首页 / 专利库 / 数学与统计 / 聚类算法 / 防止高速路上碰撞后发生连环事故的车辆安全系统及方法

防止高速路上碰撞后发生连环事故的车辆安全系统及方法

阅读:1037发布:2020-05-25

专利汇可以提供防止高速路上碰撞后发生连环事故的车辆安全系统及方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种防止高速路上碰撞后发生连环事故的车辆安全系统及方法,该系统由视觉 感知 模 块 、车载计算模块、外部通讯系统、车载通信模块、网联通讯模块、车辆控 制模 块、触发 信号 产生模块组成;具体方法为:在检测到车辆发生碰撞时,触发车辆安全系统工作,视觉感知模块收集 传感器 信息,判断车内乘员是否需要救援、行车环境是否安全,采取相应措施并重新规划行车路径以及动作,检查车辆的设备状态,判断车辆是否满足自启动条件,将车辆的运行轨迹及状态信息通过网联通讯模块传递给后方来车,根据后方来车的信息反馈,采取相应的措施,有效避免车辆连环事故发生,解决了 现有技术 中防止连环撞车系统功能不够完善的问题。,下面是防止高速路上碰撞后发生连环事故的车辆安全系统及方法专利的具体信息内容。

1.一种防止高速路上碰撞后发生连环事故的车辆安全系统,其特征在于,由视觉感知(1)、车载计算模块(2)、外部通讯系统(3)、车载通信模块(4)、网联通讯模块(5)、车辆控制模块(6)、触发信号产生模块(7)组成;
所述视觉感知模块(1)包括传感器信号采集模块(11)和传感器控制单元(12);所述车载计算模块(2)包括行车环境检测模块(21)、行车规划模块(22)、三维重建模块(23)、乘员检测系统(24);所述车载通信模块(4)包括无线通讯模块(41)、CAN通讯模块(42);所述车辆控制模块(6)包括驱动模块(61)、制动模块(62)、转向模块(63)、车身附件模块(64)、整车控制器(65);所述触发信号产生模块(7)包括碰撞传感器(71)、触发开关(72)以及车辆内部时钟(73);
所述传感器信号采集模块(11)包括双目摄像头(111)、激光雷达(112)、GPS(113)、声波雷达(114)、毫米波雷达(115)、单目摄像头(116);所述传感器控制单元(12)包括双目摄像头控制器(121)、激光雷达控制器(122)、GPS控制器(123)、超声波雷达控制器(124)、毫米波雷达控制器(125)、单目摄像头微控制器(126);
所述视觉感知模块(1)中传感器控制单元(12)的双目摄像头控制器(121)、激光雷达控制器(122)、GPS控制器(123)、超声波雷达控制器(124)、毫米波雷达控制器(125)连接至行车环境检测模块(21),并且行车环境检测模块(21)接收双目摄像头(111)、激光雷达(112)、GPS(113)、超声波雷达(114)以及毫米波雷达(115)中的数据信号,之后对这些数据进行处理,最后将处理后的结果传送给后面的行车规划模块(22);
单目摄像头微控制器(126)连接至三维重建模块(23);所述三维重建模块(23)和乘员检测系统(24)相连接,乘员检测系统(24)又和行车规划模块(22)相连接,行车规划模块(22)又和行车环境检测模块(21)相连接;所述行车规划模块(22)还分别和无线通讯模块(41)、CAN通讯模块(42)相连接,乘员检测系统(24)还和CAN通讯模块(42)相连接;在三维重建模块(23)中获得三维网格数据,输入至乘员检测系统(24)中,乘员检测系统(24)将乘员姿态识别结果输入到行车规划模块(22)和CAN通讯模块(42),同时行车规划模块(22)还接收行车环境检测模块(21)的检测结果,在行车规划模块(22)中将两者融合后,同时考虑进去车辆的状态信息,发出一系列规划指令,传输到车载通信模块(4)中的无线通讯模块(41)和CAN通讯模块(42);
所述无线通讯模块(41)还和外部通讯系统(3)相连接,CAN通讯模块(42)还分别和网联通讯模块(5)、整车控制器(65)、车辆内部时钟(73)相连接,而车辆内部时钟(73)和整车控制器(65)也均和网联通讯模块(5)相连接,且车辆内部时钟(73)和整车控制器(65)也相连接;无线通讯模块(41)将行车规划模块(22)中的信息传送到外部通讯系统(3),CAN通讯模块(42)将信息传送到网联通讯模块(5)、整车控制器(65)、车辆内部时钟(73)。
2.根据权利要求1所述的一种防止高速路上碰撞后发生连环事故的车辆安全系统,其特征在于,所述双目摄像头(111)与双目摄像头控制器(121)相连接,激光雷达(112)与激光雷达控制器(122)相连接,GPS(113)与GPS控制器(123)相连接,超声波雷达(114)与超声波雷达控制器(124)相连接,毫米波雷达(115)与毫米波雷达控制器(125)相连接,单目摄像头(116)与单目摄像头微控制器(126)相连接。
3.根据权利要求1所述的一种防止高速路上碰撞后发生连环事故的车辆安全系统,其特征在于,
所述行车环境检测模块(21)包括周围环境点的检测(211)、可行区域的检测(212)、后方来车的检测(213)三个模块;行车环境检测模块(21)中的周围环境点的检测(211)主要借助于双目摄像头(111)数据以及毫米波雷达(115)数据来完成,通过融合两者的数据,识别出周围环境中的障碍物,车道线,交通标志位置以及距离信息,
可行区域的检测(212)主要借助于激光雷达(112)的数据,并依托激光雷达(112)扫描点在可行路面的连续性,首先用相邻扫描点之间的欧式距离对点聚类,然后用加权移动平均值对每类点平滑中值滤波,再利用斜率将数据点分割成多段近似直线段,利用最小二乘法法对线段进行二项式拟合,辅以双目摄像头(111)的数据,基于激光雷达(112)的可行区域检测有时会出现点稀疏的问题,双目摄像头(111)具有信息丰富的优点,通过检测图像中的特征,包括颜色,纹理,形状模型,消失点,可以辅助激光雷达(112)有效的检测出可行区域,
后方来车的检测(213)主要基于获取到的激光雷达(112)和毫米波雷达(115)数据,获得后方来车(20)的距离,方位,速度;主要借助于激光雷达(112)的数据,激光雷达(112)是以发射激光束探测目标的位置、速度的雷达系统,向目标发射探测信号,然后将接收到的从目标反射回来的信号与发射信号进行比较,处理后,就可以获得目标的有关信息;
行车规划模块(22)包括路径规划模块(221)、动作规划模块(222)、启动规划模块
(223);路径规划模块(221)可以采用A*算法对路径进行规划,规划出一条可行的路线,保证安全快速的控制车辆行驶到高速应急车道,动作规划模块(222)结合车辆本身的特征以及路径规划的路线,结合获得的车辆周围环境信息以及乘员姿态信息,计算车辆在运行时应采取的一系列动作,包括方向盘为多少,驱动矩是多少,应该何时制动,启动规划模块(223)在检查了车辆的设备信息能够正常运转并结合了后方来车(20)的信息做出启动的规划;
