首页 / 专利库 / 人工智能 / 交叉开关阵列 / 光电开关架构

光电开关架构

阅读:61发布:2020-05-12

专利汇可以提供光电开关架构专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种用于将光学 信号 从输入装置传送到输出装置的光电 开关 ,所述光电开关包括互连开关模 块 阵列,所述开关模块通过互连光纤互连。所述开关模块被布置成N维阵列,第i个维度具有尺寸Ri(i=1,2,....,N),每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的 位置 。每个开关模块是N个这样的子阵列Si的成员,每个子阵列Si包括Ri个开关模块,所述开关模块的坐标仅关于其在第i个维度上的位置而不同,并且所述N个子阵列中的每一个与不同维度相关联。,下面是光电开关架构专利的具体信息内容。

1.一种用于将光学信号从输入装置传送到输出装置的光电开关,所述光电开关包括互连开关模阵列,所述开关模块由互连光纤互连,其中:
所述开关模块被布置成N维阵列,第i个维度具有尺寸Ri,其中i = 1, 2,  ..., N,每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的位置
每个开关模块是N个子阵列Si的成员,每个子阵列Si包括Ri个开关模块,所述开关模块的坐标仅关于其在第i个维度上的位置而不同,并且所述N个子阵列中的每一个与不同维度相关联,并且
每个开关模块具有:
用于连接到输入装置和/或输出装置的客户端部分;
第一光纤部分和第二光纤部分,其被配置为处理信号并与其他开关模块通信,所述第一光纤部分和所述第二光纤部分中的每一个具有发射侧和接收侧,
其中所述第一光纤部分的所述发射侧包括:
用于接收第一电子信号的发射侧输入端,所述第一电子信号承载关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
所述第二光纤部分的接收侧输出端,或
输入装置,其经由所述客户端部分;
调制器,其用于将所述第一电子信号转换为包含相同信息的第一多个光学信号,所述第一多个光学信号中的每一个的波长是基于所述目的地信息进行选择;
具有输入端和输出端的发射侧无源路由器,来自给定输入端的光学信号的路径取决于该光学信号的波长,
其中所述第一光纤部分的所述接收侧包括:
具有输入端和输出端的接收侧无源路由器,其中通过所述接收侧无源路由器的光学信号的路径取决于该光学信号的波长,以及
每个接收侧无源路由器的输入端光学连接到相同子阵列中的每个其他开关模块上的第一无源路由器的输出端,并且被配置为从该输出端接收光学信号;
用于将来自所述接收侧无源路由器的第二多个光学信号转换为对应的第二电子信号的光电检测器;以及
用于将所述第二电子信号发送到以下任一个的接收侧输出端:
所述第二光纤部分的发射侧输入端,或
输出装置,其经由所述客户端部分。
2.一种用于将光学信号从输入装置传送到输出装置的光电开关,所述光电开关包括互连开关模块阵列,所述开关模块由互连光纤互连,其中:
所述开关模块被布置成N维阵列,第i个维度具有尺寸Ri,其中i = 1, 2,  ..., N,每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的位置;
每个开关模块是N个子阵列Si的成员,每个子阵列Si包括Ri个开关模块,所述开关模块的坐标仅关于其在第i维度上的位置而不同,并且所述N个子阵列中的每一个与不同维度相关联,并且
每个开关模块具有:
用于连接到输入装置或输出装置的客户端部分;
第一光纤部分和第二光纤部分,每个用于处理信号并与其他开关模块通信,所述第一光纤部分具有发射侧和接收侧,
其中所述第一光纤部分的所述发射侧包括:
用于接收第一电子信号的发射侧输入端,所述第一电子信号承载关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
所述第二光纤部分的接收侧输出端,或
输入装置,其经由所述客户端部分;
调制器,其用于将所述第一电子信号转换成包含相同信息的第一多个光学信号;
发射侧多路复用器,其用于将所述第一多个光学信号转换为多路复用的光纤信号,发射侧有源开关,其具有用于接收所述多路复用的光纤信号的输入端以及至少Ri-1个输出端,每个输出端与相同子阵列中的其他开关模块中的一个相关联,所述发射侧有源开关被配置为基于所述目的地信息将所述多路复用的光纤信号从其输入端引导到其输出端中的任何一个;
其中所述第一光纤部分的所述接收侧包括:
接收侧有源开关,其具有至少Ri-1个输入端,每个输入端与相同子阵列中的其他开关模块中的一个相关联;以及输出端,所述至少Ri-1个输入端各自被配置为从相同子阵列中的其他开关模块中的一个的发射侧有源开关的输出端接收多路复用的光纤信号,并且被配置为将所述多路复用的光纤信号从接收所述多路复用的光纤信号的输入端引导到所述输出端;
接收侧解复用器,其用于从所述接收侧有源开关接收所述多路复用的光纤信号,并且被配置为将其转换为第二多个光学信号;
光电检测器,其用于将第二多个光学信号转换成对应的第二电子信号;以及接收侧输出端,其用于将所述第二电子信号发送到以下任一个:
所述第二光纤部分的发射侧输入端,或
输出装置,其经由所述客户端部分。
3.一种用于将光学信号从输入装置传送到输出装置的光电开关,所述光电开关包括互连开关模块阵列,所述开关模块由互连光纤互连,其中:
所述开关模块被布置成N维阵列,第i个维度具有尺寸Ri,其中i = 1, 2,  ..., N,每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的位置;
每个开关模块是N个子阵列Si的成员,每个子阵列Si包括:
Ri个开关模块,其坐标仅关于其在第i个维度上的位置而不同,所述N个子阵列中的每一个与不同的维度相关联,以及
一组无源路由器,每个无源路由器具有输入端和输出端,从给定输入端通过所述无源路由器中的任一个的光学信号的路径取决于该光学信号的波长;
每个开关模块具有:
用于连接到输入装置或输出装置的客户端部分;以及
第一光纤部分和第二光纤部分,每个用于处理信号并与其他开关模块通信,所述第一光纤部分具有发射侧和接收侧,
其中所述第一光纤部分的所述发射侧包括:
用于接收第一电子信号的发射侧输入端,所述第一电子信号承载关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
所述第二光纤部分的接收侧输出端,或
输入装置,其经由所述客户端部分;以及
调制器,其用于将所述第一电子信号转换成包含相同信息的第一多个光学信号;
其中与给定子阵列相关联的所述无源路由器组中的每个无源路由器被配置为从该子阵列中的每个开关模块上的调制器接收所述第一多个光学信号中的一个,并将该光学信号引导到其输出端中的一个,这取决于该光学信号的波长以及其到达的所述无源路由器的输入端,并且
其中所述第一光纤部分的所述接收侧包括:
光电检测器,其被配置为从所述无源路由器组接收第二多个光学信号,并将所述第二多个光学信号转换为对应的第二电子信号;以及
接收侧输出端,其用于将所述第二电子信号发送到以下任一个:
所述第二光纤部分的发射侧输入端,或
输出装置,其经由所述客户端部分。
4.一种用于将光学信号从输入装置传送到输出装置的光电开关,所述光电开关包括互连开关模块阵列,所述开关模块由互连光纤互连,其中:
所述开关模块被布置成N维阵列,第i个维度具有尺寸Ri,其中i = 1, 2,  ..., N,每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的位置;
每个开关模块是N个子阵列Si的成员,每个子阵列Si包括:
Ri个开关模块,其坐标仅关于其在第i个维度上的位置而不同,所述N个子阵列中的每一个与不同的维度相关联,以及
光纤有源开关,其具有Ri个输入端和Ri个输出端,被配置为将信号从所述Ri个输入端中的任何一个引导到所述Ri个输出端中的任何一个,这取决于包含在所述信号中的目的地信息;
每个开关模块具有:
用于连接到输入装置或输出装置的客户端部分;
用于处理信号并与其他开关模块通信的第一光纤部分,所述第一光纤部分具有发射侧和接收侧,
其中所述第一光纤部分的所述发射侧包括:
用于接收第一电子信号的发射侧输入端,所述第一电子信号承载关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
所述第一光纤部分的接收侧输出端,或
输入装置,其经由所述客户端部分;
调制器,其用于将所述第一电子信号转换成包含相同信息的第一多个光学信号;
发射侧多路复用器,其用于将所述第一多个光学信号转换成多路复用的光纤信号;
具有输入端和N个输出端的发射侧有源开关,其用于接收所述多路复用的光纤信号并将其引导到所述N个输出端中的一个输出端,所述输出端的选择是基于所述目的地信息,并且其中所述N个输出端中的每一个连接到包括在所述N个子阵列中的每一个中的所述光纤有源开关的相应输入端,该开关模块是所述N个子阵列中的成员;
其中,每个光纤有源开关被配置为基于包含在到达其Ri个输入端中的一个的多路复用的光纤信号中的目的地信息,将所述多路复用的光纤信号从连接到开关模块的发射有源开关引导到其Ri个输出端中的一个,并且:
其中所述第一光纤部分的所述接收侧包括:
具有N个输入端和输出端的接收侧有源开关,所述N个输入端中的每一个被配置为从包括在所述N个子阵列中的每一个中的所述光纤有源开关的相应输出端接收多路复用的光纤信号,所述开关模块是所述N个子阵列的成员,并且被配置为将所接收的多路复用光纤信号从接收所述多路复用光纤信号的所述输入端引导到其输出端中的一个;
接收侧解复用器,其用于将所述多路复用的光纤信号转换成第二多个光学信号;
光电检测器,其被配置为从所述接收侧解复用器接收所述第二多个光学信号,并将所述第二多个光学信号转换为对应的第二电子信号;以及
接收侧输出端,其用于将所述第二电子信号发送到以下任一个:
所述第一光纤部分的发射侧输入端,或
输出装置,其经由所述客户端部分。
5.根据权利要求1至4中任一项所述的光电开关,其中所述有源开关是光学有源开关。
6.根据权利要求5所述的光电开关,其中所述光学有源开关是赫 - 曾德尔干涉仪(MZI)级联开关,包括多个MZI,每个MZI具有:在输入耦合器处分裂的两个臂,其中两个臂将分裂路径馈送到输出耦合器中,所述分裂路径在所述输出耦合器中重新组合;以及两个输出部分,所述多个MZI被布置成提供从所述MZI级联开关的每个输入端到每个输出端的路径。
7.根据权利要求1至4中任一项所述的光电开关,其中所述有源开关是电子有源开关。
8.根据权利要求7所述的光电开关,其中所述电子有源开关是电子交叉开关或电子共享存储器开关。
9.根据权利要求1至4中任一项所述的光电开关,其中所述第一光纤部分的所述发射侧包括发射侧封包处理器,所述封包处理器被配置为以封包的形式接收所述第一电子信号,所述封包具有包含所述目的地信息的封包标头。
10.根据权利要求9所述的光电开关,其中所述发射侧封包处理器被配置为执行封包分段,其中:
具有相同目的地模块的数据封包被布置成具有预定尺寸的
数据封包可以在一个或多个帧上分裂成封包片段;并且
帧可以包含来自一个或多个封包的数据。
11.根据权利要求10所述的光电开关,其中所述第一光纤部分的所述接收侧包括接收侧封包处理器,所述封包处理器被配置为当所述封包分布在多于一个帧上时,由所述封包片段重新创建数据的原始封包。
12.根据权利要求9所述的光电开关,其中:
所述第一光纤部分的所述发射侧包括多个调制器;
所述发射侧封包处理器被配置为执行封包分切,其中将帧或封包分切成第一多个电子信号;并且
在分切之后,所述发射侧封包处理器被配置为将所述第一多个电子信号中的每一个发送到所述多个调制器中的不同调制器,由此将其转换成所述第一多个光学信号。
13.根据权利要求12所述的光电开关,其中所述第一光纤部分的所述接收侧包括多个光电检测器,所述光电检测器被配置为将所述第二多个光学信号转换为第二多个电子信号,并且还包括接收侧封包处理器,所述接收侧封包处理器被配置为将所述第二多个电子信号重新组合成所述第二电子信号。
14.根据权利要求10所述的光电开关,其中所述发射侧封包处理器以一系列连续突发发送帧和/或封包片段,每个突发仅包含具有相同目的地模块的封包和/或封包片段,并且其中有序突发对隔开某个时间间隔。
15.根据权利要求1到4中任一项所述的光电开关,其中开关模块的每个子阵列包括仲裁器,所述仲裁器被配置为控制该子阵列内的所述开关模块和/或所述有源开关的操作。
16.根据权利要求15所述的光电开关,其中所述仲裁器连接到给定子阵列中的每个开关模块上的所述发射侧封包处理器和所述接收侧封包处理器中的至少一个。

说明书全文

光电开关架构

技术领域

[0001] 本发明涉及光电开关,并且特定地涉及光电开关内的开关模的拓扑结构和布置。

背景技术

