待聚类的样本数据对象的所属类;
[0019] S2.5:根据所述待聚类的样本数据对象的所属类,计算所述每类数据对象的平均值,并将所述平均值作为每类数据的新聚类中心;
[0020] S2.6:重复步骤S2.4-步骤S2.5,直至聚类中心不再发生变化,获取得到最佳聚类结果。
[0021] 进一步地讲,K-means聚类算法的目标函数具体为:
[0022]
[0023] 其中:y为K-means聚类算法的目标函数,||xij-cj||2为聚类样本点xij到第j组聚类中心cj的距离量度法,j为聚类组号,k为聚类的类别数数目,ni为第i类样本数据对象中的样本点个数。
[0024] 进一步地讲,在所述步骤S3中,对每个所述BP神经网络预测模型进行优化,具体如下:
[0025] S3.1:根据所述分类后的输入样本,将每一类中的风速和风向作为所述BP神经网络预测模型的输入,将每一类中的功率作为所述BP神经网络预测模型的输出,建立每类输入样本对应的BP神经网络预测模型;
[0026] S3.2:根据所述BP神经网络预测模型的结构,计算出编码长度,所述编码长度的计算公式具体为:
[0027] s=nl+ml+l+m
[0028] 其中:s为编码长度,n为输入节点数,m为输出节点数,l为隐含层节点数;
[0029] S3.3:定义迭代次数和初始种群大小,预分配优胜子群体和临时子群体大小,确定子群体大小,所述子群体大小的计算公式,具体为:
[0030]
[0031] 其中:SG为子群体中个体的数量,popsize为初始种群大小,bestsize为优胜子群体大小,tempsize为临时子群体大小;
[0032] S3.4:计算各个个体和种群的得分函数,并根据所述得分函数进行排序,设置优胜个体和临时个体,所述各个个体和种群的得分函数的计算公式,具体为:
[0033]
[0034] 其中:val为各个个体和种群的得分函数,SE为均方差,T为期望输出,A2为每次迭代后输出层的输出值;
[0035] S3.5:对各个所述子种群执行趋同和异化操作;
[0036] S3.6:判断迭代次数是否满足预设的最大迭代次数,若满足则执行下一步骤,若不满足,则返回步骤S3.5;
[0037] S3.7:对所述最大迭代次数下获取得到的最优个体进行解析,获取得到每个所述BP神经网络预测模型的初始权值和阈值
[0038] 进一步地讲,在所述步骤S4中,采用归一化绝对平均误差和归一化均方根误差作为预测误差的评价指标,所述归一化绝对平均误差和归一化均方根误差的计算公式,具体为:
[0039]
[0040] 其中:eNMAE为归一化绝对平均误差,eNRMSE为归一化均方根误差,Pcap为风力机的额定容量,m为样本个数, 为预测输出,yi为实际输出。
[0041] 有益效果:与现有技术相比,本发明的技术方案具有以下有益技术效果:
[0042] 本发明的风电功率短期组合预测方法针对BP神经网络预测方法存在的一些固有的缺点,利用思维进化算法对其初始权值和阈值进行寻优,从而不仅可以对风况进行识别,为每一类分别建立预测模型,减少预测模型的训练时间,还可在提高风电功率预测速度的同时,提高了预测的精度。附图说明
[0043] 图1是风电功率短期组合预测方法的流程示意图;
[0044] 图2是风电机组功率曲线图;
[0045] 图3是不同风速和风向下风机效率图;
[0046] 图4是K-means聚类算法流程示意图;
[0047] 图5是思维进化算法优化BP神经网络流程示意图;
[0048] 图6是K-means算法的风类型聚类结果图;
[0049] 图7是本发明和传统风电功率模型预测结果对比图;
[0050] 图8是本发明风电功率预测误差频率分布直方图。

具体实施方式

[0051] 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。其中,所描述的实施例是本发明一部分实施例,而不是全部的实施例。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。
[0052] 实施例1
[0053] 参考图1,本实施例提供了一种基于聚类分析和优化神经网络的风电功率短期组合预测方法,具体包括如下步骤:
[0054] 步骤S1:分析风电输出功率的影响因素,根据风机产生的风功率大小、不同风速风向下风机效率以及尾流效应,由风电机组的功率曲线和风向与风电输出功率的关系,可以确定出风电输出功率的影响因素为风速和风向。
[0055] 在本实施例中,风机产生的风功率大小、不同风速风向下风机效率以及尾流效应的计算公式,具体为:
[0056]
[0057] 其中:P为风机输出功率,Cp为风机的功率系数,A为风机的扫掠面积,ρ为空气密度,v为风速,η为风电的效率系数,Pm为实测风电的输出功率,Pf为风电在不受尾流影响情况下的输出功率。
[0058] 参考图2,可以看出风机功率曲线呈现明显的分段特性,当风速高于3.5m/s时,风机会输出功率。当风速在3.5m/s~13m/s时,功率与风速近似呈线性关系,此时较小的风速变化会引起较大功率变化。如图2所示,风速变化2.5m/s,功率变化200kW左右。当风速高于13m/s时,此时达到饱和状态,功率不会再增大。