三维重建模块(23)包括图像预处理模块(231)、车内立体重建模块(232);三维重建模块(23)中的图像预处理模块(231)将单目摄像头(116)传来的图像数据进行预处理之后,车内立体重建模块(232)对预处理后的图像进行三维网格的构建,使用标定的相机的内外参数以及两层空间体素融合算法将同一时刻的多个摄像头的图像数据融合,并通过Marching Cubes算法提取出该时刻对应的网格,采用孪生深度网络的深度学习模型,将具有相同物体的不同摄像头网格数据作为网络输入,计算图片的差异度,以获得对应场景的深度信息,之后经过动态场景的点云配准,关键提取将获得的三维网络流压缩传输输出至乘员检测系统(24)中;
乘员检测系统(24)包括乘员特征数据库(241)、乘员姿态数据库(242)、乘员检测模块(243)、乘员关键点检测模块(244)、乘员姿态识别模块(245);所述乘员特征数据库(241)与乘员姿态数据库(242)由公开的乘员特征与姿态特征以及车辆自主采集存储,乘员特征数据库(241)既包括驾驶员的驾驶习性特征,还包括车内乘客的乘坐特征,这些特征同时包括车辆正常行驶时的乘员特征与姿态数据,以及车辆发生碰撞后的乘员姿态与特征数据,乘员姿态识别模块(245)用于识别乘员姿态;所述乘员检测模块(243)通过特征匹配算法对比三维重建模块(23)传来的车内三维网络数据以及摄像头拍到的图像数据,进行特征匹配,同时对比乘员特征数据库(241)、乘员姿态识别模块(245),之后通过乘员关键点检测模块(244),确定乘员检测的关键点,采用关键点检测检测出乘员的关节,头,手关键特征,与乘员姿态数据库(242)进行对比得出乘员的姿态,并将乘员姿态识别结果传输给行车规划模块(22)。
4.根据权利要求1所述的一种防止高速路上碰撞后发生连环事故的车辆安全系统,其特征在于,所述驱动模块(61)包括驱动电机控制器(611)、驱动电机(612),驱动电机(612)和驱动电机控制器(611)相连接;制动模块(62)包括IBS控制器(621)、集成制动系统(622),IBS控制器(621)和集成制动系统(622)相连接;转向模块(63)包括EPS控制器(631)、电控转向系统(632),EPS控制器(631)和电控转向系统(632)相连接;车身附件模块(64)包括车身附件控制器(641)、车身附件(642),车身附件控制器(641)和车身附件(642)相连接;所述车身附件控制器(641)、IBS控制器(621)、EPS控制器(631)、驱动电机控制器(611)均连接到整车控制器(65)上。
5.根据权利要求1所述的一种防止高速路上碰撞后发生连环事故的车辆安全系统,其特征在于,所述传感器信号采集模块(11)包括:安装在车辆挡玻璃处的双目摄像头(111),安装在车辆顶端的激光雷达(112),安装在车顶的GPS(113),车内一共安装6个单目摄像头(116)分别安装在车辆左前方,车辆右前方,车辆左后方,车辆右后方,以及车辆右方和车辆左方,一个24GHz的毫米波雷达(115)安装在汽车的后保险杠内,一个77Hz的毫米波雷达(115)安装在汽车的前保险杠内,车辆的后部另外装有四个短距的超声波雷达(114),两侧各装一个长距超声波雷达(114),六个单目摄像头(116)与单目摄像头微控制器(126)相连接;所述触发开关(72)分别和车辆内部时钟(73)、碰撞传感器(71)、视觉感知模块(1)相连接,在车辆前部和车辆后部安装有碰撞传感器(71),车辆内部时钟(73)与触发开关(72)的连接,能发挥更好的作用,可以保证车辆在当前行车有危险时处于静止状态,由于车辆内部时钟(73)的作用,也可以在指定时间内,重新触发系统工作,尝试启动车辆。
6.根据权利要求1所述的一种防止高速路上碰撞后发生连环事故的车辆安全系统,其特征在于,网联通讯模块(5)包括DSRC无线电装置(51)、处理器(52)、存储器(53)、车载接口(54),其中处理器(52)分别和DSRC无线电装置(51)、存储器(53)、车载接口(54)相连接,车载接口(54)还和存储器(53)相连接;其中DSRC无线电装置(51)用来接收DSRC信号,车载接口(54)输出控制信号
7.有一种防止高速路上碰撞后发生连环事故的方法,其特征在于,包括以下步骤:
步骤S1:检测车辆是否发生碰撞;具体地在车辆的前部和车辆后部安装有碰撞传感器(71),当车辆发生碰撞时,碰撞传感器(71)用碰撞时应变电阻变形使其电阻值变化或压电晶体受力使输出电压变化传递碰撞信息;
步骤S2:若检测到车辆发生碰撞,碰撞传感器(71)传来的信号达到一定阈值时,触发车辆安全系统工作;此时,车辆处于碰撞状态,需要车辆获取传感器信号采集模块(11)的信息,确定车辆是否安全行驶;若没有发生碰撞,则结束;
步骤S3:视觉感知模块(1)收集传感器信号采集模块(11)信息;具体包括:安装在车辆的挡风玻璃处的双目摄像头(111)获得的事故车辆(10)前方车辆,行人,车道线的图像和相对距离信息,安装在车辆顶端的激光雷达(112)获得的车辆与周围环境障碍物以及后方来车(20)的距离信息,安装在车顶的GPS(113)装置输出此时车辆的位置坐标信息,车内一共安装6个单目摄像头(116),获得车内乘员的姿态信息,24GHz的毫米波雷达(115)获得汽车的后面盲点区域的信息,一个77Hz的毫米波雷达(115)获得的车辆与前方车辆之间的距离信息,超声波雷达(114),获取车辆后方较近处静态障碍物的位置信息以及距离信息,两侧长距超声波雷达(114)获得与车道线之间的间距信息;
步骤S40:步骤S3之后执行,对车内环境进行三维重建;具体为三维重建模块(23)中的图像预处理模块(231)将六个单目摄像头(116)传来的图像数据进行预处理之后,车内立体重建模块(232)对预处理后的图像进行三维网格的构建,使用标定的相机的内外参数以及两层空间体素融合算法将同一时刻的多个摄像头的图像数据融合,并通过Marching Cubes算法提取出该时刻对应的网格,采用孪生深度网络的深度学习模型,将具有相同物体的不同摄像头网格数据作为网络输入,计算图片的差异度,以获得对应场景的深度信息;继续向下执行步骤S41;
步骤S41:检测车内乘员姿态;
步骤S42:判断车内乘员是否受伤需要救援;通过对比成员姿态和之前收集到的车辆碰撞后乘员的姿态数据,确定车内乘员是否有受伤人员需要救援;
步骤S43:如果是,有乘员需要救援,可以把预先编译的救助信号发送到外部通讯系统(3),同时,应将车辆GPS(113)中获得的此时车辆位置信号也实时的传输到外部通讯系统(3),便于及时的开展救援;如果否,则跳过步骤S43,执行步骤S5;
步骤S44:步骤S3之后执行,车辆接收网联通讯模块(5)通过DSRC信号传来的后方来车(20)的状态信息;信息包括后方来车(20)是否接收到了本车发送的相关状态信息,以及后方来车(20)的制动配置,预计行驶路线,后车实时的车速信息;
步骤S45:根据车辆收集到的视觉感知模块(1)传递来的传感器信号采集模块(11)的信息,判断车辆行车环境是否安全;如果否,执行步骤S46,则根据传感器信号采集模块(11)收集到的行车环境信息计算安全行车所需的运行参数,将其实时更新到车辆运行轨迹中,步骤S46后执行步骤S5;如果是,在跳过步骤S46,直接执行步骤S5;