[0002] 目前和不断增加的数据流量以及对数据中心交换速度和能耗降低的要求,推动了近期大量的创新。特定地,已经认识到,光学交换提供了许多期望的特性,但是光学装置需要由包括传统电子数据服务器在内的电子装置进行控制并与所述电子装置介接。
[0003] 光学装置本身不一定会减小开关的尺寸或降低复杂性。为了提高光学开关单元的组装和应用的灵活性,期望提高光开关的可扩展性。这样做的一种方式涉及开关网络内的组件的拓扑。期望生产高度可扩展的光学开关单元。因此,仍然要求封包开关最佳地受益于光学开关的速度和在适合于巨大可扩展性的架构中组装的CMOS电子器件的灵活性。
[0004] 为了最清楚地描述网络拓扑结构,例如计算机网络或光学交换网络,如在本发明的实施方案中,可以采用以下术语和符号:
[0005] • 图形G是一组顶点V和一组边缘E,边缘连接顶点对。所述图形可以表示为G = (V, E)。因此,网络可以被建模为图形,其中节点(即,各个交换单元)由顶点表示,并且节点对之间的链接是图形边缘。
[0006] • 网络的物理拓扑结构是节点和链路的实际3D空间中的位置
[0007] • 网络的逻辑拓扑结构以数学方式表示为网络的图形G = (V, E)。
[0008] • 单个交换元件的基数R是该交换元件上的端口的数量。交换机端口可以是客户端端口(连接到外部客户端,诸如主机或服务器)或光纤端口(连接到其他交换元件)或未连接。
[0009] • 每个交换元件的客户端端口数量= C,每个交换元件的光纤端口数量= F。
[0010] • 路径是将源节点连接到目的地节点的一序列链路,并且路径的长度是该序列中的链路的数量。两个节点之间的最小路径是具有最短长度的路径,即具有最少链路(在本文中也称为“跳”),并且网络的直径是任何两个节点之间最长的最小路径。应注意的是,例如对于跨越网络中的路径的数据封包,所需时间可以取决于路径的长度之外的其他特征,诸如可以在跳之间发生的处理步骤。
[0011] • 交换机中的交换元件可以布置成N个维度(此处也称为层)。
[0012] 已知的命名的网络拓扑结构是折叠式克劳斯(Folded Clos)网络。目前,这是数据中心网络和多芯片交换机中采用的流行的拓扑结构。它也被称为k元n树(k-ary n-tree)。网络可以仅用R和N来描述:
[0013] • C总数 =客户端端口总数,即可互连的客户端数量= 。
[0014] • P =交换元件总数=
[0015] • 直径,D = 2(N-1)。
[0016] 下面的表1示出了N的值,即各种不同的参数值的客户端数量,如上所述,其指示可以使用这个具有给定参数的网络连接的外部客户端的数量。
[0017]
[0018]
[0019] 表1:具有不同R和N值的折叠式克劳斯网络的N的值。

发明内容

[0020] 在最一般情况下,本发明提供了一种高度可扩展的光电开关,其包括多个开关模块,所述开关模块以允许开关延伸到多个维度的方式布置。这在光电开关的具成本效益的可扩展性方面具有显著优势。
[0021] 因此,根据第一方面,本发明旨在通过提供一种用于将光学信号从输入装置传送到输出装置的光电开关来解决上述问题,所述光电开关包括互连开关模块阵列,所述开关模块通过互连光纤互连,其中:
[0022] 开关模块被布置成N维阵列,第i个维度具有尺寸R(i i = 1,2,  ..., N),每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的位置;
[0023] 每个开关模块是N个子阵列Si的成员,每个子阵列Si包括Ri个开关模块,所述开关模块的坐标仅关于其在第i个维度上的位置而不同,并且N个子阵列中的每一个与不同维度相关联,并且
[0024] 每个开关模块具有:
[0025] 用于连接到输入装置和/或输出装置的客户端部分;
[0026] 第一光纤部分和第二光纤部分,其被配置为处理信号并与其他开关模块通信,所述第一光纤部分和所述第二光纤部分中的每一个具有发射侧和接收侧,
[0027] 其中所述第一光纤部分的发射侧包括:
[0028] 用于接收第一电子信号的发射侧输入端,所述第一电子信号承载关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
[0029] 所述第二光纤部分的接收侧输出端或
[0030] 输入装置,其经由所述客户端部分;
[0031] 调制器,其用于将所述第一电子信号转换为包含相同信息的第一多个光学信号,所述第一多个光学信号中的每一个的波长是基于所述目的地信息进行选择;
[0032] 具有输入端和输出端的发射侧无源路由器,来自给定输入端的光学信号的路径取决于该光学信号的波长,
[0033] 其中所述第一光纤部分的接收侧包括:
[0034] 具有输入端和输出端的接收侧无源路由器,其中通过所述接收侧无源路由器的光学信号的路径取决于该光学信号的波长,
[0035] 每个接收侧无源路由器的输入端光学地连接到相同子阵列中的每个其他开关模块上的第一无源路由器的输出端,并且被配置为从该输出端接收光学信号;
[0036] 光电检测器,其用于将来自接收侧无源路由器的第二多个光学信号转换成对应的第二电子信号;以及
[0037] 接收侧输出端,其用于将所述第二电子信号发送到以下任一个:
[0038] 所述第二光纤部分的发射侧输入端,或
[0039] 输出装置,其经由所述客户端部分。
[0040] 根据本发明的第二方面的光电开关赋予相同的优点,其提供用于将光学信号从输入装置传送到输出装置的光电开关,所述光电开关包括互连开关模块阵列,所述开关模块通过互连光纤互连,其中:
[0041] 所述开关模块被布置成N维阵列,第i个维度具有尺寸Ri(i = 1, 2, ..., N),每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的位置;
[0042] 每个开关模块是N个子阵列Si的成员,每个子阵列Si包括Ri个开关模块,所述开关模块的坐标仅关于其在第i个维度上的位置而不同,并且N个子阵列中的每一个与不同维度相关联,并且
[0043] 每个开关模块具有:
[0044] 用于连接到输入装置或输出装置的客户端部分;
[0045] 第一光纤部分和第二光纤部分,每个用于处理信号并与其他开关模块通信,所述第一光纤部分具有发射侧和接收侧,
[0046] 其中所述第一光纤部分的发射侧包括:
[0047] 用于接收第一电子信号的发射侧输入端,所述第一电子信号承载关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
[0048] 所述第二光纤部分的接收侧输出端或
[0049] 输入装置,其经由所述客户端部分;
[0050] 调制器,其用于将所述第一电子信号转换成包含相同信息的第一多个光学信号;
[0051] 发射侧多路复用器,其用于将所述第一多个光学信号转换为多路复用的光纤信号,
[0052] 发射侧有源开关,其具有用于接收所述多路复用光纤信号的输入端以及至少(Ri-1)个输出端,每个输出端与相同子阵列中的其他开关模块中的一个相关联,所述发射侧有源开关被配置为基于所述目的地信息将所述多路复用光纤信号从其输入端引导到其输出端中的任何一个;
[0053] 其中所述第一光纤部分的接收侧包括:
[0054] 接收侧有源开关,其具有至少(Ri-1)个输入端,每个输入端与相同子阵列中的其他开关模块中的一个相关联;以及输出端,所述至少(Ri-1)个输入端各自被配置为从相同子阵列中的其他开关模块中的一个的发射侧有源开关的输出端接收多路复用的光纤信号,并且被配置为将所述多路复用的光纤信号从接收所述信号的输入端引导到输出端;
[0055] 接收侧解复用器,其用于从所述接收侧有源开关接收多路复用的光纤信号,并且被配置为将其转换为第二多个光学信号;
[0056] 光电检测器,其用于将第二多个光学信号转换成对应的第二电子信号;以及[0057] 接收侧输出端,其用于将所述第二电子信号发送到以下任一者:
[0058] 所述第二光纤部分的发射侧输入端,或
[0059] 输出装置,其经由所述客户端部分。
[0060] 在本发明的上述第二方面的实施方案中,分别在接收侧和发射侧有源开关上需要至少(Ri-1)个输入端/输出端。以这种方式,每个发射侧有源开关能够耦合到子阵列中的每个其他开关模块上的接收侧有源开关。然而,优选的是,发射侧和接收侧有源开关分别具有Ri个输出端/输入端。然后,每个开关模块的第一光纤部分的发射侧也可以形成与同一开关模块上的该第一光纤部分的接收侧的连接。这可能是有用的,例如在测试场景中。
[0061] 本发明的第一和第二方面提供了光电开关,其具有作为其基础的全网状或广义超立方体状拓扑结构。然而,这些拓扑结构提供的优点也可以由采用“星形”网络拓扑结构的光电开关提供。因此,本发明的第三方面提供了一种用于将光学信号从输入装置传送到输出装置的光电开关,所述光电开关包括互连开关模块阵列,所述开关模块通过互连光纤互连,其中:
[0062] 所述开关模块被布置成N维阵列,第i个维度具有尺寸R(i i = 1, 2,  ..., N),每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的位置;
[0063] 每个开关模块是N个子阵列Si的成员,每个子阵列Si包括:
[0064] Ri个开关模块,其坐标仅关于其在第i个维度上的位置而不同,所述N个子阵列中的每一个与不同的维度相关联,以及
[0065] 一组无源路由器,每个无源路由器具有输入端和输出端,从给定输入端通过无源路由器的光学信号的路径取决于该光学信号的波长;
[0066] 每个开关模块具有:
[0067] 用于连接到输入装置或输出装置的客户端部分;
[0068] 第一光纤部分和第二光纤部分,每个用于处理信号并与其他开关模块通信,所述第一光纤部分具有发射侧和接收侧,
[0069] 其中所述第一光纤部分的发射侧包括:
[0070] 用于接收第一电子信号的发射侧输入端,所述第一电子信号承载关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
[0071] 所述第二光纤部分的接收侧输出端或
[0072] 输入装置,其经由所述客户端部分;
[0073] 调制器,其用于将所述第一电子信号转换成包含相同信息的第一多个光学信号;
[0074] 其中与给定子阵列相关联的所述无源路由器组中的每个无源路由器被配置为从该子阵列中的每个开关模块上的调制器接收所述第一多个光学信号中的一个,并将该光学信号引导到其输出端中的一个,这取决于该光学信号的波长以及其到达的所述无源路由器的输入端,并且
[0075] 其中所述第一光纤部分的接收侧包括:
[0076] 光电检测器,其被配置为从所述无源路由器组接收第二多个光学信号,并将所述第二多个光学信号转换为对应的第二电子信号;
[0077] 接收侧输出端,其用于将所述第二电子信号发送到以下任一个:
[0078] 所述第二光纤部分的发射侧输入端,或
[0079] 输出装置,其经由所述客户端部分。
[0080] 本发明的第四方面提供了基于星形网络拓扑结构原理工作的另一种光电开关。更具体地,本发明的第四方面提供了一种用于将光学信号从输入装置传送到输出装置的光电开关,所述光电开关包括互连开关模块阵列,所述开关模块通过互连光纤互连,其中:
[0081] 所述开关模块被布置成N维阵列,第i个维度具有尺寸Ri(i = 1, 2,  ..., N),每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的位置;
[0082] 每个开关模块是N个子阵列Si的成员,每个子阵列Si包括:
[0083] Ri个开关模块,其坐标仅关于其在第i个维度上的位置而不同,所述N个子阵列中的每一个与不同的维度相关联,以及
[0084] 光纤有源开关,其具有Ri个输入端和Ri个输出端,被配置为将信号从所述Ri个输入端中的任何一个引导到所述Ri个输出端中的任何一个,这取决于包含在所述信号中的目的地信息;
[0085] 每个开关模块具有:
[0086] 用于连接到输入装置或输出装置的客户端部分;
[0087] 用于处理信号并与其他开关模块通信的第一光纤部分,所述第一光纤部分具有发射侧和接收侧,
[0088] 其中所述第一光纤部分的所述发射侧包括:
[0089] 用于接收第一电子信号的发射侧输入端,所述第一电子信号承载关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
[0090] 所述第一光纤部分的接收侧输出端或
[0091] 输入装置,其经由所述客户端部分;
[0092] 调制器,其用于将所述第一电子信号转换成包含相同信息的第一多个光学信号;
[0093] 发射侧多路复用器,其用于将所述第一多个光学信号转换成多路复用的光纤信号;
[0094] 具有输入端和N个输出端的发射侧有源开关,其用于接收所述多路复用的光纤信号并将其引导到所述N个输出端中的一个,所述输出端的选择是基于所述目的地信息,并且其中所述N个输出端中的每一个连接到包括在所述N个子阵列中的每一个中的所述光纤有源开关的Ri个输入端中的一个,该开关模块是所述N个子阵列中的成员;