[0059] 参考图3,可以看出在风速较低的情况下,尾流效应的影响较大,在风速为4m/s时,效率最低仅为65%。同时风速越大,尾流效应的影响越小,当风速超过额定风速一定程度后,后排风机捕获的风能也达到额定值,此时尾流效应不再影响功率的输出,在所有风向上效率系数都为100%。
[0060] 步骤S2:用K-means聚类算法对输入样本进行聚类,输入聚类的类别数数目k和待聚类的样本数据对象,随机选择k个样本对象作为初始聚类中心,并不断更新聚类中心,直至聚类中心不再发生变化,获取得到最佳的聚类结果。在本实施例中,给定含n个样本的数据集X=(x1,x2,…,xn),每个样本为d维实向量,则K-means聚类算法的目标函数具体为:
[0061]
[0062] 其中:y为K-means聚类算法的目标函数,||xij-cj||2为聚类样本点xij到第j组聚类中心cj的距离量度法,j为聚类组号,k为聚类的类别数数目,ni为第i类样本数据对象中的样本点个数。
[0063] 参考图4,获取得到最佳的聚类结果的过程,具体如下:
[0064] 步骤S2.1:根据步骤S1中风电输出功率的影响因素风速和风向,将样本对象按照风速分为微风、中风和大风,按照风向分为正向和反向,共6个类别,得到6类不同风况下的输入样本。也就是说,在本实施例中,聚类的类别数数目k为6。
[0065] 步骤S2.2:向K-means的风类型聚类模型中输入聚类的类别数数目k和待聚类的样本数据对象。
[0066] 步骤S2.3:从输入的待聚类的样本数据对象中随机选出k个初始聚类中心,其中初始聚类中心的数目和聚类的类别数数目相同,也就是说,在本实施例中需要选出6个初始聚类中心。
[0067] 步骤S2.4:计算除选取的6个初始聚类中心外的其他每个待聚类的样本数据对象和每个初始聚类中心之间的距离,同时根据每个待聚类的样本数据对象对应的6个距离,从中选出每个待聚类的样本数据对象对应的最小距离,并将该最小距离对应的初始聚类中心所属的类作为该待聚类的样本数据对象的所属类。
[0068] 步骤S2.5:根据待聚类的样本数据对象的所属类,计算每类数据对象的平均值,并将每类数据对象的平均值作为该类数据的新聚类中心,从而完成聚类中心的更新。
[0069] 步骤S2.6:重复步骤S2.4-步骤S2.5,直至聚类中心不再发生变化,从而最终得到的聚类结果即为最佳聚类结果。
[0070] 步骤S3:参考图5,根据步骤S2.6中分类后的输入样本,建立每类输入样本对应的BP神经网络预测模型,同时通过思维进化算法在BP神经网络预测模型的权值和阈值可选范围内进行寻优,得到最优的初始权值和阈值,进而完成对每个BP神经网络预测模型的优化,具体如下:
[0071] 步骤S3.1:根据分类后的输入样本,将每一类中的风速和风向作为BP神经网络预测模型的输入,将每一类中的功率作为BP神经网络预测模型的输出,进而建立每类输入样本对应的BP神经网络预测模型。
[0072] 步骤S3.2:根据步骤S3.1中获取的BP神经网络预测模型的结构,计算出编码长度,其中编码长度为根据BP神经网络预测模型的结构得到的初始权值和阈值的个数,该编码长度的计算公式具体为:
[0073] s=nl+ml+l+m
[0074] 其中:s为编码长度,n为输入节点数,m为输出节点数,l为隐含层节点数。
[0075] 在本实施例中,根据BP神经网络预测模型的结构,得到编码长度为41。
[0076] 步骤S3.3:定义迭代次数iter、定义初始种群大小popsize,预分配优胜子群体大小bestsize、临时子群体大小tempsize,确定子群体SG大小,该子群体SG大小的计算公式,具体为:
[0077]
[0078] 其中:SG为子群体中个体的数量,popsize为种群大小,bestsize为优胜子群体大小,tempsize为临时子群体大小。
[0079] 在本实施例中,产生初始种群和个体,得到50个初始种群。其中每个种群中均包含若干个初始权值和阈值的个体,子群体SG为每个种群中个体的数量。
[0080] 步骤S3.4:计算各个个体和种群的得分函数,并将得分函数按照从高到低的顺序进行排列,选取前25个作为胜利者,其中5组作为优胜个体,20组作为临时个体,同时以这25组为中心产生优胜和临时子种群。具体地讲,得分函数为评价个体和种群好坏的参数。
[0081] 在本实施例中,各个个体和种群的得分函数的计算公式,具体为:
[0082]
[0083] 其中:val为各个个体和种群的得分函数,SE为均方差,T为期望输出,A2为每次迭代后输出层的输出值。
[0084] 由于种群需要筛选得分最高值,所以各个个体和种群的得分函数val取期望值与实际每次迭代输出值的均方差倒数。
[0085] 步骤S3.5:对各个子种群执行趋同和异化操作。
[0086] 步骤S3.6:进行收敛条件的判断,即判断迭代次数是否满足预设的最大迭代次数,若满足则执行步骤S3.7,若不满足,则返回步骤S3.5。