具体的,如果行车环境不安全,车辆自身则根据自身状态决定是保持留在原地还是根据最新收集到的传感器信号采集模块(11)消息再重新计算出一条更加安全可行的行车路线,同时,应将这个新计算出来的路线通过车辆上的网联通讯模块(5)传递给后方来车(20),之后接收后方来车(20)反馈回来的信息进一步进行路线的重新设计与优化;
步骤S5:规划车辆的行车路径以及行车动作;
步骤S6:检查车辆的设备状态;
步骤S7:根据设备状态判断车辆是否满足启动条件;
如果,设备状态不满足启动条件,则转入步骤S13:控制车辆处于原地,同时执行步骤S8:将此时车辆的运行轨迹及车辆的状态信息通过网联通讯模块(5)发送给后方来车(20),步骤S13后执行步骤S14:车辆内部时钟(73)开始计时,步骤S14后再执行步骤S15:判断累计时间是否超过3分钟,此时车辆内部有一个计时器车辆内部时钟(73),当车辆做出要维持在原地不动的指令时,该计时器便被重置为零,开始计时,当累计时间超过3分钟时,回到步骤S2,触发车辆的安全系统重新开始工作,即进行新一轮的启动行驶规划;如果,设备满足启动条件,则直接进入步骤S8:将此时车辆的运行轨迹及车辆的状态信息通过网联通讯模块(5)发送给后方来车(20);
步骤S9:后方来车(20)接收步骤S8发出的本车信息,并根据自身的状态和接收到的信息对前车作出回应,回应确定消息包括:“0”,“1”,“2”;其中,“0”表示向前车做出拒绝的回应,即前方车辆在收到“0”确认信号时,会执行步骤S13,应该立即停止启动,等待后方来车(20)先通过;“1”表示,允许前方车辆启动,即本车根据收到的消息通过计算前方车辆的运行轨迹,发现不会影响本车的行驶,同时能够保证两车的安全,前车车辆在收到确认信号“1”时,进入步骤S10控制车辆按照预设的运行参数启动,尽快行驶到应急车道;“2”表示条件允许,即本车通过计算发现前车的启动和运行可能会干扰本车的行驶,给两车带来安全隐患,此时,本车车辆将“2”信号以及本车的配置信息通过DSRC信号传递给前车,反馈至前车的网联通讯模块(5),即回到步骤S44,让前车能够进一步计算与调整预设的启动规划和行车规划;
步骤S10:当车辆收到后方反馈的确认信息“1”时,表明此时行车是安全的,便控制车辆按照预设的运行轨迹启动,尽快按照预定路线行驶至应急车道;
步骤S11:更新车辆的位置坐标,上传到外部通讯系统(3),将此时GPS(113)中的车辆位置坐标传给外部通讯系统(3),便于及时的救援;
步骤S12:判断车辆是否按规定路线安全行驶到应急车道,如果是,则结束,否则,车辆将反馈此时的车辆状态信息,转向角,转向速率,制动力的大小,驱动力大小,车辆的动力学参数到步骤S5,重新规划车辆的行车路径以及行车动作。
8.根据权利要求7所述的一种防止高速路上碰撞后发生连环事故的方法,其特征在于,所述步骤S5根据车辆传感器信号采集模块(11)的信息,利用A*,D*,算法规划车辆的行车路径,同时结合车辆的动力学以及运动学特征,计算车辆在固定时刻相应位置处的状态;具体的,车辆应该通过传感器信号采集模块(11)获得事故车辆(10)到应急车道所需要跨越的车道数,以及在这些需要跨越的车道的后方是否有后方来车,每条车道的宽度信息,并根据车辆的动力学以及运动学特征,找到一条较短可行的行车路径以便安全快速地行驶到高速公路旁边的应急车道。
9.根据权利要求7所述的一种防止高速路上碰撞后发生连环事故的方法,其特征在于,所述步骤S8,通讯方式为DSRC无线链路通信,通信的信息包括车辆启动的时间,车辆预设的行驶路线,本身车辆的制动性能配置,车辆预计行进的速度;当车辆满足启动条件时,事故车辆(10)在把行车路径告诉后方来车(20)时,应明确指出本车将横跨几个行车道,以及在每个行车道的行车速度和行车时间,从而保证事故车辆(10)能够安全快速的行驶到应急车道,并尽可能小的影响后方来车(20)的行车路线。
10.根据权利要求7所述的一种防止高速路上碰撞后发生连环事故的方法,其特征在于,所述步骤S9,后方来车(20)在接收到前方车辆传来的将要跨越的车道线信息后,首先确定自身现在是否处于其中的一条车道线上,如果不在,则本车正常沿该车道行驶;否则,则返回信号“2”或者信号“0”。

说明书全文

防止高速路上碰撞后发生连环事故的车辆安全系统及方法

技术领域

[0001] 本发明属于智能网联汽车领技术领域,涉及一种防止高速路上碰撞后发生连环事故的车辆安全系统及方法。

背景技术

[0002] 目前,在日常的交通事故中,车辆在发生第一次交通事故后,由于后方来车驾驶员分心,采取动作不及时等原因,经常会造成连环事故的发生,这种现象在下天,大雨天气下的高速路上更加常见。因此,需要提供一种防止车辆碰撞后发生连环事故的系统及方法,从而避免连环事故造成的伤害。
[0003] 专利申请号为201811516814.5的“用于防止车辆碰撞后发生二次事故的方法”,该方法通过碰撞感应装置产生的碰撞信号确定碰撞发生的方向,在设定的时间段内,除非车辆向与碰撞发生方向相反的方向行驶超过预定的距离,否则禁止车辆向碰撞发生方向行驶。在超过所述规定的时间段后,允许车辆向碰撞发生方向行驶,避免了驾驶员由于心理紧张等因素不能及时刹车制动甚至继续向碰撞发生方向行驶而造成二次伤害事故。但是,该专利仅仅在一定程度上避免了本车驾驶员驾驶紧张或者操作失误带来的二次伤害事故,没有考虑后方来车由于操作失误或粗心带来的连环事故。
[0004] 专利申请号为200910063719.9的“防止汽车追尾的告警方法及系统”,该方法检查车辆系统是否出现故障,在出现故障的时候打开手动控制开关,人工根据故障手动选择相应的报警语音文件,传输给语音电路,系统正常时,各传感器按照设定顺序采集车辆状态信号,并将其转换为数字信号,输入中央处理器,超过阈值的话就在语音文件中选择相应的报警信号,输出给语音电路,信号通过方法电路放大后通过扬声器向后车播报,该方法在汽车发生事故后,通过语音播报的形式警告后车,以避免后方来车对事故车辆构成追尾威胁,保证驾乘员的安全。但是,语音播报的距离有限,不能有效避免车辆高速行驶下的二次伤害,同时,该系统在发生故障时还要依赖人手工传递消息,没有考虑事故发生后驾驶人行动能受限的情况。
[0005] 申请号为201610781649.0的“用于车辆碰撞保护的控制器、方法、系统、及装置”,该专利中提出的方法主要是:在车辆发生碰撞后接收碰撞信号和车速信号,在接收到所述碰撞信号时,触发ESP控制单元执行制动操作,在触发所述ESP控制单元执行制动操作后,在所述ESP控制单元执行制动操作后,在所述车速信号表示的车速值小于或者等于第一预设车速阈值时,触发电子刹车执行制动操作,在车速信号表示的车速值小于或等于第二预设车速阈值时,触发所述ESP控制单元停止执行制动操作,第二预设车速阈值小于所述第一预设车速阈值。该方法用于在车辆发生碰撞后对车辆进行主动制动,防止车辆失控而发生二次事故。但是,该方法在本车制动时未能考虑到后方来车制动不及时等可能导致的车辆连环碰撞。