[0095] 其中,每个光纤有源开关被配置为基于包含在到达其Ri个输入端中的一个的多路复用光纤信号中的目的地信息,将所述多路复用光纤信号从连接到开关模块的发射有源开关引导到其Ri个输出端中的一个,并且:
[0096] 其中所述第一光纤部分的接收侧包括:
[0097] 具有N个输入端和输出端的接收侧有源开关,所述N个输入端中的每一个被配置为从包括在所述子阵列中的N个光纤有源开关中的一个的输出端接收多路复用的光纤信号,所述开关模块是所述子阵列的成员,并且被配置为将所接收的多路复用光纤信号从接收信号的输入端引导到输出端;
[0098] 接收侧解复用器,其用于将所述多路复用的光纤信号转换成第二多个光学信号;
[0099] 光电检测器,其被配置为从所述无源路由器组接收所述第二多个光学信号,并将所述第二多个光学信号转换为对应的第二电子信号;以及
[0100] 接收侧输出端,其用于将所述第二电子信号发送到以下任一个:
[0101] 所述第一光纤部分的发射侧输入端,或
[0102] 输出装置,其经由所述客户端部分。
[0103] 为了避免混淆,应注意的是,在下文中,“光纤部分”用于描述光纤端口本身,即开关模块和网络光纤之间的接口(即,开关模块之间的链路),以及开关模块内的所有相关联的组件。类似地,“客户端部分”用于描述客户端端口本身,即与外部客户端和开关模块内的所有相关联组件的接口。输入装置和/或输出装置可以是指外部客户端,诸如服务器或主机。
[0104] 根据以上提出的本发明的各个方面的开关模块提供了构建可扩展的多维(即N > 1,使用应用中较早引入的术语)光电开关所需的功能,所述光电开关能够在一个开关模块的客户端部分处接收的光学信号传送到另一个开关模块的客户端部分。与调制器和光电检测器相关联的从电到光学信号的转换允许大部分数据传送发生在光学域中,而不是发生在电子域中。因此,可以以比电子域中的情况更低的功率损耗,以更高的速率和长距离传输数据。另外,光学域的使用使得能够使用波分复用。在交换期间使用光学域的另一个重要优点(例如在本发明的第二和第四方面中)是比特率独立性,其中交换平面数据以封包速率而不是比特率操作。
[0105] 第i个维度的“尺寸”Ri最容易通过考虑例如 以4×5×6阵列布置的120个开关模块而进行理解。在这种情况下,R1 = 4,R2 = 5,R3 = 6。换句话说,第i个维度的尺寸也可以被认为是所述阵列在与该维度相关联的方向上的长度。必须强调的是,这并不意味着模块被物理地布置成例如3D阵列,其仅仅表示开关模块之间的连接,如下面更详细描述。这从开关模块可以布置成5D阵列这个事实显而易见,这在“真实”空间中是不可能的。类似地,“坐标”不是指阵列内的开关模块的物理空间中的位置。它们仅表示阵列中的开关模块相对于它们之间的连接的相对位置。
[0106] 本发明的第一、第二、第三和第四方面可以具有以下任选特征的任何一种组合,或就它们是可兼容的而言,具有以下任选特征的任何组合。
[0107] 在所有开关模块的光纤部分之间形成的并包括有源开关的整体互连网可以称为“光纤”或“交换光纤”,并且包括连接各种部件的光学链路。光学链路优选地是光纤,并且优选地是双向的。双向性可以通过将两个或更多个光学链路一起绑在单个电缆内部来实现。另选地,链路可以是嵌入在例如PCB或波导中的光聚合物波导的形式,所述PCB或硅波导形成在衬底中或衬底上。贯穿本申请,术语“有源开关”是指能够主动地控制信号在其内穿过的路径的开关类型。因此,有源开关能够提供全网状连接,而不需要连接开关模块等的全网状光纤。有源开关优选地以非阻塞方式操作,并且更优选地以严格而不是可重新布置的非阻塞方式操作。本发明的第二和第四方面的有源开关仅连接到开关模块而不连接到客户端装置。
[0108] 类似地,术语无源路由器是指信号通过的路径仅由信号本身的特性确定的组件。更具体地,如在本发明的第一和第三方面中,例如,发射侧无源路由器的输出端纯粹基于光学信号到达的输入端和该光学信号的波长来选择。无需外部控制来选择输出端,并且只有由于无源路由器本身的构造和特性,路径才被“选择”。在本发明的优选实施方案中,无源路由器是无源光学路由器,并且优选地是循环阵列波导光栅(CAWG)。
[0109] 在优选实施方案中,光电开关可以是二维光电开关的形式,包括连接成X×Y阵列的开关模块,其具有X行(Y开关模块)和Y列(X开关模块)。在这些二维实施方案中,子阵列可以是开关模块的行或列。特定地,在本发明的第一方面的实施方案中,给定行(或列)中的每个开关模块经由无源路由器以全网格方式互连。在本发明的第二方面的实施方案中,同样适用,除了全网格互连性由每个开关模块上的有源开关提供之外。
[0110] 在本发明的第三和第四方面的实施方案中,存在与每个子阵列相关联(即,与每行和每列相关联)的共享节点结构或集线器。在第三方面,节点结构呈一组无源路由器的形式,该组无源路由器连接到行/列中的每个开关模块。这与其中开关模块彼此直接连接而不是经由节点结构的第一和第二方面形成对比。在第四方面,节点结构呈Ki光纤有源开关组的形式。
[0111] 在其他优选实施方案中,光电开关可以是三维光电开关的形式,其具有布置成X×Y×Z阵列的开关模块,所述阵列具有:
[0112] X列(每列由Y×Z阵列构成),
[0113] Y行(每行由X×Z阵列构成),和
[0114] Z层(每层由X×Y阵列构成)。
[0115] 然后,开关模块的每个子阵列,每个子阵列位于例如相同列/行中但位于不同层中,可以以全网格方式互连(第一方面),经由有源开关以全网格方式互连(第二方面),经由一组无源路由器互连(第三方面),或经由两个有源开关互连(第四方面)。
[0116] 从上文清楚可见的是,阵列中的每个开关模块需要大量的光纤部分,其数量大于或等于其中期望交换光学信号的维度的数量。更具体地,每个光纤部分与其中给定开关模块是其一部分的不同子阵列相关联。因此,开关模块可以经由与所需的维度(即子阵列)相关联的该开关模块的光纤部分,使用上述路由将数据传送到与其共享子阵列的任何其他开关模块。在发生光学跳后,信号到达不同开关模块,所述不同开关模块是不同于第一子阵列的一组子阵列的成员,并且然后可以执行相同的过程以将数据发送到具有与其相同的子阵列的另一个开关模块。以这种方式,从一个开关模块到另一个开关模块的所有数据传送可以发生在一系列光学(和/或电子)跳中。
[0117] 使用上述布置,可以通过最多N个光学跳(其中,光学跳是涉及信号经由有源开关橫越光纤的跳)将数据从阵列中的任何开关模块发送到阵列中的任何其他开关模块。在本发明中,这是可能的,因为各个开关模块能够用作中间开关模块,即因为第一光纤部分的输出端可以将信号(例如数据封包)发送到同一开关模块上的另一个光纤部分的输入端,并且相应地,开关模块上的第一部分的输入端可以从第二开关模块的输出端接收数据。电子信号可以使用集成开关(诸如电子交叉开关)或电子共享存储器开关在同一开关模块上的两个光纤部分之间传送,从而提供两个光纤部分、两个客户端部分之间的连接,或彼此之间的连接。因此,在数据传送操作期间,数据可以对位于同一子阵列中的另一个开关模块上的另一个光纤部分执行光学跳。然后,数据可以通过开关模块本身执行电子跳转到与不同子阵列相关联的光纤部分,并且然后可能发生第二光学跳,该过程重复N次,直到数据封包到达其最终目的地,即具有客户端部分的开关模块,数据(例如,呈封包形式)经由所述客户端部分被传送到输出装置。因此,优选地,在每个开关模块上至少有N个光纤部分。
[0118] 本发明的第四方面的实施方案的操作可以与第一到第三方面的实施方案略有不同。特定地,本发明第四方面的实施方案的每个光纤部分的发射侧包括具有一个输入端和N个输出端的发射侧有源开关。这些输出端中的每一个与N个维度中的每一个的交换相关联,并且因此连接到给定开关模块是其成员的每个子阵列的有源开关。在交换期间,基于目的地信息选择适当的维度,并且然后发射侧有源开关将复用的光纤信号传送到适当的光纤有源开关,以在该维度上进行交换。由于可以从单个光纤部分访问所有N个维度,所以在本发明的第四方面的实施方案中,每个开关模块可以具有少于N个光纤部分。然而,在优选实施方案中,仍然存在至少N个光纤部分,其提供增加的灵活性(见下一段)和改进的带宽。当使用少于N个光纤部分时,不可能在给定时槽中的多于一个子阵列中传送信号。在每个开关模块具有少于N个光纤部分的实施方案中,优选地,光纤部分在复用的光纤信号中采用更多的光波长以便满足带宽要求。在本发明的第四方面的实施方案中,每个开关模块具有多于单个的光纤部分,即,还包括用于处理信号和与其他开关模块通信的第二光纤部分,可以从第二光纤部分的接收侧输出端接收第一电子信号。类似地,接收侧输出端可以用于将信号发送到第二光纤部分以及第一光纤部分的发射侧输入端。
[0119] 在每个开关上存在多于N个光纤部分的情况下,提供了将光电开关扩展到更高维度的灵活性。例如,考虑具有组织成正方形阵列的M2模块的2D光电开关的情况。这可以通过以下动作扩展成具有组织成立方体阵列(即N2开关的N层)的M3开关模块的3D光电开关:经由例如新的有源开关或无源路由器组连接(新定义的)层中的每一个中具有相同行和相同列的每个开关模块上的空闲光纤部分,所述有源开关或无源路由器用于定义新的子阵列和相关联的有源开关。也可以通过提供多于一个的光纤部分来将开关模块连接到同一子阵列内的另一个开关模块来利用过多的光纤端口。
[0120] 开关模块的发射侧优选地还包括发射侧封包处理器,所述封包处理器被配置为接收第一电子信号,所述信号呈具有包含目的地信息的封包标头的封包的形式。除了数据本身之外,包括在封包中的信息还可以包括与该封包的目的地(例如,封包应该被最终发送到的客户端部分)相关的信息。封包标头还可以包括各种信息,诸如:源/目的地地址、封包长度、协议版本、序列号、有效载荷类型、跳数、服务质量指示符等。
[0121] 发射侧封包处理器可以被配置为执行封包分段,其中具有相同目的地开关模块的数据的封包被布置成具有预定尺寸的,并且其中数据封包可以被分离成多个封包片段,布置成对应的多个帧中,并且其中任选地,一个帧可以包含来自一个或多个数据封包的数据。
[0122] 每个封包片段优选地具有其自己的封包片段标头,所述标头包括至少识别封包片段原始所属的封包的信息,使得可以在后续处理和传输之后重新构建所述封包。例如,考虑封包处理器被配置为使得帧的有效载荷尺寸为1000B,并且400B、800B和800B的三个封包被输入到开关模块中的情况。如果这些封包中的每个都要在单独帧中发送,每个帧发送一个封包,那么这将表示效率为(400 + 800 + 800)/ 3000 = 67%。然而,通过使用封包分段,第一帧可以包括400B封包和第一800B封包的200B,并且然后第二帧可以包括第二800B封包和第一800B封包的剩余的200B。这导致效率为100%。由此过程构建的帧表示自己的数据封包,并且因此当封包经历多于一个的光学跳时在中间开关模块处可能发生进一步的分段,以便到达目标开关模块。
[0123] 为了最大化效率,在帧的填充比例达到预定阈值,优选超过80%,更优选地可超过90%,以及最优选100%之前,可能不发生帧的后续处理(例如,转发所述帧以转换为第一多个光学信号)。另选地,可以在经过预定时间量之后发送封包用于后续处理。以这种方式,如果给定开关模块的数据封包不再到达封包处理器,则仍然低于阈值填充比例的帧仍然可以被发送用于后续处理,而不是停滞在封包处理器上。预定时间量可以在50 ns和1000 ns之间,但优选地在50 ns和200 ns之间。最优选地,时间间隔为约100 ns。因此,发射侧封包处理器可以包括发射侧存储器或与其相关联,其中在存储器构造期间临时存储不完整帧。经过的时间可以根据流量需求而变化;通常情况下,流量流率越高,经过的时间越短,并且较低的流量流率可能导致时间间隔增加。
[0124] 当封包处理器被配置为执行封包分段时,第一光纤部分的接收侧还可以包括接收侧封包处理器,所述封包处理器被配置为当原始封包散布在多于一个封包上时重新创建来自封包片段的原始封包。这可以参考上述封包片段标头来完成。当封包在从源到目的地的行程中经历连续的中间开关模块的若干单独分段时,可以延迟接收侧封包处理器对封包的最终重组,直到原始封包的所有组成部分都到达目的地开关模块。因此,接收侧封包处理器可以包括接收侧存储器或与其相关联,以便临时存储组成部分。
[0125] 调制器可以被配置为从与该调制器相关联的光源接收光。更优选地,第一光纤部分的发射侧包括多个调制器,并且具体地包括光学调制器。光学调制器可以是相位或强度调制器,例如电吸收调制器(EAM)、弗兰茨-凯第希(Franz-Keldysh)调制器、基于量子限制的斯塔克(Stark)效应的调制器、赫-曾德尔(Mach-Zehnder)调制器。多个调制器优选地包括8个调制器。每个调制器可以仅与单个光源相关联,或者可以由更少的光源点亮,其中光源在调制器之间共享。每个调制器可以被配置为从发射侧输入端或发射侧封包处理器接收电子信号,以及从光源接收未调制的光。通过组合这两个,调制器产生具有与来自光源的未调制光相同的波长的调制光学信号,并承载原始电子信号所承载的信息。然后,此调制的光学信号可以被传输到发射侧多路复用器。光源优选地为激光器的形式,以便产生限于窄波段的基本单色的光束。为了最小化损耗,调制器优选地被配置为接收具有电磁光谱的C波段或L波段的波长(即1530 nm至1625 nm)的光。更优选地,光具有落入C波段或“铒窗”内的波长,其波长为1530 nm至1565 nm。