[0087] 步骤S3.7:对最大迭代次数下获取得到的最优个体进行解析,获取得到每个BP神经网络预测模型的初始权值和阈值。同时根据每个BP神经网络预测模型的初始权值和阈值,将训练样本输入设置了初始权值和阈值后的BP神经网络预测模型中进行训练,并保存每类BP神经网络预测模型的相关参数。
[0088] 步骤S4:根据输入样本的所属类别,将输入样本按类别输入至相应的优化后的BP神经网络预测模型中,调用优化后的BP神经网络预测模型的参数,即可对风电功率进行预测,获得未来风机出力曲线。
[0089] 在本实施例中采用归一化绝对平均误差和归一化均方根误差作为预测误差的评价指标,该归一化绝对平均误差和归一化均方根误差的计算公式,具体为:
[0090]
[0091] 其中:eNMAE为归一化绝对平均误差,eNRMSE为归一化均方根误差,Pcap为风力机的额定容量,m为样本个数, 为预测输出,yi为实际输出。
[0092] 在本实施例中,还提供了一个实施例来进一步阐述基于聚类分析和优化神经网络的风电功率短期组合预测方法。
[0093] 步骤1:参考图2,从图2中可以看到风机功率曲线呈现明显的分段特性,当风速高于3.5m/s时,风机会输出功率;当风速在3.5m/s~13m/s时,功率与风速近似呈线性关系,此时较小的风速变化会引起较大功率变化。如图所示,风速变化2.5m/s,功率变化200kW左右;当风速高于13m/s时,此时达到饱和状态,功率不会再增大。
[0094] 参考图3,从图中可以看出,在风速较低的情况下,尾流效应的影响较大,在风速为4m/s时,效率最低仅为65%。同时,风速越大,尾流效应的影响越小,当风速超过额定风速一定程度后,后排风机捕获的风能也达到额定值,此时尾流效应不再影响功率的输出,在所有风向上效率系数都为100%。
[0095] 步骤2:以中国西北某风电场的实测数据进行仿真,实测数据包括12个月内风电场的风速和风向,以及对应的输出功率,时间分辨率为1h。另外还有相对应时间内的数值天气预报数据:温度、湿度以及大气压。将数据分为两个部分,随机选择一天的数据作为预测模型的测试样本,其余天数的数据作为模型训练的样本。并与粒子群算法优化人工神经网络模型进行预测结果的比较,各种模型都采用相同的训练和测试样本。首先对训练样本进行K-means聚类,聚类组数设定为6,基于K-means聚类算法的风类型识别结果如图6所示,图中不同的风类型用不同颜色表示。
[0096] 从图中可以看出,在功率轴向方面,风类型分类较为平均,说明实际风电功率的分散性对预测误差的影响模式较为固定。在风向轴向来方面,主要分为两类,0~180°和180°~360°,这主要是和风电场风机的排列方式有关。在风速轴向方面,大致可以分为微风、中风、大风三类,对应于风机发电功率曲线的三段。总之,风类型聚类模型能够很好地对不同风况下发电过程特点地识别。
[0097] 步骤3:根据输入样本的格式以及BP神经网络的结构计算得到编码长度为41,定义最大迭代次数为1000,初始种群大小为50,临时子群体大小20和优胜子群体大小为5,输入样本数据并进行训练,计算各个个体和种群的得分情况,不断迭代得到最优的权值和阈值,保存得到的参数。
[0098] 步骤4:利用本实施例中的组合预测方法进行风电功率预测,与其他预测模型的预测结果进行比较。比较结果如图7所示,从图中可以看出,本实施例中的组合预测模型的预测值与实际值的变化趋势基本相同,且相较于其他模型的预测结果更加接近实际输出。
[0099] 经计算,本实施例中的基于K-means聚类分析和经过思维进化算法优化后的BP神经网络预测模型的预测相对误差主要分布在-5%~5%之间,所有预测点的误差都分布在-15%~20%之间,预测误差频率分布直方图如图8所示,基本符合正态分布。
[0100] 计算出各预测模型的预测误差指标如表1所示,表1具体为:
[0101] 表1各模型预测误差指标
[0102]
[0103] 其中:eNMAE为归一化绝对平均误差,eNRMSE为归一化均方根误差。
[0104] 分析表1中的误差指标可知,K-means-MAE-BP组合预测模型的归一化绝对平均误差eNMAE和归一化均方根误差eNRMSE比K-means-PSO-BP的分别降低了2.06%和1.78%,说明利用思维进化算法对BP神经网络的初始权值和阈值进行优化,可以更加有效地适用于风电功率预测,提高预测精度。对比MAE-BP和K-means-MAE-BP预测模型,经过K-means算法对风类型聚类后的预测误差指标分别降低了4.76%好5.49%,说明K-means算法对风类型进行聚类后,能够更加准确地模拟不同风况类型下地发电过程,提高了预测模型整体的预测精度。
[0105] 以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构和方法并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均属于本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