[0006] 公开号为CN106502240A的“一种车联网的车身控制系统”提出将车辆的状态信息通过总线通信模和信号采集模块输入到车身控制器,车身控制器通过无线收发模块接收和发送信号,与后方来车实现信息互通,该车身控制系统还包括报警模块,在车辆行车数据异常时可以向后方来车发出预警,避免事故发生。公开号为“CN104299451A”的“一种防止高速路连环撞车的智能预警系统”,可以对驾驶员的生命体征等进行检测做出提醒,使驾驶员在安全距离预先采取相关的措施避免与存在安全隐患的车辆发生碰撞。对比这两个专利,这两个专利没有考虑到在车辆碰撞发生后,对乘员姿态进行检测以进行相应的救援,没有对车辆此时的状态和所处的环境进行检测预判断,没有考虑控制车辆驶入应急车道。

发明内容

[0007] 为了达到上述目的,本发明提供一种防止高速路上碰撞后发生连环事故的车辆安全系统,解决了现有技术中防止连环撞车系统功能不够完善的问题。
[0008] 本发明的另一目的是提供一种防止高速路上碰撞后发生连环事故的车辆安全系统的使用方法。
[0009] 为解决上述技术问题,本发明所采用的技术方案是,一种防止高速路上碰撞后发生连环事故的车辆安全系统,由视觉感知模块、车载计算模块、外部通讯系统、车载通信模块、网联通讯模块、车辆控制模块、触发信号产生模块组成;
[0010] 所述视觉感知模块包括传感器信号采集模块和传感器控制单元;所述车载计算模块包括行车环境检测模块、行车规划模块、三维重建模块、乘员检测系统;所述车载通信模块包括无线通讯模块、CAN通讯模块;所述车辆控制模块包括驱动模块、制动模块、转向模块、车身附件模块、整车控制器;所述触发信号产生模块包括碰撞传感器、触发开关以及车辆内部时钟;
[0011] 所述传感器信号采集模块包括双目摄像头、激光雷达、GPS、声波雷达、毫米波雷达、单目摄像头;所述传感器控制单元包括双目摄像头控制器、激光雷达控制器、GPS控制器、超声波雷达控制器、毫米波雷达控制器、单目摄像头微控制器
[0012] 所述视觉感知模块中传感器控制单元的双目摄像头控制器、激光雷达控制器、GPS控制器、超声波雷达控制器、毫米波雷达控制器连接至行车环境检测模块,并且行车环境检测模块接收双目摄像头、激光雷达、GPS、超声波雷达以及毫米波雷达中的数据信号,之后对这些数据进行处理,最后将处理后的结果传送给后面的行车规划模块;
[0013] 单目摄像头微控制器连接至三维重建模块;所述三维重建模块和乘员检测系统相连接,乘员检测系统又和行车规划模块相连接,行车规划模块又和行车环境检测模块相连接;所述行车规划模块还分别和无线通讯模块、CAN通讯模块相连接,乘员检测系统还和CAN通讯模块相连接;在三维重建模块中获得三维网格数据,输入至乘员检测系统中,乘员检测系统将乘员姿态识别结果输入到行车规划模块和CAN通讯模块,同时行车规划模块中还接收行车环境检测模块的检测结果,在行车规划模块中将两者融合后,同时考虑进去车辆的状态信息,发出一系列规划指令,传输到车载通信模块中的无线通讯模块和CAN通讯模块;
[0014] 所述无线通讯模块还和外部通讯系统相连接,CAN通讯模块还分别和网联通讯模块、整车控制器、车辆内部时钟相连接,而车辆内部时钟和整车控制器也均和网联通讯模块相连接,且车辆内部时钟和整车控制器也相连接;无线通讯模块将行车规划模块中的信息传送到外部通讯系统,CAN通讯模块将信息传送到网联通讯模块、整车控制器、车辆内部时钟。
[0015] 进一步的,所述双目摄像头与双目摄像头控制器相连接,激光雷达与激光雷达控制器相连接,GPS与GPS控制器相连接,超声波雷达与超声波雷达控制器相连接,毫米波雷达与毫米波雷达控制器相连接,单目摄像头与单目摄像头微控制器相连接。
[0016] 进一步的,所述行车环境检测模块包括周围环境点的检测、可行区域的检测、后方来车的检测三个模块;行车环境检测模块中的周围环境点的检测主要借助于双目摄像头数据以及毫米波雷达数据来完成,通过融合两者的数据,识别出周围环境中的障碍物,车道线,交通标志位置以及距离信息,可行区域的检测主要借助于激光雷达的数据,并依托激光雷达扫描点在可行路面的连续性,首先用相邻扫描点之间的欧式距离对点聚类,然后用加权移动平均值对每类点平滑中值滤波,再利用斜率将数据点分割成多段近似直线段,利用最小二乘法法对线段进行二项式拟合,辅以双目摄像头的数据,基于激光雷达的可行区域检测有时会出现点稀疏的问题,双目摄像头具有信息丰富的优点,通过检测图像中的特征,包括颜色,纹理,形状模型,消失点,可以辅助激光雷达有效的检测出可行区域,后方来车的检测主要基于获取到的激光雷达和毫米波雷达数据,获得后方来车的距离,方位,速度;主要借助于激光雷达的数据,激光雷达是以发射激光束探测目标的位置、速度的雷达系统,向目标发射探测信号,然后将接收到的从目标反射回来的信号与发射信号进行比较,处理后,就可以获得目标的有关信息;
[0017] 行车规划模块包括路径规划模块、动作规划模块、启动规划模块;路径规划模块可以采用A*算法对路径进行规划,规划出一条可行的路线,保证安全快速的控制车辆行驶到高速应急车道,动作规划模块结合车辆本身的特征以及路径规划的路线,结合获得的车辆周围环境信息以及乘员姿态信息,计算车辆在运行时应采取的一系列动作,包括方向盘为多少,驱动力矩是多少,应该何时制动,启动规划模块在检查了车辆的设备信息能够正常运转并结合了后方来车的信息做出启动的规划;
[0018] 三维重建模块包括图像预处理模块、车内立体重建模块;三维重建模块中的图像预处理模块将单目摄像头传来的图像数据进行预处理之后,车内立体重建模块对预处理后的图像进行三维网格的构建,使用标定的相机的内外参数以及两层空间体素融合算法将同一时刻的多个摄像头的图像数据融合,并通过Marching Cubes算法提取出该时刻对应的网格,采用孪生深度网络的深度学习模型,将具有相同物体的不同摄像头网格数据作为网络输入,计算图片的差异度,以获得对应场景的深度信息,之后经过动态场景的点云配准,关键提取将获得的三维网络流压缩传输输出至乘员检测系统中;
[0019] 乘员检测系统包括乘员特征数据库、乘员姿态数据库、乘员检测模块、乘员关键点检测模块、乘员姿态识别模块;所述乘员特征数据库与乘员姿态数据库由公开的乘员特征与姿态特征以及车辆自主采集存储,乘员特征数据库既包括驾驶员的驾驶习性特征,还包括车内乘客的乘坐特征,这些特征同时包括车辆正常行驶时的乘员特征与姿态数据,以及车辆发生碰撞后的乘员姿态与特征数据,乘员姿态识别模块用于识别乘员姿态;所述乘员检测模块通过特征匹配算法对比三维重建模块传来的车内三维网络数据以及摄像头拍到的图像数据,进行特征匹配,同时对比乘员特征数据库、乘员姿态识别模块,之后通过乘员关键点检测模块,确定乘员检测的关键点,采用关键点检测检测出乘员的关节,头,手关键特征,与乘员姿态数据库进行对比得出乘员的姿态,并将乘员姿态识别结果传输给行车规划模块。
[0020] 进一步的,所述驱动模块包括驱动电机控制器、驱动电机,驱动电机和驱动电机控制器相连接;制动模块包括IBS控制器、集成制动系统,IBS控制器和集成制动系统相连接;转向模块包括EPS控制器、电控转向系统,EPS控制器和电控转向系统相连接;车身附件模块包括车身附件控制器、车身附件,车身附件控制器和车身附件相连接;所述车身附件控制器、IBS控制器、EPS控制器、驱动电机控制器均连接到整车控制器上。