[0126] 在本发明的第一方面的实施方案中,光源优选地是可变波长光源,并且更优选地是可调谐激光器。此外,在本发明的第一方面的实施方案中,优选地,存在与多个调制器中的每个调制器相关联的可调谐激光器。这确保了根据由该调制器调制的信号中存储的目的地信息,可以为每个调制器选择不同波长的光。
[0127] 在采用波分复用的本发明的第二和第四方面的实施方案中,类似地,存在与调制器阵列中的每个调制器相关联的单独光源。然而,由于路由是由有源开关而不是无源路由器执行的,所以不需要改变调制信号的波长。因此,在本发明的第二方面的实施方案中,光源优选地是固定波长光源,其比较便宜并且可被更广泛地使用。在调制器阵列中,与每个调制器相关联的光源应该具有不同的波长,具有不重叠的带宽,以便最小化多路复用器中的串扰。
[0128] 在本发明的第三方面的实施方案中,优选地,每个调制器共享光源。为了选择无源路由器组的正确输出端,如上所述,优选地是CAWG,而且有利的是能够改变待调制的光的波长。因此,在本发明的这个方面的优选实施方案中使用可变波长光源,优选地使用可调激光器。
[0129] 当光源是激光器时,调制器可以是电吸收调制器(EAM)的形式,其使用改变的电压来调制激光器的光的强度以承载包含在电子信号中的信息。使用EAM意味着仅改变激光器的光的强度而不改变频率,并且从而防止调制的光学信号的波长的任何变化,即如第一多个光学信号中的特征表现。
[0130] 在存在多个调制器的情况下,发射侧封包处理器还可以被配置为执行封包分切,其中将帧(如由上述封包分段处理构成)或数据封包分切成第一多个电子信号。然后将第一多个电子信号中的每一个发送到多个调制器中的不同调制器,由此将其转换为第一多个光学信号。
[0131] 光电检测器可以包括用于将第二多个光学信号转换成第二多个电子信号的光电二极管。更优选地,接收侧可以包括多个光电检测器。接收侧封包处理器可以被配置为将每个表示封包分片的第二多个电子信号重新组合成第二电子信号。通过在发送到另一开关模块之前将封包或帧划分成多个分片,可以使用由多路复用器复用到单个光学链路中的多个不同波长来发送数据(即在本发明的第三和第四方面的实施方案中)。另选地,在本发明的第二方面的实施方案中,通过将信号分切并将其发送到无源路由器组上,结果并行效应提供更大的带宽。换句话说,可以并行发送若干条信息,从而实现更有效的数据传送。
[0132] 在发射侧封包处理器被配置为执行封包分切和封包分段的情况下,首先发生封包分段步骤(即,数据帧的形成),然后发生帧的分切。相应地,在接收信号的目的地(或中间)开关模块时,封包处理器在从帧重构原始封包之前将第二多个电子信号(即封包分片)重新组合成单个第二电子信号。
[0133] 在分段之后,构建帧,每个帧包含仅意在用于单个目的地开关模块的数据。之后,根据本发明的一些方面,将数据转换成波长可能不同的第一多个光学信号。
[0134] 优选地,开关模块被配置为以突发模式操作,其中开关模块被配置为在连续的突发中将多个光学信号发送到光纤(或在一些实施方案中,经由多路复用器),每个突发包括来自单帧数据的封包和/或封包片段,并且使得每个突发仅包括具有相同目的地模块的封包和/或封包片段。每个连续突发可以包括具有不同目的地开关模块的数据帧。有序突发的对可以分隔预定的时间间隔,其可以在50 ns和1000 ns之间,但优选地在50 ns和200 ns之间。最优选地,时间间隔为约100 ns。优选地,单个子阵列中的所有光纤部分被配置为同步地操作,即每个光纤部分同时向光纤发送突发。
[0135] 发射侧封包处理器还可以被配置为对输入的数据封包执行错误校正。这可以通过诸如错误检测和重新传输或前向错误校正(FEC)等手段来完成。另外,开关模块还可以包括管理部分,所述管理部分被配置为执行光纤管理过程,包括初始化、编程路由/转发表、故障报告、诊断、统计报告和计量。
[0136] 以下段落特定地涉及本发明的第二和第四方面的控制方面。为了控制跨光纤的数据交换,开关模块的每个子阵列可以包括仲裁器,所述仲裁器被配置为在可能的情况下,基于存储在待交换的数据封包中的目的地信息控制可能存在于该子阵列中的有源开关或开关模块的操作。类似地,在第一和第三方面中,为了控制开关模块本身,可以存在仲裁器,以确保光学信号被发送以便最大程度地不阻塞。这允许提供确保所有数据以非阻塞方式到达其目的地的路由,并且最小化瓶颈的出现。仲裁器可以连接到控制有源开关的操作的开关驱动器。仲裁器可以连接到其所包括的子阵列的每个开关模块中的发射侧封包处理器。另选地,每个开关模块的每个光纤部分还可以包括控制器,仲裁器可以经由控制器连接到发射侧封包处理器。当在发射侧封包处理器处接收到数据封包时,发射侧封包处理器被配置为向仲裁器发送请求,所述请求优选地识别数据封包的目的地开关模块。发射侧封包处理器可以在查找表中或以其他方式查找其所连接的有源开关的哪个输出端对应于作为该请求的主题的目的地开关模块。更具体地,输出端连接到该目的地开关模块或下一个光学跳应该发生的中间开关模块,然后向仲裁器请求该输出端本身。因此,发射侧封包处理器和仲裁器中的一个或两个可以包括查找表,其包含使子阵列中的开关模块与有源开关的Ri个输出端相关联的信息。当进行请求时,仲裁器然后建立一种方案,其确保每个封包能够最大程度地执行其下一个光学跳。更具体地,仲裁器可以被配置为执行二分图匹配算法,以便计算有源开关的Ri个输入端和Ri个输出端之间的配对,使得每个输入端与至多一个输出端配对,反之亦然。当然,在一些情况下,在例如若干光纤部分发送大量的数据且这些数据全部意在用于有源开关的相同输出端的情况下,不能满足所述请求。因此,仲裁器可以被配置为将与不能得到满足的请求有关的信息存储在请求队列中。然后,直到这些请求得到满足,相关联的数据才被缓存在开关模块上,例如,在发射侧封包处理器中或在单独的发射侧存储器中。以这种方式,不能得到满足的请求被延迟而不是被丢弃,例如当有源开关处发生局部瓶颈时。换句话说,仲裁器维持开关模块上的缓冲存储器或虚拟输出队列(VOQ)的状态,这个状态可以是计数器的形式(例如,计数每个VOQ的封包或字节数量),或者可以是存储封包描述符的FIFO(先进先出)的形式。然而,实际封包本身仍然存储在开关模块上而不是仲裁器上。
[0137] 当封包有必要执行多于一个跳以便达到其目的地开关模块时,可以从源开关模块和目的地开关模块的坐标之间的比较完全推断出路由。例如,在称为维度有序路由的过程中,第一跳可以匹配源和目的地开关模块的第一坐标,第二跳可以匹配源和目的地开关模块的第二坐标等等,直到所有坐标匹配,即直到封包已传送到目的地开关模块。例如,在四维网络中,如果源开关模块具有坐标(a, b, c, d),并且目的地开关模块具有坐标(w, x, y, z),则维度有序路由可能是:(a, b, c, d)→(w, b, c, d)→(w, x, c, d)→ (w, x, y, d)→(w, x, y, z)。在沿着路由的任何一点处,封包处理器可以将源开关模块的坐标与目的地开关模块的坐标进行比较,并确定哪些坐标还不匹配。然后,其将决定沿着不匹配的方向路由,例如,指数最低,或指数最高。
[0138] 在本发明的第二和第四方面的实施方案中,一个、一些或全部有源开关可以是光学有源开关的形式。这种光学有源开关可以基于Mach-Zehnder干涉仪(MZI)的布置,并且更具体地可以是MZI级联开关的形式。MZI级联开关包括多个MZI,每个MZI具有:在输入耦合器处分裂的两个臂,其中两个臂将分离路径馈送到输出耦合器中,分离路径在输出耦合器中重新组合;以及两个输出部分。多个MZI优选地布置成提供从MZI级联开关的每个输入端到每个输出端的路径。臂在最大程度上可以具有相同的长度。另选地,在期望具有默认输出端的情况下,臂可能是不平衡的。每个MZI可以在一个或两个臂处包括电光区域,其中折射率取决于经由一个或多个电极施加到所述区域的电压。因此,可以通过经由电极施加偏压来控制行进通过电光区域的光的相位差。通过调整相位差,并且因此调整输出耦合处产生的干扰,可以将光从MZI的一个输出端交换到另一个输出端。优选地,MZI级联开关具有Ri个输入端和Ri个输出端,并且这些可以由例如多个1×2和2×1 MZI组成,其被布置成提供从每个输入端到每个输出端的路径。当Ri为5或更大时,MZI级联开关或诸如此等的任何其他有源开关比用于连接Ri互连开关模块的全网格有利,因为全网格需要1/2。Ri(Ri -1)光纤连接所有的光纤部分,而有源开关仅需要2Ri根光纤。可以通过构建Ri“1 x Ri解复用树”和R“i Ri x 1多路复用树”来创建具有Ri = 2n输入端和输出端的MZI级联开关,其中每个树包括1×2(解复用)或2 x 1(多路复用)开关的n级,其中2k开关在第k级。一个附加端口可以通过以下构建而支撑在每个级联开关上:在每一侧上构建Ri + 1个树,并省略内部连接,使得输入端不连接到与本身连接到的开关相同的输出端。诸如此等的MZI级联开关在很大程度上与波长无关,因此能够将整个复用的光纤输出信号从输入端交换到输出端,而不需要在输入端和输出端处进行任何解复用/多路复用。
[0139] 另选地,有源开关可以是诸如电子交叉开关的电子有源开关的形式。更优选地,电子有源开关可以是电子共享存储器开关。电子共享存储器开关是还包括存储器的电子交叉开关。开关内存储器的存在是有利的,因为这意味着开关不仅可以执行切换,而且可以执行缓冲,即当在电子共享存储器开关处出现瓶颈时存储封包队列,如上所述。这意味着可以简化封包处理器上的电子器件。
[0140] 为了在本发明的架构中使用电子而不是光学有源开关,多路复用的光纤信号必须被转换为可以电子地交换的信号。因此,电子有源开关可以包括在每个输入端处用于将复用的光纤信号从光学信号转换成电子有源切换信号的光电转换器;以及在每个输出端处用于将电子有源切换信号转换成复用的光纤信号形式的光学信号的电光转换器,其中电子有源开关被配置为将电子有源开关信号从其Ri个输入端中的任一个切换到其Ri个输出端中的任一个。此外,为了处理信号的复用性质,光电转换器可以包括解复用器以将复用的光纤输出信号解复用为第一多个中间光学信号,每个中间光学信号优选地通过对应的多个光电检测器转换成中间电子有源切换信号以切换到期望的输出端,并且电光转换器可以被配置为将多个开关中间电子有源切换信号转换成第二多个中间光学信号,并且还包括多路复用器以多路复用所述第二多个中间光学信号以形成多路复用的光纤输入信号。在优选实施方案中,电子有源开关可以被配置成当与所述封包或帧相关的请求不能被满足时,临时存储封包或数据帧的队列。
[0141] 多路复用器、发射侧多路复用器、解复用器和接收侧解复用器中的任何一个或全部优选地是作为无源装置的阵列波导光栅(AWG)的形式。AWG允许沿着单个光纤承载多个不同波长的光学信号。由于由调制器产生的多个调制光学信号的波长全部不同,所以由AWG产生的多路复用的光纤信号几乎不产生串扰,因为不同波长的光仅线性干扰。另选地,代替AWG的是,多路复用的信号可以广播到多个波长选择性滤波器,每个滤波器被调谐成接收期望的分裂信号中的一个的波长。
[0142] 交换系统诸如本发明的开关中的重要考虑是带宽。在下面的讨论中,“带宽”用于指代特定部分能够实现的数据传送的最大速率,并且通常以千兆比特/每秒(这里缩写为“Gbps”)来测量。具体地,重要的是确保在本地和全球范围内都有带宽保护。为了确保在给定的时间内不会有比在同一时间传输远离开关模块更多的数据进入开关模块(即导致局部于该开关模块上的瓶颈),开关模块上的客户端部分的总带宽优选地不超过同一开关模块上的光纤部分的总带宽。更优选地,开关模块上的光纤部分的总带宽超过相同开关模块上的客户端部分的总带宽,并且最优选地,开关模块上的每个光纤部分的带宽超过或等于该开关模块上的所有客户端部分的总带宽。以这种方式,可以避免由来自多个客户端部分的全部引导到同一开关模块上的相同光纤部分的意外的大量输入数据导致的局部瓶颈。特定地,这允许所有信号被多路复用在一起,以便随后以非阻塞的方式进行传输。
[0143] 在本发明的方面的优选实施方案中,有源开关或无源路由器可以位于光学背板上或光学背板中,并且优选地连接到光学背板。优选地,背板包含用于将开关模块连接到有源开关或无源路由器的光学链路,从而提供每个开关模块与每个所述开关模块与之共享子阵列的每个有源开关/无源路由器之间的连接。更具体地,每个光学链路可以提供用于在开关模块上的发射侧多路复用器和无源路由器/有源开关的输入端之间传送多路复用的光纤输出信号的连接。当背板与如上所述的光学有源开关一起使用时,可以使用有源光学背板模块(AOBM)。开关模块可以与背板分离或拆卸,使得它们可以根据外部要求重新布置。因此,开关模块还可以包括用于连接到光学背板的连接构件。连接构件可以包括与MPO连接器或类似物链接的单模式光纤阵列。