[0021] 进一步的,所述传感器信号采集模块包括:安装在车辆挡玻璃处的双目摄像头,安装在车辆顶端的激光雷达,安装在车顶的GPS,车内一共安装6个单目摄像头,分别安装在车辆左前方,车辆右前方,车辆左后方,车辆右后方,以及车辆右方和车辆左方,一个24GHz的毫米波雷达安装在汽车的后保险杠内,一个77Hz的毫米波雷达安装在汽车的前保险杠内,车辆的后部另外装有四个短距的超声波雷达,两侧各装一个长距超声波雷达,六个单目摄像头与单目摄像头微控制器相连接;在车辆的前部和车辆后部安装有碰撞传感器;所述触发开关分别和车辆内部时钟、碰撞传感器、视觉感知模块相连接;车辆内部时钟与触发开关的连接,能发挥更好的作用,可以保证车辆在当前行车有危险时处于静止状态,由于车辆内部时钟的作用,也可以在指定时间内,重新触发系统工作,尝试启动车辆。
[0022] 进一步的,网联通讯模块包括DSRC无线电装置,处理器,存储器,车载接口,其中处理器分别和DSRC无线电装置、存储器、车载接口相连接,车载接口还和存储器相连接;其中DSRC无线电装置用来接收DSRC信号,车载接口输出控制信号
[0023] 一种防止高速路上碰撞后发生连环事故的方法,包括以下步骤:
[0024] 步骤S1:检测车辆是否发生碰撞;具体地在车辆的前部和车辆后部安装有碰撞传感器,当车辆发生碰撞时,碰撞传感器用碰撞时应变电阻变形使其电阻值变化或压电晶体受力使输出电压变化传递碰撞信息;
[0025] 步骤S2:若检测到车辆发生碰撞,碰撞传感器传来的信号达到一定阈值时,触发车辆安全系统工作;此时,车辆处于碰撞状态,需要车辆获取传感器信号采集模块的信息,确定车辆是否安全行驶;若没有发生碰撞,则结束;
[0026] 步骤S3:视觉感知模块收集传感器信号采集模块信息;具体包括:安装在车辆的挡风玻璃处的双目摄像头获得的事故车辆前方车辆,行人,车道线的图像和相对距离信息,安装在车辆顶端的激光雷达获得的车辆与周围环境障碍物以及后方来车的距离信息,安装在车顶的GPS装置输出此时车辆的位置坐标信息,车内一共安装6个单目摄像头,获得车内乘员的姿态信息,24GHz的毫米波雷达获得汽车的后面盲点区域的信息,一个77Hz的毫米波雷达获得的车辆与前方车辆之间的距离信息,超声波雷达,获取车辆后方较近处静态障碍物的位置信息以及距离信息,两侧长距超声波雷达获得与车道线之间的间距信息;
[0027] 步骤S40:步骤S3之后执行,对车内环境进行三维重建;具体为三维重建模块中的图像预处理模块将六个单目摄像头传来的图像数据进行预处理之后,车内立体重建模块对预处理后的图像进行三维网格的构建,使用标定的相机的内外参数以及两层空间体素融合算法将同一时刻的多个摄像头的图像数据融合,并通过Marching Cubes算法提取出该时刻对应的网格,采用孪生深度网络的深度学习模型,将具有相同物体的不同摄像头网格数据作为网络输入,计算图片的差异度,以获得对应场景的深度信息;继续向下执行步骤S41;
[0028] 步骤S41:检测车内乘员姿态;
[0029] 步骤S42:判断车内乘员是否受伤需要救援;通过对比成员姿态和之前收集到的车辆碰撞后乘员的姿态数据,确定车内乘员是否有受伤人员需要救援;
[0030] 步骤S43:如果是,有乘员需要救援,可以把预先编译的救助信号发送到外部通讯系统,同时,应将车辆GPS中获得的此时车辆位置信号也实时的传输到外部通讯系统,便于及时的开展救援;如果否,则跳过步骤S43,执行步骤S5;
[0031] 步骤S44:步骤S3之后执行,车辆接收网联通讯模块通过DSRC信号传来的后方来车的状态信息;信息包括后方来车是否接收到了本车发送的相关状态信息,以及后方来车的制动配置,预计行驶路线,后车实时的车速信息等;
[0032] 步骤S45:根据车辆收集到的视觉感知模块传递来的传感器信号采集模块的信息,判断车辆行车环境是否安全;如果否,执行步骤S46,则根据传感器信号采集模块收集到的行车环境信息计算安全行车所需的运行参数,将其实时更新到车辆运行轨迹中,步骤S46后执行步骤S5;如果是,在跳过步骤S46,直接执行步骤S5;
[0033] 具体的,如果行车环境不安全,车辆自身则根据自身状态决定是保持留在原地还是根据最新收集到的传感器信号采集模块消息再重新计算出一条更加安全可行的行车路线,同时,应将这个新计算出来的路线通过车辆上的网联通讯模块传递给后方来车,之后接收后方来车反馈回来的信息进一步进行路线的重新设计与优化;
[0034] 步骤S5:规划车辆的行车路径以及行车动作;
[0035] 步骤S6:检查车辆的设备状态;
[0036] 步骤S7:根据设备状态判断车辆是否满足启动条件;
[0037] 如果,设备状态不满足启动条件,则转入步骤S13:控制车辆处于原地,同时执行步骤S8:将此时车辆的运行轨迹及车辆的状态信息通过网联通讯模块发送给后方来车,步骤S13后执行步骤S14:车辆内部时钟开始计时,步骤S14后再执行步骤S15:判断累计时间是否超过3分钟,此时车辆内部有一个计时器车辆内部时钟,当车辆做出要维持在原地不动的指令时,该计时器便被重置为零,开始计时,当累计时间超过3分钟时,回到步骤S2,触发车辆的安全系统重新开始工作,即进行新一轮的启动行驶规划;如果,设备满足启动条件,则直接进入步骤S8:将此时车辆的运行轨迹及车辆的状态信息通过网联通讯模块发送给后方来车;
[0038] 步骤S9:后方来车接收步骤S8发出的本车信息,并根据自身的状态和接收到的信息对前车作出回应,回应确定消息包括:“0”,“1”,“2”;其中,“0”表示向前车做出拒绝的回应,即前方车辆在收到“0”确认信号时,会执行步骤S13,应该立即停止启动,等待后方来车先通过;“1”表示,允许前方车辆启动,即本车根据收到的消息通过计算前方车辆的运行轨迹,发现不会影响本车的行驶,同时能够保证两车的安全,前车车辆在收到确认信号“1”时,进入步骤S10控制车辆按照预设的运行参数启动,尽快行驶到应急车道;“2”表示条件允许,即本车通过计算发现前车的启动和运行可能会干扰本车的行驶,给两车带来安全隐患,此时,本车车辆将“2”信号以及本车的配置信息(包括本车的制动性能,本车的预计运行规划等)通过DSRC信号传递给前车,反馈至前车的网联通讯模块,即回到步骤S44,让前车能够进一步计算与调整预设的启动规划和行车规划;
[0039] 步骤S10:当车辆收到后方反馈的确认信息“1”时,表明此时行车是安全的,便控制车辆按照预设的运行轨迹启动,尽快按照预定路线行驶至应急车道;
[0040] 步骤S11:更新车辆的位置坐标,上传到外部通讯系统,将此时GPS中的车辆位置坐标传给外部通讯系统,便于及时的救援;
[0041] 步骤S12:判断车辆是否按规定路线安全行驶到应急车道,如果是,则结束,否则,车辆将反馈此时的车辆状态信息,转向角,转向速率,制动力的大小,驱动力大小,车辆的动力学参数等到步骤S5,重新规划车辆的行车路径以及行车动作。
[0042] 进一步的,所述步骤S5根据车辆传感器信号采集模块的信息,利用A*,D*,算法规划车辆的行车路径,同时结合车辆的动力学以及运动学特征,计算车辆在固定时刻相应位置处的状态(车辆的速度,加速度,航向等);具体的,车辆应该通过传感器信号采集模块获得事故车辆到应急车道所需要跨越的车道数,以及在这些需要跨越的车道的后方是否有后方来车,每条车道的宽度信息,并根据车辆的动力学以及运动学特征,找到一条较短可行的行车路径以便安全快速地行驶到高速公路旁边的应急车道。
[0043] 进一步的,所述步骤S8,通讯方式为DSRC无线链路通信,通信的信息包括车辆启动的时间,车辆预设的行驶路线,本身车辆的制动性能配置,车辆预计行进的速度等;当车辆满足启动条件时,事故车辆在把行车路径告诉后方来车时,应明确指出本车将横跨几个行车道,以及在每个行车道的行车速度和行车时间,从而保证事故车辆能够安全快速的行驶到应急车道,并尽可能小的影响后方来车的行车路线。
[0044] 进一步的,所述步骤S9,后方来车在接收到前方车辆传来的将要跨越的车道线信息后,首先确定自身现在是否处于其中的一条车道线上,如果不在,则本车正常沿该车道行驶,返回信号1;否则,则返回信号“2”或者信号“0”。
[0045] 本发明的有益效果是:
[0046] 本发明提供的一种防止高速路上碰撞后发生连环事故的车辆安全系统及方法,能有效的降低或避免在高速路上行驶的汽车碰撞后由于后方来车信息获取不及时而发生连坏事故的隐患,通过车与车之间通讯,保证不仅本车能够采取措施来避免二次碰撞,而且能够把本车的碰撞信息通过网联通讯模块告知后方来车,给后方来车采取合适的操作提供了时间和信息的保证。同时,本车能够在确定行车安全的前提下,使车辆自启动行驶到高速公路的应急车道,并将车内乘员的情况传递到云端,便于及时的救援。采用该方法以及对应的系统能够大大降低高速公路上车辆发生连环碰撞事故的概率,减小甚至避免连环碰撞事故给人民生命和财产安全带来的损失。附图说明
[0047] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0048] 图1是所述一种防止高速路上碰撞后发生连环事故的车辆安全系统的结构示意图。
[0049] 图2是所述一种防止高速路上碰撞后发生连环事故的车辆安全系统的网联通讯模块示意图。
[0050] 图3示意性地示出了根据本发明实施例的具有通信设备的两辆车之间的通讯。
[0051] 图4是所述一种用于防止车辆高速路上碰撞后发生连环事故的方法。
[0052] 图中,1.视觉感知模块、2.车载计算模块、3.外部通讯系统、4.车载通信模块、5.网联通讯模块、6.车辆控制模块、7.触发信号产生模块、10.事故车辆、20.后方来车、11.传感器信号采集模块、12.传感器控制单元、111.双目摄像头、112.激光雷达、113.GPS、114.超声波雷达、115.毫米波雷达、116.单目摄像头、121.双目摄像头控制器、122.激光雷达控制器、123.GPS控制器、124.超声波雷达控制器、125.毫米波雷达控制器、126.单目摄像头微控制器、21.行车环境检测模块、22.行车规划模块、23.三维重建模块、24.乘员检测系统、211.周围环境点的检测、212.可行区域的检测、213.后方来车的检测、221.路径规划模块、222.动作规划模块、223.启动规划模块、231.图像预处理模块、232.车内立体重建模块、241.乘员特征数据库、242.乘员姿态数据库、243.乘员检测模块、244.乘员关键点检测模块、245.乘员姿态识别模块、41.无线通讯模块、42.CAN通讯模块、51.DSRC无线电装置、52.处理器、53.存储器、54.车载接口、61.驱动模块、62.制动模块、63.转向模块、64.车身附件模块、65.整车控制器、611.驱动电机控制器、612.驱动电机、621.IBS控制器、622.集成制动系统、
631.EPS控制器、632.电控转向系统、641.车身附件控制器、642.车身附件、71.碰撞传感器、
72.触发开关、73.车辆内部时钟。

具体实施方式

[0053] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0054] 如图1-2所示,一种防止高速路上碰撞后发生连环事故的车辆安全系统:
[0055] 由视觉感知模块1、车载计算模块2、外部通讯系统3、车载通信模块4、网联通讯模块5、车辆控制模块6、触发信号产生模块7组成;
[0056] 所述视觉感知模块1包括传感器信号采集模块11和传感器控制单元12;所述车载计算模块2包括行车环境检测模块21、行车规划模块22、三维重建模块23、乘员检测系统24;所述车载通信模块4包括无线通讯模块41、CAN通讯模块42;所述车辆控制模块6包括驱动模块61、制动模块62、转向模块63、车身附件模块64、整车控制器65;所述触发信号产生模块7包括碰撞传感器71、触发开关72以及车辆内部时钟73;
[0057] 所述传感器信号采集模块11包括双目摄像头111、激光雷达112、GPS113、超声波雷达114、毫米波雷达115、单目摄像头116;所述传感器控制单元12包括双目摄像头控制器121、激光雷达控制器122、GPS控制器123、超声波雷达控制器124、毫米波雷达控制器125、单目摄像头微控制器126;
[0058] 所述视觉感知模块1中传感器控制单元12的双目摄像头控制器121、激光雷达控制器122、GPS控制器123、超声波雷达控制器124、毫米波雷达控制器125连接至行车环境检测模块21,并且行车环境检测模块21接收双目摄像头111、激光雷达112、GPS113、超声波雷达114以及毫米波雷达115中的数据信号,之后对这些数据进行处理,最后将处理后的结果传送给后面的行车规划模块22;
[0059] 单目摄像头微控制器126连接至三维重建模块23;所述三维重建模块23和乘员检测系统24相连接,乘员检测系统24又和行车规划模块22相连接,行车规划模块22又和行车环境检测模块21相连接;所述行车规划模块22还分别和无线通讯模块41、CAN通讯模块42相连接,乘员检测系统24还和CAN通讯模块42相连接;在三维重建模块23中获得三维网格数据,输入至乘员检测系统24中,乘员检测系统24将乘员姿态识别结果输入到行车规划模块22和CAN通讯模块42,同时行车规划模块22中还接收行车环境检测模块21的检测结果,在行车规划模块22中将两者融合后,同时考虑进去车辆的状态信息,发出一系列规划指令,传输到车载通信模块4中的无线通讯模块41和CAN通讯模块42;
[0060] 所述无线通讯模块41还和外部通讯系统3相连接,CAN通讯模块42还分别和网联通讯模块5、整车控制器65、车辆内部时钟73相连接,而车辆内部时钟73和整车控制器65也均和网联通讯模块5相连接,且车辆内部时钟73和整车控制器65也相连接;无线通讯模块41将行车规划模块22中的信息传送到外部通讯系统3,CAN通讯模块42将信息传送到网联通讯模块5、整车控制器65、车辆内部时钟73。