[0144] 根据本发明的第五方面,提供一种用于将光学信号从输入装置传送到输出装置的光电开关,所述光电开关包括互连开关模块阵列,所述开关模块通过互连光纤互连,其中:
[0145] 所述开关模块被布置成N维阵列,第i个维度具有尺寸R(i i = 1, 2,  ..., N),每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的位置;
[0146] 每个开关模块是N个子阵列Si的成员,每个子阵列Si包括Ri个开关模块,所述开关模块的坐标仅关于其在第i个维度上的位置而不同,并且N个子阵列中的每一个与不同维度相关联,并且
[0147] 每个开关模块具有:
[0148] 用于连接到输入装置和/或输出装置的客户端部分;
[0149] 第一光纤部分和第二光纤部分,其被配置为处理信号并与其他开关模块通信,所述第一光纤部分和所述第二光纤部分中的每一个具有发射侧和接收侧,
[0150] 其中所述第一光纤部分的发射侧包括:
[0151] 用于接收第一电子信号的发射侧输入端,所述第一电子信号承载关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一下接收:
[0152] 所述第二光纤部分的接收侧输出端或
[0153] 输入装置,其经由所述客户端部分;
[0154] 调制器,其用于将所述第一电子信号转换为包含相同信息的第一多个光学信号,所述第一多个光学信号中的每一个的波长是基于所述目的地信息进行选择;
[0155] 其中所述第一光纤部分的接收侧包括:
[0156] 光电检测器,其用于将从所述光纤接收的第二多个光学信号转换成对应的第二电子信号;以及
[0157] 接收侧输出端,其用于将所述第二电子信号发送到以下任一个:
[0158] 第二光纤部分的发射侧输入端或
[0159] 输出装置,其经由所述客户端部分,
[0160] 其中光纤包括光学连接在给定子阵列中的第一开关模块的光纤部分的发射侧和同一子阵列中的另一个开关模块的光纤部分的接收侧之间的无源路由器。
[0161] 根据本发明的第六方面,提供一种用于将光学信号从输入装置传送到输出装置的光电开关,所述光电开关包括互连开关模块阵列,所述开关模块通过互连光纤互连,其中:
[0162] 所述开关模块被布置成N维阵列,第i个维度具有尺寸Ri(i = 1, 2, ..., N),每个开关模块具有一组相关联的坐标,所述坐标给出其关于所述N个维度中的每一个的位置;
[0163] 每个开关模块是N个子阵列Si的成员,每个子阵列Si包括Ri个开关模块,所述开关模块的坐标仅关于其在第i个维度上的位置而不同,并且N个子阵列中的每一个与不同维度相关联,并且
[0164] 每个开关模块具有:
[0165] 用于连接到输入装置或输出装置的客户端部分;
[0166] 第一光纤部分和第二光纤部分,每个用于处理信号并与其他开关模块通信,所述第一光纤部分具有发射侧和接收侧,
[0167] 其中所述第一光纤部分的发射侧包括:
[0168] 用于接收第一电子信号的发射侧输入端,所述第一电子信号承载关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
[0169] 所述第二光纤部分的接收侧输出端或
[0170] 输入装置,其经由所述客户端部分;
[0171] 调制器,其用于将所述第一电子信号转换成包含相同信息的第一多个光学信号;
[0172] 发射侧有源开关,其用于基于所述目的地信息将所述第一多个光学信号引导到其目的地开关模块;
[0173] 其中所述第一光纤部分的接收侧包括:
[0174] 接收侧有源开关,其用于将信号从光纤引导到接收侧输入端;
[0175] 光电检测器,其用于将来自接收侧输入端的第二多个光学信号转换成对应的第二电子信号;以及
[0176] 接收侧输出端,其用于将所述第二电子信号发送到以下任一个:
[0177] 所述第二光纤部分的发射侧输入端,或
[0178] 输出装置,其经由所述客户端部分。
[0179] 本发明的其他方面提供了将光学信号从输入装置交换到输出装置的方法,例如使用根据本发明的第一、第二、第三、第四、第五和第六方面的光电开关。在下面的定义中,源和目的地开关模块是指单个“跳”的起点和终点,而不是数据的原始源和最终目的地、数据封包或数据帧。
[0180] 在一个方面,可以提供一种用于使用根据本发明的第一方面的光电开关将光学信号从输入装置切换到输出装置的方法,所述方法包括以下步骤:
[0181] 在源开关模块的发射侧输入端处接收包含信息的第一电子信号,所述信息包括关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
[0182] 源开关模块的第二光纤部分的接收侧输出端,或
[0183] 输入装置,其经由源开关模块的客户端部分;
[0184] 将所述第一电子信号转换为包含相同信息的第一多个光学信号,基于目的地信息选择第一多个光学信号中的每一个的波长;
[0185] 使用发射侧无源路由器将多个光学信号朝向目的地开关模块路由,通过所述无源路由器的光学信号的路径取决于该光学信号的波长;
[0186] 使用目的地开关模块上的接收侧无源路由器,从发射侧无源路由器的输出端产生第二多个光学信号,通过接收侧无源路由器的光学信号的路径取决于该光学信号的波长;
[0187] 将所述第二多个光学信号转换为对应的第二电子信号;
[0188] 从目的地开关模块的接收侧输出端发送到以下任一个:
[0189] 目的地开关模块的第二光纤部分的发射侧输入端,或
[0190] 输出装置,其经由目的地开关模块的客户端部分。
[0191] 在另一方面,可以提供一种用于使用根据本发明的第二方面的光电开关将光学信号从输入装置切换到输出装置的方法,所述方法包括以下步骤:
[0192] 在源开关模块的发射侧输入端处接收包含信息的第一电子信号,所述信息包括关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
[0193] 源开关模块的第二光纤部分的接收侧输出端,或
[0194] 输入装置,其经由源开关模块的客户端部分;
[0195] 将所述第一电子信号转换成包含相同信息的第一多个光学信号;
[0196] 将所述第一多个光学信号多路复用为多路复用的光纤信号;
[0197] 使用源开关模块的发射侧有源开关传输多路复用的光纤信号,基于目的地信息选择多路复用的光纤信号所导向的发射侧有源开关的输出端;
[0198] 在目的地开关模块的接收侧有源开关的输入端处接收多路复用的光纤信号,并将多路复用的光纤信号引导到接收侧有源开关的输出端;
[0199] 解复用多路复用的光纤信号,以产生第二多个光学信号;
[0200] 将所述第二多个光学信号转换成对应的第二电子信号;
[0201] 从目的地开关模块的接收侧输出端发送到以下任一个:
[0202] 目的地开关模块的第二光纤部分的发射侧输入端,或
[0203] 输出装置,其经由目的地开关模块的客户端部分。
[0204] 在另一方面,可以提供一种用于使用根据本发明的第三方面的光电开关将光学信号从输入装置切换到输出装置的方法,所述方法包括以下步骤:
[0205] 在源开关模块的发射侧输入端处接收包含信息的第一电子信号,所述信息包括关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号从以下任一个被接收:
[0206] 源开关模块的第二光纤部分的接收侧输出端,或
[0207] 输入装置,其经由源开关模块的客户端部分;
[0208] 将所述第一电子信号转换成包含相同信息的第一多个光学信号;
[0209] 将第一多个光学信号中的每一个发送到作为与包含源和目的地开关模块的子阵列相关联的无源路由器组的一部分的相应无源路由器的输入端;
[0210] 使用所述无源路由器组将所述第一多个光学信号路由到目的开关模块,所述无源路由器的输出端形成第二多个光学信号;
[0211] 将所述第二多个光学信号转换成对应的第二电子信号;
[0212] 从目的地开关模块的接收侧输出端发送到以下任一个:
[0213] 目的地开关模块的第二光纤部分的发射侧输入端,或
[0214] 输出装置,其经由目的地开关模块的客户端部分。
[0215] 在另一方面,可以提供一种用于使用根据本发明的第四方面的光电开关将光学信号从输入装置切换到输出装置的方法,所述方法包括以下步骤:
[0216] 在源开关模块的发射侧输入端处接收包含信息的第一电子信号,所述信息包括关于所述第一电子信号的目的地开关模块的目的地信息,所述第一电子信号是从以下任一个被接收:
[0217] 源开关模块的第一光纤部分的接收侧输出端,或
[0218] 输入装置,其经由源开关模块的客户端部分;
[0219] 将所述第一电子信号转换成包含相同信息的第一多个光学信号;
[0220] 将所述第一多个光学信号多路复用为多路复用的光纤信号;
[0221] 使用源开关模块的发射侧有源开关将多路复用的光纤信号传输到包括在源开关模块是其成员的N个子阵列中的N个光纤有源开关中的一个,基于目的地信息选择光纤有源开关;
[0222] 使用所选择的光纤有源开关将多路复用的光纤信号传输到目的地开关模块上的接收侧有源开关,并将多路复用的光纤信号引导到接收侧开关模块的输出端;
[0223] 解复用多路复用的光纤信号,以产生第二多个光学信号;
[0224] 将所述第二多个光学信号转换成对应的第二电子信号;
[0225] 从目的地开关模块的接收侧输出端发送到以下任一个:
[0226] 目的地开关模块的第一光纤部分的发射侧输入端,或
[0227] 输出装置,其经由目的地开关模块的客户端部分。
[0228] 本发明的其他方面还提供单独的开关模块,诸如如上所定义的本发明的第一到第六方面中任一方面所采用的那些开关模块。
[0229] 本发明的另外的任选特征如下。附图说明
[0230] 现在将参考附图,仅通过举例来描述本发明的实施方案,其中:
[0231] 图1示出了包括根据本发明的实施方案的开关模块的基本特征的示意图。
[0232] 图2示出了说明在本发明的第一和第二方面的实施方案中采用的广义超立方体状拓扑结构的示意性网络图。
[0233] 图3A示出了根据本发明第一方面的实施方案的当在给定子阵列中的两个开关模块之间切换时的数据路径。
[0234] 图3B示出了如图3A所示的开关模块的更详细的示意图。
[0235] 图4A示出了根据本发明的第二方面的实施方案的当在给定子阵列中的两个开关模块之间切换时的数据路径。
[0236] 图4B示出了如图4A所示的开关模块的更详细的示意图。
[0237] 图5示出了示意性网络图,其示出了如在本发明的第三和第四方面的实施方案中采用的星形拓扑结构,特别是标记为N的节点。
[0238] 图6A示出了根据本发明第三方面的实施方案的当在给定子阵列中的两个开关模块之间切换时的数据路径。
[0239] 图6B示出了如图6A所示的开关模块的更详细的示意图。
[0240] 图7A示出了根据本发明第四方面的实施方案的当在四个不同子阵列中的四个开关模块之间切换时的数据路径。
[0241] 图7B示出了如图7A所示的开关模块或OPPM的更详细的示意图。
[0242] 图8A和8B示出了根据本发明的实施方案的仲裁器可以如何连接在开关模块阵列内。
[0243] 图9示出了根据本发明的实施方案的仲裁器可以如何连接在开关模块阵列内的替代示例。
[0244] 图10示出了可以在本发明的第二和第四方面的实施方案中使用的MZI级联开关的布局的示例。
[0245] 图11示出了采用电子共享存储器开关的本发明的第二或第四方面的实施方案的示例。

具体实施方式

[0246] 在下面的描述中应当注意,术语“开关模块”和“OPPM(光学封包处理模块)”可互换使用。
[0247] 图1示出了可以在本发明的实施方案中使用的开关模块或光学封包处理模块(OPPM;术语在整个描述中可互换使用)的基本结构。图1所示的OPPM具有客户端侧C和光纤侧F。为了描述本发明的目的,这两个侧可以被认为是彼此独立的。光纤侧包括在本发明的实施方案中连接到互连光纤的光纤端口(未示出)。客户端侧包括用于连接到外部输入端和输出端的客户端端口,即连接到期望在其间切换信号的外部装置。在图1所示的本发明的实施方案中,OPPM的光纤侧包括光电检测器P的阵列(为了简单起见,仅示出了4个,但是应当理解,阵列可以包含多于或少于此),以及对应的多个电吸收调制器(EAM)M(再次仅示出四个)。每个EAM M的输入来自激光L。每个EAM的输出被多路复用到单个光纤上(在其他地方进行了更详细的描述)。为了防止多路复用到光纤中的信号之间的干扰,每个EAM操作不同的波长,并且因此需要不同的激光输入。根据包括OPPM的光电开关的物理布局,属于不同OPPM的EAM可以共享单个激光器作为其光源。
[0248] 光电检测器P、EAM M和激光器L一起形成检测器-再调制器(DRM)布置,由此由光电检测器P检测的输入信号被施加到具有与输入信号的波长不同的波长的载波信号。载波波长由例如OPPM本身上的电子器件确定(例如,当激光器是可调谐激光器TL时)。即使在激光器不可调谐的情况下,输出信号仍然可以保持与进入的信号不同的波长。EAM对激光器进行调制,将所需的数据信号施加到激光灯,并且然后从OPPM从连接的光纤输出端输出。在这种布置中,输入信号在光学域中检测到,并且然后在被转换到光学域中用于后续传输之前,在电子域中进行处理(涉及诸如封包接收、封包解析、分类、路由查找、端口选择、切换、封包标头/标尾更新、传输等步骤)。
[0249] 超立方体架构——RPFab0;RPFab2
[0250] 在本发明的一些实施方案中,使用可以被称为“超立方体”或“广义超立方体”的拓扑结构/架构来布置开关模块或OPPM,并且它们使用全网格的概念进行操作。图2中提供了示出这些拓扑结构的概念的示意图,其示出了超立方体拓扑结构的二维示例。此处,将9个OPPM布置成三行和三列,并且每个具有四个光纤端口(示出在OPPM的顶部)和两个客户端端口(示出在OPPM的底部,并且未作进一步讨论)。曲线表示OPPM阵列的光纤端口之间的连接。在一维超立方体式网络中,每个OPPM包括与网络中每个其他OPPM的直接连接,即存在全网格。这在图2所示的网络中被修改
[0251] 每个OPPM不是连接到整个网络中的每个OPPM,而是仅与自身相同的行或列(即,每个子阵列中)的每个其他OPPM连接,或者换句话说,在每个子阵列内但不在整个阵列中提供全网格互连性。如上所述,所示出的所有连接都是经由光纤端口。信号可以以最多两个“跳”从任何OPPM发送到网络中的任何其他OPPM,例如,第一跳发送到同一行的中间OPPM,之后第二跳发送到与中间OPPM相同的列中的OPPM。阵列中所有OPPM都有用作中间OPPM的能,即信号可以从一个光纤端口转发到另一个光纤端口,这允许本发明的阵列是多维的和高度可扩展的。这可以推广到N个维度,其中所需的最大跳数为N。
[0252] RPFab0
[0253] 图3A示出了根据本发明的一些实施方案的由源和目的地之间的信号采取的路径的示意图。所示的布置在本文中可以称为“RPFab0”。除了参考图1和2描述的OPPM的一般特征之外,EAM M的输出端连接到循环阵列波导光栅(CAWG)。类似地,光电检测器P的输入端也连接到CAWG。在本实施方案中,每个EAM连接到可调谐激光器TL。因此,在传输期间,信号被转换成取决于其目的地OPPM的波长,所述转换由EAM和TL的组合执行,并且由OPPM上的电子器件执行适当波长的选择(在其他地方进行了更详细的描述)。信号然后通过CAWG,CAWG将其朝向正确的OPPM的光电检测器路由。CAWG的特性使得CAWG发出信号的输出取决于CAWG的波长和输入。因此,具有相同OPPM的信号被多路复用到相同的CAWG输出端上。RPFab0通过利用频带内的多个通道(选择输出端口)和多个频带(以便将信号多路复用在一起)来利用CAWG的循环性质。必须对构成一个端口的波长的激光器进行调整,使其落入分离频带中,这些频带被切换到CAWG的相同输出端口上。
[0254] 如前所述,在表示1维情况的本实施方案中,所谓的“光纤”是全网格光纤形式,即,来自每个OPPM的光纤连接到每隔一个的开关模块。这可以被称为“无源光纤”,其本身不执行无源切换功能。而是,其只作为信号通过的介质。很容易看出,图3A所示的简单的双OPPM结构可以如何通过在每个OPPM上包括更多的光纤端口扩展到两个或更多个维度。
[0255] 图3A和3B示出了在本发明的上述实施方案中信号可能采用的路径的示意图。此处,在封包处理器PP处,例如从OPPM的客户端侧接收光学信号。然后对这个信号进行处理(在其他地方进行了更详细的讨论),并将其调制到具有选定波长的信号上(所述波长的选择由封包处理器PP控制)。然后,信号进入CAWG,CAWG基于选定波长选择输出,并将信号经由光纤传输到连接到目的地OPPM的光电检测器P的CAWG(显然,图2中并未示出所有的全网格)。应注意的是,多于一个信号可以承载在相同的光纤上(即多路复用的或WDM信号),然后由附接到光电检测器的CAWG进行解复用。然后,光电检测器将所述信号转换成电信号,由此在将信号输出到OPPM的客户端侧或者可能输出到同一OPPM上的另一个光纤端口用于后续重新处理和重新传输之前,进行进一步的封包处理。
[0256] 光纤侧F1(也就是“第一光纤部分”)被分成两个部分,即发射侧(这里称为“Tx”)和接收侧(这里称为“Rx”)。Tx包括从发射侧输入端Tx-IN接收信号的封包处理器PP-Tx以及标记为M1、M2等的EAM阵列,每个EAM接收来自标记为L1、L2等的对应光源的输入。每个EAM的输出形成对CAWG的输入。Rx还包括CAWG。Tx CAWG的输出和Rx CAWG的输入提供给定子阵列中的OPPM之间的全网格连接,例如如图2所示。Rx CAWG的每个输出入射在标记为P1、P2等的光电检测器中的一个上。光电检测器P1、P2等的输出馈送到接收侧封包处理器PP-Rx的输入端,接收侧封包处理器自身馈送到接收侧输出端Rx-OUT。
[0257] 现在将参考图3B深入描述从源OPPM到目的地OPPM的光学信号的路径。在本示例中,将描述从输入装置到输出装置的光学信号的完整行程。来自输入装置的数据封包形式的光学信号,例如,主机或服务器入射到客户端侧C1(未示出)上,于是其使用例如OPPM的光电二极管(未示出)被转换成电子信号。此后,(现在的电子)封包传送到发射侧输入端Tx-IN。在本实施方案中,封包然后传送到发射侧封包处理器PP-Tx。此处,基于与该数据封包(例如,存储在封包标头中)的一个或多个目的地OPPM相关的信息,将有效载荷划分为多个帧,每个帧仅包含具有相同目的地OPPM的数据。应当注意,在数据必须使用多于一个跳发送的情况下,此处,目的地OPPM可以指代封包的整个目的地或其行程中的下一步。当与特定目的地OPPM相关联的帧已经满足特定阈值(或者在经过预定时间量之后)时,封包处理器将该帧分切成一组Q个电子信号,然后将每个电子信号引导到图3B所示的不同的Q个EAM M1, M2...MQ。每个调制器M1、M2等接收来自光源L1、L2等的输入,所述光源呈调制信号的激光束形式。在RPFab0中,光源是可调谐激光器。Q调制器M1至MQ中的每一个接收具有不同波长的光输入,并且来自调制器M1至MQ的该组(调制的)光学信号入射在Tx CAWG的Q输入端上。由于CAWG(和其他类似的无源路由器)的特性,信号所路由到的输出端取决于信号的波长和信号到达的输入端。因此,为M1到MQ选择的波长集合使得所有光学信号在CAWG的单个输出端处收敛。由于将波长选择为均匀间隔的,所以当信号被路由到CAWG的相同输出光学链路中时,CAWG内的信号之间的串扰/干扰被最小化。
[0258] 然后从Tx CAWG输出的信号入射在同一开关阵列内的另一个OPPM上的Rx CAWG的输入端上。当然,实际上,信号不会从一个OPPM的Tx发送到同一个OPPM的Rx,除了例如在测试情况下以外。然而,为了方便起见,此处的描述继续参考图3B。在本发明的所有方面的优选实施方案中,构成阵列的OPPM都是相同的或基本相同的,因此这是一个可以采用的合理方法。
[0259] 由于诸如CAWG等无源光学路由器的可逆性质,在到达Rx CAWG的选定输入端时,光学信号被分裂成其原始的Q信号,每个信号被入射在光电二极管P1到PQ阵列中的一个二极管上。在那里,信号被转换回到对应于由调制器M1到MQ产生的多个电子信号(但不一定与其相同)的多个电子信号。这些信号然后被馈送到接收侧封包处理器PP-Rx,于是它们被重新组合成原始帧。然后,进行进一步的处理以由到达封包处理器PP-Rx的帧重新构建原始封包。PP-Rx和PP-Tx都可以包括用于临时存储数据同时“等待”其余的分段封包到达的存储器,这可能在每个光学跳之后或仅在最终目的地OPPM处发生。
[0260] 如果帧到达的OPPM只是中间OPPM,则封包(或帧)经由接收侧输出Rx-OUT发送到同一OPPM上的另一个光纤部分,并且重复上述过程。否则,如果目的地OPPM是最终目的地OPPM,则将封包(或帧)发送到OPPM的客户端部分,其中所述封包被转换回到光学信号(例如,使用诸如EAM的另一个调制器)并发送到输出装置(其可以像输入装置一样,也可以是主机或服务器)。
[0261] 上述过程的控制方面将稍后在本申请中进行详细描述。
[0262] RPFab2
[0263] 图4A和4B示出了替代实施方案,其中信号采取从其源到其目的地OPPM的不同路由,尽管仍然在超立方体式网络中。在本实施方案中,在此处称为RPFab2,在图2所示的给定行或列中的所有OPPM之间(或N维情况下的子阵列)之间不需要全网格。在本实施方案中,通过使用有源开关而不是诸如CAWG等的无源光学路由器来提供有效的全网格连接。有源开关能够根据例如信号中所包含的信息来控制发送信号到哪个输出端。
[0264] 如上所述,有源开关需要控制输入信号来将输入信号引导到预期的输出端。这个信号的确切形式/要求取决于有源开关的具体实施。合适的空间开关的示例是基于Mach-Zehnder干涉仪的空间开关。这种开关在美国临时专利申请号62/234,454中进行了描述,该申请以引用的方式并入本文。
[0265] 下文关于图4B更详细地描述本实施方案中使用的OPPM。
[0266] 光纤侧F1(也就是“第一光纤部分”)被分成两个部分,即发射侧(这里称为“Tx”)和接收侧(这里称为“Rx”)。Tx包括从发射侧输入端Tx-IN接收信号的封包处理器PP-Tx以及标记为M1、M2等的EAM阵列,每个EAM接收来自标记为L1、L2等的对应光源的输入端。每个EAM的输出端形成标记为MUX的多路复用器的输入端。每个MUX的单个输出端入射在1×N有源开关(这里是“Tx有源开关”)的输入端上。Rx还包括对应的N x 1有源开关(这里是“Rx有源开关”),其N个输入端中的每一个光学地连接到子阵列中的每个其他OPPM上的Tx有源开关的输出端。Rx有源开关的输出入射到标记为DEMUX的解复用器的输入端上,其中Q个输出各自入射在标记为P1、P2等Q个光电检测器上。光电检测器P1、P2等的输出端馈送到接收侧封包处理器PP-Rx的输入端中,接收侧封包处理器的输入端自身馈送到接收侧输出端Rx-OUT。
[0267] 现在将参考图4B详细描述切换过程,图4B包括与图3B相同的许多特征。特定地,切换过程进行到其中将多个电子信号发送到调制器M1至MQ的阶段是相同的。然而,在本实施方案中,不存在CAWG或类似的无源路由器,其中光学信号的路径取决于波长和输入。结果,不需要改变电子信号被调制到其上的光的波长。因此,图4B所示的实施方案中的光源是固定波长光源,并且优选地是固定波长激光器或固定激光器。固定激光器L1到LQ中的每一个具有不同的波长,并且因此离开调制器M1到MQ的所得的多个光学信号在由多路复用器(标记为MUX)多路复用成单个多路复用的信号时,不会发生干扰(或经历串扰)。然后将多路复用的信号发送到Tx有源开关的输入端。基于存储在原始数据封包上的目的地信息,并且假定被分切并发送到有源开关的数据帧全部意在用于同一目的地OPPM(在下一跳中),则有源开关然后将光学信号从有源开关的一个输入端引导到输出端(即N个输出端中的一个),所述有源开关被光学地连接到目的地OPPM上的对应的Rx有源开关。如本申请中先前所述,这个有源开关可以是例如MZI级联开关或电子交叉开关等。接收光学信号的Rx有源开关然后将信号引导到其输出端,并且然后将(仍然多路复用的)信号发送到解复用器DEMUX的输入端,由此将其解复用为对应于从调制器M1到MQ输出的多个光学信号的信号。此后,所述过程与前述实施方案中相同,并且此处不再重复。
[0268] 有源开关
[0269] 在本发明的第二和第四方面的实施方案中,有源开关可以是基于Mach-Zehnder干涉仪的光学有源开关。图10中示出了这种开关的布局的示例。实心矩形表示单独的MZI。使用本申请的其余部分采用的符号,可以看出,在这种特殊配置中,MZI级联开关具有Ri = 4 = 22(即n = 2)个输入端和输出端。输入侧可以由四个“1×4”树组成(其中一个在虚线框中突出显示),每个树包括1×2个MZI的两级。输出侧具有镜像布置。连接1 x 2 MZI的两个内层,使得如果需要,可以以非阻塞的方式,同时提供从所有输入端到所有输出端的路由。换句话说,四个输入端和四个输出端之间可能的输出的4! = 24个组合中的每个由所示的MZI级联开关调节。如下文简要描述,开关驱动器被配置为控制要采取的24种组合中的哪一种组合,但是也控制施加在每个1x2 MZI的电光区域上的电压。
[0270] 在利用电子有源开关的替代实施方案中,布置如图11所示。为简单起见,仅示出了一个开关模块。所示的双向链路将多路复用的光纤输出信号传向(电子)共享存储器开关SMS。在SMS处,信号入射在解复用器DEMUX上,所述解复用器DEMUX被配置为将多路复用的信号分裂成多个光学信号。DEMUX具有与MUX基本相同的结构(如放大图中所示),只不过是反向的。DEMUX上标记为“Rx”或“Tx”的模块的等同物用作光电(O/E)转换器,其用于将光学信号转换成多个电子信号,然后通过SMS切换到正确的输出端。然后,模块“Rx”或“Tx”用作电光(E/O)转换器,以将开关电子信号转换成光学信号,然后被多路复用以形成另一个多路复用的信号,其经由光学链路传送到正确的目的地OPPM。