[0061] 其中,所述双目摄像头111与双目摄像头控制器121相连接,激光雷达112与激光雷达控制器122相连接,GPS113与GPS控制器123相连接,超声波雷达114与超声波雷达控制器124相连接,毫米波雷达115与毫米波雷达控制器125相连接,单目摄像头116与单目摄像头微控制器126相连接。
[0062] 所述行车环境检测模块21包括周围环境点的检测211、可行区域的检测212、后方来车的检测213三个模块;行车环境检测模块21中的周围环境点的检测211主要借助于双目摄像头111数据以及毫米波雷达115数据来完成,通过融合两者的数据,识别出周围环境中的障碍物,车道线,交通标志位置以及距离信息,可行区域的检测212主要借助于激光雷达112的数据辅以双目摄像头111的数据,基于激光雷达112的可行区域检测有时会出现点云稀疏的问题,双目摄像头111具有信息丰富的优点,通过检测图像中的特征,包括颜色,纹理,形状模型,消失点,可以辅助激光雷达112有效的检测出可行区域,后方来车的检测213主要基于获取到的激光雷达112和毫米波雷达115数据,获得后方来车20的距离,方位,速度;主要借助于激光雷达112的数据,激光雷达112是以发射激光束探测目标的位置、速度的雷达系统,向目标发射探测信号,然后将接收到的从目标反射回来的信号与发射信号进行比较,处理后,就可以获得目标的有关信息;
[0063] 行车规划模块22包括路径规划模块221、动作规划模块222、启动规划模块223;路径规划模块221可以采用A*算法对路径进行规划,规划出一条可行的路线,保证安全快速的控制车辆行驶到高速应急车道,动作规划模块222结合车辆本身的特征以及路径规划的路线,结合获得的车辆周围环境信息以及乘员姿态信息,计算车辆在运行时应采取的一系列动作,包括方向盘转角为多少,驱动力矩是多少,应该何时制动,启动规划模块223在检查了车辆的设备信息能够正常运转并结合了后方来车20的信息做出启动的规划;
[0064] 三维重建模块23包括图像预处理模块231、车内立体重建模块232;三维重建模块23中的图像预处理模块231将单目摄像头116传来的图像数据进行预处理之后,车内立体重建模块232对预处理后的图像进行三维网格的构建,使用标定的相机的内外参数以及两层空间体素融合算法将同一时刻的多个摄像头的图像数据融合,并通过Marching Cubes算法提取出该时刻对应的网格,采用孪生深度网络的深度学习模型,将具有相同物体的不同摄像头网格数据作为网络输入,计算图片的差异度,以获得对应场景的深度信息,之后经过动态场景的点云配准,关键帧提取将获得的三维网络流压缩传输输出至乘员检测系统24中;
[0065] 乘员检测系统24包括乘员特征数据库241、乘员姿态数据库242、乘员检测模块243、乘员关键点检测模块244、乘员姿态识别模块245;所述乘员特征数据库241与乘员姿态数据库242由公开的乘员特征与姿态特征以及车辆自主采集存储,乘员特征数据库241既包括驾驶员的驾驶习性特征,还包括车内乘客的乘坐特征,这些特征同时包括车辆正常行驶时的乘员特征与姿态数据,以及车辆发生碰撞后的乘员姿态与特征数据,乘员姿态识别模块245用于识别乘员姿态;所述乘员检测模块243通过特征匹配算法对比三维重建模块23传来的车内三维网络数据以及摄像头拍到的图像数据,进行特征匹配,同时对比乘员特征数据库241、乘员姿态识别模块245,之后通过乘员关键点检测模块244,确定乘员检测的关键点,采用关键点检测检测出乘员的关节,头,手关键特征,与乘员姿态数据库242进行对比得出乘员的姿态,并将乘员姿态识别结果传输给行车规划模块22;
[0066] 所述驱动模块61包括驱动电机控制器611、驱动电机612,驱动电机612和驱动电机控制器611相连接;制动模块62包括IBS控制器621、集成制动系统622,IBS控制器621和集成制动系统622相连接;转向模块63包括EPS控制器631、电控转向系统632,EPS控制器631和电控转向系统632相连接;车身附件模块64包括车身附件控制器641、车身附件642,车身附件控制器641和车身附件642相连接;所述车身附件控制器641、IBS控制器621、EPS控制器631、驱动电机控制器611均连接到整车控制器65上。所述传感器信号采集模块11包括:安装在车辆挡风玻璃处的双目摄像头111,安装在车辆顶端的激光雷达112,安装在车顶的GPS113,车内一共安装6个单目摄像头116分别安装在车辆左前方,车辆右前方,车辆左后方,车辆右后方,以及车辆右方和车辆左方,一个24GHz的毫米波雷达115安装在汽车的后保险杠内,一个77Hz的毫米波雷达115安装在汽车的前保险杠内,车辆的后部另外装有四个短距的超声波雷达114,两侧各装一个长距超声波雷达114,六个单目摄像头116与单目摄像头微控制器
126相连接;在车辆的前部和车辆后部安装有碰撞传感器71;所述触发开关72分别和车辆内部时钟73、碰撞传感器71、视觉感知模块1相连接。网联通讯模块5包括DSRC无线电装置51,处理器52,存储器53,车载接口54,其中处理器52分别和DSRC无线电装置51、存储器53、车载接口54相连接,车载接口54还和存储器53相连接;其中DSRC无线电装置51用来接收DSRC信号,车载接口54输出控制信号。
[0067] 该车辆安全系统中:车辆内部时钟73与触发开关72的连接,能发挥更好的作用,可以保证车辆在当前行车有危险时处于静止状态,但是由于车辆内部时钟73的作用,也可以在指定时间内,重新触发系统工作,尝试启动车辆。三维重建模块23放在乘员检测系统24之前,在进行三维重建后,再进行乘员检测能够显著提高检测的精度,以及检测的实时性。无线通讯模块41与外部通讯系统3相连,可以将车辆内部的乘员状态传输给外部通讯系统3,便于及时救援,同时,行车规划模块22和乘员检测系统24连接,在车辆启动时,考虑到了车辆内乘员的状态,例如有利于防止由于车辆的突然启动给没坐稳乘员带来的可能伤害。
[0068] 如图3-4所示,一种防止高速路上碰撞后发生连环事故的方法,包括以下步骤:
[0069] 步骤S1:检测车辆是否发生碰撞;具体地在车辆的前部和车辆后部安装有碰撞传感器71,当车辆发生碰撞时,碰撞传感器71用碰撞时应变电阻的变形使其电阻值变化或压电晶体受力使输出电压变化传递碰撞信息;
[0070] 步骤S2:若检测到车辆发生碰撞,碰撞传感器71传来的信号达到一定阈值时(阈值的选择根据具体测试情况而定,不同车型应选择不同的阈值,该阈值即车辆碰撞导致驾驶员可能昏迷时车辆的最大加速度对应的碰撞传感器71信息值,或车辆驾驶碰撞后驾驶能力受限车辆的最大加速度对应的碰撞传感器71信息值),触发车辆安全系统工作;此时,车辆处于碰撞状态,需要车辆获取传感器信号采集模块11的信息,确定车辆是否安全行驶;若没有发生碰撞,则结束;
[0071] 步骤S3:视觉感知模块1收集传感器信号采集模块11信息;具体包括:安装在车辆的挡风玻璃处的双目摄像头111获得的事故车辆10前方车辆,行人,车道线的图像和相对距离信息,安装在车辆顶端的激光雷达112获得的车辆与周围环境障碍物以及后方来车20的距离信息,安装在车顶的GPS113装置输出此时车辆的位置坐标信息,例如车辆的经纬度等,车内一共安装6个单目摄像头116,获得车内乘员的姿态信息,24GHz的毫米波雷达115获得汽车的后面盲点区域的信息,一个77Hz的毫米波雷达115获得的车辆与前方车辆之间的距离信息,超声波雷达114,获取车辆后方较近处静态障碍物的位置信息以及距离信息,两侧长距超声波雷达114获得与车道线之间的间距信息;