[0271] 星形架构
[0272] 在本发明的替代实施方案中,使用不同的基本拓扑结构,其基于星形网络的原理操作,而不是全网格互连。在星形网络中,每个节点N经由单个中心节点连接到每个其他节点。在本发明的实施方案中,采用了这种类型的网络的修改版本,如图5中示意性所示。像在图2中一样,九个OPPM布置成三行和三列。然而,在利用星形拓扑结构的实施方案中,所有数据传输经过单独的节点,而不是从同一行/列(即子阵列)中的一个OPPM直接到另一个OPPM,所述单独节点在图5中由每行和每列的末尾处标记为N的小圆示出。因此,可以看出,在例如OPPM的二维网络中的任何地方,信号从一个OPPM到另一OPPM的传输可能发生在两个跳中,每个跳都是经过节点。节点的“内容”在下文详细描述的两个实施方案中是不同的。
[0273] RPFab1
[0274] 在图6A所示的实施方案中,像图3A所示的实施方案一样,使用CAWG进行切换。然而,在本实施方案中,存在一群CAWG,而不是包括连接在输入侧和输出侧上的CAWG的给定子阵列中的每个OPPM。在本实施方案中没有波分复用,并且因此CAWG群中的并行CAWG的数量等于给定阵列中每个开关模块上的光纤部分上的调制器的数量。因此,每个CAWG具有与子阵列中的OPPM一样多的输入端和输出端。
[0275] 每个CAWG从每个OPPM上的一个调制器接收输入,并且类似地,给定OPPM上的每个调制器连接到每个CAWG的输入端。与图3A所示的实施方案不同,在本实施方案中,来自CAWG的信号直接输入到目的地OPPM上的光电检测器P中,而不是被额外的CAWG解复用。这通过具有子阵列中的所有OPPM可以“访问”的一群CAWG而成为可能。
[0276] 现在将参考图6A和6B更详细地描述这个实施方案。光纤侧F1(也就是“第一光纤部分”)被分成两个部分,即发射侧(这里称为“Tx”)和接收侧(这里称为“Rx”)。Tx包括从发射侧输入端Tx-IN接收信号的封包处理器PP-Tx以及标记为M1、M2等的EAM阵列,每个EAM从标记为L1的单个光源等接收输入。然而,EAM的输出端用作CAWG的输入端,不同于图3A(示出RPFab0),CAWG不构成OPPM本身的一部分。
[0277] 而是,在本实施方案中,CAWG是给定子阵列中的所有OPPM可访问的一群(即,一组或多个)CAWG的一部分。例如,一群CAWG形成图5所示的每个节点N。具体地,Q个调制器M1到MQ中的每一个的输出端连接到CAWG组中的每个CAWG的输入端。相应地,CAWG组中的每个CAWG的输出端入射在光纤部分F1的接收侧Rx上的每个光电检测器P1到PQ上。光电检测器P1、P2等的输出端馈送到接收侧封包处理器PP-Rx的输入端,接收侧封包处理器自身馈送到接收侧输出端Rx-OUT。
[0278] 现在将参考图6B详细描述切换过程,图6B包括与图3B和4B相同的许多特征。特定地,切换过程进行到其中将多个电子信号发送到调制器M1到MQ的阶段是相同的。调制器M1到MQ中的每一个接收来自仅一个可变波长光源(即,一个光源服务所有调制器)的输入,所述光源优选地是可调谐激光器,这里标记为L1。如上所述,调制器M1到MQ的输出端入射在与包括OPPM的子阵列相关联的Q个CAWG中的每一个的相应输入端。像在RPFab0中一样,CAWG被布置成使得对于所有调制信号的单个波长的选择促使CAWG将信号路由到目的地OPPM的Rx侧上的光电检测器阵列中的每一个。此后,所述过程与前述实施方案中的相同。由于增加的并行性,即通过断开信号并将其在Q个不同通道上发送,而不是全部在一个通道上发送,而提高本实施方案中的带宽。
[0279] 图7A和7B示出了基于星形拓扑结构的替代实施方案。根据图7A和7B的光电开关的实施方案仍然具有下面的图案,其中每个子阵列具有促进该子阵列中的所有OPPM之间的连接的相关联的节点。然而,在本实施方案中,节点包括与图4A的实施方案中所示相同或类似类型的一群Ri x Ri有源开关,而不是一群CAWG。
[0280] 图7A示出了根据本发明第四方面的OPPM的2×2布置中采用的连接。这里,OPPM中的每行和每列都表示子阵列,其中每个子阵列包含有源开关AS。在图7A中,与给定子阵列相关联的光纤有源开关AS是位于形成该子阵列的两个OPPM之间的光纤有源开关。因此,每个OPPM是两个子阵列的成员,并且连接到两个光纤有源开关AS。根据给定封包或数据帧的预期目的地,在下一跳中,可能需要以垂直维度或平维度发送帧或封包。因此,为了提供此选项,1 x N个有源开关能够将信号引导到给定OPPM是其成员的两个子阵列中的任一个中的光纤有源开关AS。
[0281] 光纤侧F1(也就是“第一光纤部分”)被分成两个部分,即发射侧(这里称为“Tx”)和接收侧(这里称为“Rx”)。Tx包括从发射侧输入端Tx-IN接收信号的封包处理器PP-Tx以及标记为M1、M2等的EAM阵列,每个EAM接收来自标记为L1、L2等的对应光源的输入端。每个EAM的输出端形成对标记为MUX的多路复用器的输入端。每个MUX的单个输出端入射在1×N有源开关(这里是“Tx有源开关”)的输入端上。代替形成RPFab1中的节点非CAWG组的是,每个子阵列中都有具有Ri个输入端和Ri个输出端的光纤有源开关。每个Tx有源开关具有光学连接到光纤有源开关的输入端的输出端。相应地,给定子阵列中的光纤有源开关的Ri个输出端中的每一个光学地连接到相应的Rx有源开关(具有N个输入端和一个输出端,N个输入端中的每一个输入端中被布置成从与该OPPM是其成员的每个子阵列相关联的有源开关接收信号)。Rx有源开关的输出端连接到标记为DEMUX的解复用器的输入端,所述解复用器的Q个输出端各自入射到标记为P1、P2等的Q个光电检测器中的一个上。光电检测器P1、P2等的输出端馈送到接收侧封包处理器PP-Rx的输入端,接收侧封包处理器自身馈送到接收侧输出端Rx-OUT中,如在前面详细描述的三个实施方案中。
[0282] 现在将参考图7B详细描述切换过程,图7B包括与图3B、4B和6B相同的许多特征。特定地,切换过程进行到其中将多个电子信号发送到调制器M1到MQ的阶段是相同的。然而,在本实施方案中,不存在CAWG或类似的无源路由器,其中光学信号的路径取决于波长和输入。结果,不需要改变电子信号被调制到其上的光的波长。因此,图7B所示的实施方案中的光源是固定波长光源,并且优选地是固定波长激光器或固定激光器。固定激光器L1到LQ中的每一个具有不同的波长,并且因此离开调制器M1到MQ的所得的多个光学信号在由多路复用器(标记为MUX)多路复用成单个多路复用的信号时,不会发生干扰(或经历串扰)。然后将多路复用的信号发送到具有N个输出端的Tx有源开关的输入端。然后,基于来自原始封包的目的地信息,Tx有源开关将(现在多路复用的)信号引导到对应于一个光纤有源开关的N个输出端中的一个(即,取决于信号必须被切换所沿的维度,例如由发射侧封包处理器PP-Tx确定),所述信号从所述输出端发送到所选择的光纤有源开关。然后,再次基于目的地信息,信号从其到达的光纤有源开关的输入端引导到对应于目的地(即下一跳)OPPM的Ri个输出端中的一个,所述信号从所述输出端发送到该Rx有源开关的N个输入端中的一个。接收光学信号的Rx有源开关然后将信号引导到其输出端,并且然后将(仍然多路复用的)信号发送到解复用器DEMUX的输入端,由此将其解复用为对应于从调制器M1到MQ输出的多个光学信号的信号。此后,所述过程与前述实施方案中相同,并且此处不再重复。
[0283] 仲裁
[0284] 为了有效地操作,例如如图3B、4B、6B和7B所述的开关由仲裁器控制。一般来说,仲裁器的主要功能是确保沿相同子阵列连接的发射和接收开关模块之间存在一对一的匹配(即解决二分图匹配问题)。如从图3B、4B、6B和7B中可以看出,根据本发明的一些实施方案的OPPM或开关模块包括控制器(标记为CTRL),所述控制器连接到Tx和Rx封包处理器,并且被配置为从这些封包处理器接收与入射在其上的数据封包的预期目的地相关的输入。然后将这个信息中继到仲裁器,所述仲裁器以确保所有信号到达其目的地OPPM的方式,为有源开关(在包括有源开关的那些实施方案中)和/或开关模块本身计算最佳操作方案,即提供数据传送路由,使得光纤部分的每个发射侧与光纤部分的正确接收侧配对,以便实现非阻塞操作。一旦计算出这种操作方案,在包括有源开关的实施方案的情况下,所述方案被传输到直接驱动和控制有源开关的操作的开关驱动器。
[0285] 图8A示出了仲裁器可以如何连接到3×3 OPPM阵列中的OPPM的示例。此处,仲裁器与OPPM的每个子阵列相关联。在这个2D示例中,每行与行仲裁器RA相关联,并且每列与列仲裁器CA相关联。因此,位于同一行的OPPM之间的数据传送可以由相关的行仲裁器RA和行之间的后续光学跳进行控制,可由相关的列仲裁器CA控制。在包括电子有源开关而不是光学有源开关的实施方案中,可以在电子有源开关本身内提供仲裁器功能,而不需要单独的组件。图8A示出了与图8B类似的布置,除了用虚线示出仲裁器连接(也称为“控制平面”)和用实线示出数据连接(也称为“数据平面”)之外。图8B中的实施方案是本发明的第一或第二方面的实施方案的示例,其中给定子阵列内的OPPM不通过一群CAWG或有源开关连接。
[0286] 图9示出了替代实施方案(其中不同类型的线具有与图8B中相同的含义),其中存在连接到整个子阵列中的每个OPPM的单个仲裁器,而不是仲裁器AR与每个子阵列相关联。
[0287] 这些控制器连接到仲裁器,仲裁器用于控制在任何时间在光电开关中发生的各种切换突发的时间。仲裁程序的复杂性取决于OPPM阵列的尺寸以及仲裁器连接到OPPM的方式等等。图8和9示出了仲裁器和OPPM(更具体地说是如图3B、4B、6B和7B所示的那些OPPM上的控制器)之间的两种连接方案。在这些附图中,虚线表示仲裁器(也称为控制平面)的连接,而实线表示传送数据的OPPM(也称为数据平面)之间的连接。
[0288] 虽然已经结合上述示例性实施方案描述了本发明,但是当考虑本公开时,许多等同的修改和变化对于本领域技术人员将是显而易见的。因此,上述本发明的示例性实施方案被认为是说明性的而不是限制性的。在不脱离本发明的精神和范围的情况下,可以对所描述的实施方案进行各种改变。
[0289] 以上引用的所有参考文献均通过引用的方式并入本文。
[0290] 本发明还可以包括以下编号的段落中所述的进一步的任选特征:
[0291] A1. 一种用于将光学信号从输入电缆切换到输出电缆的光电开关,所述开关包括多个光学封包处理模块(OPPM)和互连光纤,其中每个OPPM包括:
[0292] 客户端输入端;
[0293] 客户端输出端;
[0294] 光纤输入端;
[0295] 光纤输出端;
[0296] 转换构件,其用于转换在光纤输入端或客户端输入端处接收的信号的波长,并将转换的输出信号输出到光纤输出端;
[0297] 连接在所述转换构件和互连光纤之间的路由构件,所述路由构件被配置为将输出信号引导到目的地OPPM,并且
[0298] 其中每个OPPM的光纤输出端经由路由构件和互连光纤连接到每个其他OPPM的光纤输入端,所述互连光纤呈全网格的形式。
[0299] A2. 一种用于将光学信号从输入电缆切换到输出电缆的二维光电开关,所述开关包括布置成L行和M列的多个OPPM,以及互连光纤,每个OPPM具有:
[0300] 客户端输入端;
[0301] 客户端输出端;
[0302] 光纤输入端;
[0303] 光纤输出端;
[0304] 转换构件,其用于转换在光纤输入端或客户端输入端处接收的信号的波长,并将转换的输出信号输出到光纤输出端;
[0305] 连接在转换构件和互连光纤之间的路由构件,所述路由构件被配置为将输出信号引导到目的地OPPM,
[0306] 其中:
[0307] 来自每个OPPM的光纤输出端经由所述路由构件和所述互连光纤连接到同一列中的另一(L-1)个OPPM中的每一个的光纤输入端,
[0308] 来自每个OPPM的光纤输出端经由所述路由构件和所述互连光纤连接到同一行中的另一(M-1)个OPPM中的每一个的光纤输入端,以及
[0309] 每个OPPM能够用作中间OPPM,其中信号从光纤输入端转发到同一OPPM上的光纤输出端。
[0310] A3. 一种用于将光学信号从输入电缆切换到输出电缆的N维光电开关,所述开关包括以N维阵列布置的多个OPPM,其中存在第i个维度(其中i = 1, 2,  ..., N- 1, N)的ni个开关和互连光纤,每个OPPM具有:
[0311] 客户端输入端;
[0312] 客户端输出端;
[0313] 光纤输入端;
[0314] 光纤输出端;
[0315] 转换构件,其用于转换在光纤输入端或客户端输入端处接收的信号的波长,并将转换的输出信号输出到光纤输出端;
[0316] 连接在光纤输出端和互连光纤之间的路由构件,所述路由构件被配置为将转换的输出信号引导到目的地OPPM,
[0317] 其中:
[0318] 对于i的每个值,每个OPPM的光纤输出端经由路由构件和互连光纤连接到其他(ni-1)个OPPM中的每一个的光纤输入端,所有其他(ni-1)个OPPM的光纤输入端具有在所有其他(N - 1)个维度上相同的坐标,除了该i值之外,以形成广义的超立方体网络,并且[0319] 每个OPPM能够用作中间OPPM,其中信号从光纤输入端转发到同一OPPM上的光纤输出端。
[0320] A4. 根据A1至A3中任一项所述的光电开关,其中所述路由构件基于所转换的光学信号的波长将转换的输出信号引导到其目的地OPPM。
[0321] A5. 根据A1至A3中任一项所述的光电开关,其中所述路由构件是连接在OPPM的光纤输出端和互连光纤之间的循环AWG。
[0322] A6. 根据A4所述的光电开关,其中每个OPPM具有连接在互连光纤和光纤输入端之间的第二循环AWG。
[0323] A7. 根据A1至A6中任一项所述的光电开关,其中所述转换构件包括:光电检测器,其用于从所述光纤输入端或客户端输入端接收输入光学信号并将其转换成对应的电子信号;可调谐激光器,其用于提供期望波长的载波信号;以及调制器,其用于调制载波信号以包含所述电子信号中的信息,以产生所转换的输出信号。
[0324] A8. 根据A7所述的光电开关,其中所述转换构件包括多个光电检测器、多个调制器和多个可调谐激光器,其中每个可调谐激光器向相关联的调制器提供载波信号。
[0325] A9. 根据A7或A8所述的光电开关,其中所述转换构件还包括用于确定所转换的输出信号的波长的控制电子器件。
[0326] A10. 根据A9所述的光电开关,其中所转换的输出信号的波长的确定是基于输入光学信号的目的地OPPM。
[0327] A11. 根据A1至A10中任一项所述的光电开关,还包括连接到所有OPPM的仲裁器,用于将目的地OPPM分配给在光纤输入端或客户端输入端处接收的所有光学输入信号,以便使可以从一个OPPM上的客户端输入端或光纤输入端同时传输到相同或另一个OPPM上的客户端输出端或光纤输出端的光学输入信号数量最大化。
[0328] B1. 一种用于将光学信号从输入电缆切换到输出电缆的二维光电开关,所述开关包括布置成L行和M列的多个OPPM,每个OPPM具有:
[0329] 客户端输入端;
[0330] 客户端输出端;
[0331] 光纤输入端;
[0332] 光纤输出端;
[0333] 转换构件,其用于转换在光纤输入端或客户端输入端处接收的信号的波长,并将转换的输出信号输出到光纤输出端;
[0334] 其中:
[0335] 每行和每列OPPM还包括被配置为将输出信号引导到目的地OPPM的路由构件,所述路由构件连接到该行或列的每个OPPM的光纤输出端,
[0336] 来自每个OPPM的光纤输出端经由路由构件连接到同一列中的其他(L-1)个OPPM中的每一个的光纤输入端,并且
[0337] 来自每个OPPM的光纤输出端经由路由构件连接到同一行中其他(M-1)个OPPM中的每一个的光纤输入端,
[0338] 每个OPPM能够用作中间OPPM,其中信号从光纤输入端转发到同一OPPM上的光纤输出端。
[0339] B2. 一种用于将光学信号从输入电缆切换到输出电缆的N维光电开关,所述开关包括以N维阵列布置的多个OPPM,其中在第i个维度(其中 i = 1, 2,  ..., N- 1, N)上存在ni个开关,每个OPPM具有:
[0340] 客户端输入端;
[0341] 客户端输出端;
[0342] 光纤输入端;
[0343] 光纤输出端;
[0344] 转换构件,其用于转换在光纤输入端或客户输入端处接收的信号的波长,并将所转换的输出信号输出到光纤输出端;
[0345] 其中:
[0346] 每个OPPM是N个子阵列的成员,其中子阵列被定义为除了一个以外在所有维度上具有相同坐标的OPPM组,并且其中每个子阵列与被配置为将所转换的输出信号引导到目的地OPPM的路由构件相关联,所述路由构件连接到该子阵列中的每个OPPM的光纤输出端;
[0347] 对于i的每个值,每个OPPM的光纤输出端经由路由构件连接到其他(ni-1)个OPPM中的每一个的光纤输入端,所述其他(ni-1)个OPPM的光纤输入端具有在所有其他(N - 1)个维度上相同的坐标,除了该i值之外,以形成广义的超立方体网络,并且
[0348] 每个OPPM能够用作中间OPPM,其中信号从光纤输入端转发到同一OPPM上的光纤输出端。
[0349] B3. 根据B1或B2所述的光电开关,其中所述路由构件基于所转换的光学信号的波长,将转换的输出信号直接或经由中间OPPM引导到其目的地OPPM。
[0350] B4. 根据B1至B3中任一项所述的光电开关,其中所述路由构件是循环AWG。
[0351] B5. 根据B1、B3和B4中任一项所述的光电开关,其中所述转换构件包括:两个或更多个光电检测器,其用于从光纤输入端或客户端输入端接收输入光学信号并将其转换为对应的电子信号;可调谐激光器,其用于提供期望波长的载波信号;以及两个或更多个调制器,其用于调制载波信号以包含所述电子信号中的信息,以产生所转换的输出信号。
[0352] B6. 根据B5所述的光电开关,其中每个OPPM具有第一调制器和第二调制器,其中第一调制器被配置为将其转换的输出信号传输到与OPPM相同的行中的路由构件,并且第二调制器被配置为将其转换的输出信号传输到与OPPM相同的列中的路由构件。
[0353] B7. 根据B2至B4中任一项所述的光电开关,其中所述转换构件包括:N个或更多个光电检测器,其用于从光纤输入端或客户端输入端接收输入光学信号,并将其转换成对应的电子信号;可调谐激光器,其用于提供期望波长的载波信号;以及N个或更多个调制器,其用于调制载波信号以包含所述电子信号中的信息,以产生转换的输出信号。
[0354] B8. 根据B7所述的光电开关,其中每个OPPM包括N个调制器,N个调制器中的每一个被配置为将其转换的输出信号传输到与该OPPM作为其成员的每个子阵列相关联的路由构件。
[0355] B9. 根据B5至B8中任一项所述的光电开关,其中每个OPPM的转换构件包括单个可调谐激光器,所述可调谐激光器被配置为向所述两个或更多个调制器中的全部提供载波信号。
[0356] B10. 根据B5至B9中任一项所述的光电开关,其中所述转换构件还包括用于确定所转换的输出信号的波长的控制电子器件。
[0357] B11. 根据B10所述的光电开关,其中所转换的输出信号的波长的确定是基于输入光学信号的目的地OPPM。
[0358] B12. 根据B1至B12中任一项所述的光电开关,还包括连接到所有OPPM的仲裁器,用于将目的地OPPM分配给在光纤输入端或客户端输入端处接收的所有光学输入信号,以便使可以从一个OPPM上的客户端输入端或光纤输入端同时传输到相同或另一个OPPM上的客户端输出端或光纤输出端的光学输入信号数量最大化。
[0359] C1. 一种用于将光学信号从输入电缆切换到输出电缆的光电开关,所述开关包括多个开关模块,每个开关模块具有:
[0360] OPPM,其包括:
[0361] 客户端输入端;
[0362] 客户端输出端;
[0363] 光纤输入端;
[0364] 光纤输出端;以及
[0365] 转换构件,其用于转换在光纤输入端或客户端输入端处接收的信号的波长,并将转换的输出信号输出到光纤输出端;
[0366] 多路复用器,其连接到光纤输出端,并且具有多路复用器输出端,所述多路复用器输出端连接到具有一个输入端和S个输出端的第一空间开关,
[0367] 解复用器,其连接到光纤输入端,并且具有解复用器输入端,所述解复用器输入端连接到具有S个输入端和一个输出端的第二空间开关,
[0368] 其中每个开关模块经由第一空间开关的输出端和第二空间开关的输入端之间的连接而连接到每隔一个开关模块,所述连接形成全网格。
[0369] C2. 根据C1所述的光电开关,其中转换构件包括:光电检测器,其用于从光纤输入端或客户端输入端接收输入的光学信号,并将其转换为对应的电子信号;激光器,其用于提供期望波长的载波信号;以及调制器,其用于调制载波信号以包含所述电子信号中的信息,以产生所转换的输出信号。
[0370] C3. 根据C2所述的光电开关,其中激光器是固定激光器。
[0371] C4. 根据C2或C3所述的光电开关,其中所述转换构件还包括用于确定所转换的输出信号的波长的控制电子器件。
[0372] C5. 根据C1至C4中任一项所述的光电开关,其中所述转换的输出信号的波长的确定是基于所述输入光学信号的目的地OPPM。
[0373] C6. 根据C1至C5中任一项所述的光电开关,其中每个OPPM的解复用器和/或多路复用器是AWG。
[0374] C7. 根据C1至C6中任一项所述的光电开关,还包括连接到所有OPPM的仲裁器,用于将目的地OPPM分配给在光纤输入端或客户端输入端处接收的所有光学输入信号,以便使可以从一个OPPM上的客户端输入端或光纤输入端同时传输到相同或另一个OPPM上的客户端输出端或光纤输出端的光学输入信号数量最大化。
[0375] D1. 一种用于将光学信号从输入电缆切换到输出电缆的光电开关,所述开关包括多个即S个开关模块,每个开关模块具有:
[0376] OPPM,其包括:
[0377] 客户端输入端;
[0378] 客户端输出端;
[0379] 光纤输入端;
[0380] 光纤输出端;以及
[0381] 转换构件,其用于转换在光纤输入端或客户端输入端处接收的信号的波长,并将转换的输出信号输出到光纤输出端;
[0382] 多路复用器,其连接到光纤输出端,并且具有连接到具有一个输入端和K个输出端的1×K空间开关的多路复用器输出端,K个输出端中的每一个连接到具有S个输入端和S个输出端的S×S空间开关,其中S x S开关的数量为K,
[0383] 解复用器,其连接到所述光纤输入端,并且具有解复用器输入端,所述解复用器输入端连接到具有K个输入端和一个输出端的K×1个空间开关,所述K个输入端中的每一个被配置为从S x S空间开关中的一个的S个输出端中的一个接收信号,
[0384] 其中每个开关模块经由第一空间开关的输出端和第二空间开关的输入端之间的连接而连接到每隔一个开关模块,所述连接形成全网格。
[0385] D2. 根据D1所述的光电开关,其中K不小于2且不大于10。
[0386] D3. 根据D1或D2所述的光电开关,其中所述转换构件包括:光电检测器,其用于从光纤输入端或客户端输入端接收输入光学信号,并将其转换为对应的电子信号;激光器,其用于提供期望波长的载波信号;以及调制器,其用于调制载波信号以包含所述电子信号中的信息,以产生所转换的输出信号。
[0387] D4. 根据D3所述的光电开关,其中激光器是固定激光器。
[0388] D5. 根据D3或D4所述的光电开关,其中转换构件还包括用于确定所转换的输出信号的波长的控制电子器件。
[0389] D6. 根据D1至D5中任一项所述的光电开关,其中所述转换的输出信号的波长的确定是基于输入光学信号的目的地OPPM。
[0390] D7. 根据D1至D6中任一项所述的光电开关,其中每个OPPM的解复用器和/或多路复用器是AWG。
[0391] D8. 根据D1至D7中任一项所述的光电开关,还包括连接到所有OPPM的仲裁器,用于将目的地OPPM分配给在光纤输入端或客户端输入端处接收的所有光学输入信号,以便使可以从一个OPPM上的客户端输入端或光纤输入端同时传输到相同或另一个OPPM上的客户端输出端或光纤输出端的光学输入信号数量最大化。
[0392] E1. 一种光学封包处理模块(OPPM),其适用于光电开关,所述光电开关用于将光学信号从输入电缆切换到输出电缆,所述OPPM包括:
[0393] 客户端输入端;
[0394] 客户端输出端;
[0395] 光纤输入端;
[0396] 光纤输出端;
[0397] 转换构件,其用于转换在光纤输入端或客户端输入端处接收的信号的波长,并将所转换的输出信号输出到光纤输出端;
[0398] 连接在转换构件和互连光纤之间的路由构件,所述路由构件被配置为将输出信号引导到目的地OPPM,以及
[0399] 其中OPPM能够用作中间OPPM,其中信号从光纤输入端转发到光纤输出端。
[0400] E2. 一种用于光电开关的开关模块,所述开关模块用于将光学信号从输入电缆切换到输出电缆,所述开关模块包括:
[0401] OPPM,其具有:
[0402] 客户端输入端;
[0403] 客户端输出端;
[0404] 光纤输入端;
[0405] 光纤输出端;以及
[0406] 转换构件,其用于转换在光纤输入端或客户端输入端处接收的信号的波长,并将所转换的输出信号输出到光纤输出端;
[0407] 多路复用器,其连接到光纤输出端,并具有多路复用器输出端;
[0408] 解复用器,其连接到光纤输入端,并具有被配置为接收外部多路复用的信号的解复用器输入端,
[0409] 其中OPPM能够用作中间OPPM,其中信号从光纤输入端转发到光纤输出端。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