[0072] 步骤S40:步骤S3之后执行,对车内环境进行三维重建;具体为三维重建模块23中的图像预处理模块231将六个单目摄像头116传来的图像数据进行预处理之后,车内立体重建模块232对预处理后的图像进行三维网格的构建,使用标定的相机的内外参数以及两层空间体素融合算法将同一时刻的多个摄像头的图像数据融合,并通过Marching Cubes算法提取出该时刻对应的网格,采用孪生深度网络的深度学习模型,将具有相同物体的不同摄像头网格数据作为网络输入,计算图片的差异度,以获得对应场景的深度信息,之后经过动态场景的点云配准,关键帧提取等将获得的三维网络流压缩传输输出;(孪生网络的应用,提高了建模的鲁棒性和精度,采用网格输入替代摄像头图片的输入,则提高了图像三维重建的速度);继续向下执行步骤S41;
[0073] 步骤S41:检测车内乘员姿态;
[0074] 步骤S42:判断车内乘员是否受伤需要救援;通过对比成员姿态和之前收集到的车辆碰撞后乘员的姿态数据,确定车内乘员是否有受伤人员需要救援;
[0075] 步骤S43:如果是,有乘员需要救援,可以把预先编译的救助信号(本处采用的编码方式为ASCII编码方式,即先将不同的救援语义信号与具体的ASCII编码一一对应,之后通过解码器将具体的编码解释为具体的救援语义信号)发送到外部通讯系统3,同时,应将车辆GPS113中获得的此时车辆位置信号也实时的传输到外部通讯系统3,便于及时的开展救援;如果否,则跳过步骤S43,执行步骤S5;
[0076] 步骤S44:步骤S3之后执行,车辆接收网联通讯模块5通过DSRC信号传来的后方来车20的状态信息;信息包括后方来车20是否接收到了本车发送的相关状态信息,以及后方来车20的制动配置,预计行驶路线,后车实时的车速信息等;
[0077] 步骤S45:根据车辆收集到的视觉感知模块1传递来的传感器信号采集模块11的信息,判断车辆行车环境是否安全;判断行车环境是否安全,需要视觉感知模块1实时获得车辆周围的环境和状态信息,如是否有障碍物,同向有几条车道线,是否有后方来车20,后方来车20处在相对于本身车辆的什么位置等,同时,本车车辆应该结合自身的车辆状态,包括动力配置,刹车配置,车辆启动性能好坏,车辆控制命令执行响应时间等,预估如果按照预设的路线启动并行使是否安全;如果否,执行步骤S46,则根据传感器信号采集模块11收集到的行车环境信息计算安全行车所需的运行参数,将其实时更新到车辆运行轨迹中,步骤S46后执行步骤S5;如果是,在跳过步骤S46,直接执行步骤S5;
[0078] 具体的,如果行车环境不安全,车辆自身则根据自身状态决定是保持留在原地还是根据最新收集到的传感器信号采集模块11消息再重新计算出一条更加安全可行的行车路线,同时,应将这个新计算出来的路线通过车辆上的网联通讯模块5传递给后方来车20,之后接收后方来车20反馈回来的信息进一步进行路线的重新设计与优化;
[0079] 步骤S5:规划车辆的行车路径以及行车动作;根据车辆传感器信号采集模块11的信息,利用A*,D*,算法规划车辆的行车路径,同时结合车辆的动力学以及运动学特征,计算车辆在固定时刻相应位置处的状态(车辆的速度,加速度,航向等);具体的,车辆应该通过传感器信号采集模块11获得事故车辆10到应急车道所需要跨越的车道数,以及在这些需要跨越的车道的后方是否有后方来车20,每条车道的宽度信息,并根据车辆的动力学以及运动学特征,找到一条较短可行的行车路径以便安全快速地行驶到高速公路旁边的应急车道。
[0080] 步骤S6:检查车辆的设备状态;
[0081] 步骤S7:根据设备状态判断车辆是否满足启动条件;
[0082] 如果,设备状态不满足启动条件,则转入步骤S13:控制车辆处于原地,同时执行步骤S8:将此时车辆的运行轨迹及车辆的状态信息通过网联通讯模块5发送给后方来车20,步骤S13后执行步骤S14:车辆内部时钟73开始计时,步骤S14后再执行步骤S15:判断累计时间是否超过3分钟,此时车辆内部有一个计时器车辆内部时钟73,当车辆做出要维持在原地不动的指令时,该计时器便被重置为零,开始计时,当累计时间超过3分钟时,回到步骤S2,触发车辆的安全系统重新开始工作,即进行新一轮的启动行驶规划;如果,设备满足启动条件,则直接进入步骤S8:将此时车辆的运行轨迹及车辆的状态信息通过网联通讯模块5发送给后方来车20;
[0083] 具体的,检测车辆的设备状态,其设备状态包括车辆的制动系统EPS,刹车片等设备状态,还包括车辆的电量,车灯,喇叭等设备的状态,例如检查车辆电机的转速,看电机的转速是否在预设的标准范围内,若在标准范围内,则表示电机设备满足车辆的启动条件,否则,则表示电机设备不满足启动条件。例如,检查车辆电池的电量,看车辆蓄电池的电量能否保证车辆能够正常启动,如果能够保证车辆正常启动,则表示蓄电池设备满足启动条件,否则,表示蓄电池设备不能满足车辆启动条件。此外,还应检测车辆的制动性能是否在预设的范围,即车辆制动管路的压力是否在可以接受的范围,检查车辆的应急灯是否能够正常工作,以及检查车辆的转向性能,车辆转向灯,喇叭等。
[0084] 通讯方式为DSRC无线链路通信,通信的信息包括车辆启动的时间,车辆预设的行驶路线,本身车辆的制动性能配置,车辆预计行进的速度等;当车辆满足启动条件时,事故车辆10在把行车路径告诉后方来车20时,应明确指出本车将横跨几个行车道,以及在每个行车道的行车速度和行车时间,从而保证事故车辆10能够安全快速的行驶到应急车道,并尽可能小的影响后方来车20的行车路线。
[0085] 步骤S9:后方来车20接收步骤S8发出的本车信息,并根据自身的状态和接收到的信息对前车作出回应,回应确定消息包括:“0”,“1”,“2”;其中,“0”表示向前车做出拒绝的回应,即前方车辆在收到“0”确认信号时,会执行步骤S13,应该立即停止启动,等待后方来车20先通过;“1”表示,允许前方车辆启动,即本车根据收到的消息通过计算前方车辆的运行轨迹,发现不会影响本车的行驶,同时能够保证两车的安全,前车车辆在收到确认信号“1”时,进入步骤S10控制车辆按照预设的运行参数启动,尽快行驶到应急车道;“2”表示条件允许,即本车通过计算发现前车的启动和运行可能会干扰本车的行驶,给两车带来安全隐患,此时,本车车辆将“2”信号以及本车的配置信息(包括本车的制动性能,本车的预计运行规划等)通过DSRC信号传递给前车,反馈至前车的网联通讯模块5,即回到步骤S44,让前车能够进一步计算与调整预设的启动规划和行车规划;
[0086] 具体的,后方来车20在接收到前方车辆传来的将要跨越的车道线信息后,首先确定自身现在是否处于其中的一条车道线上,如果不在,则后方来车20正常沿该车道行驶。否则,则返回信号“2”或者信号“0”。比如,同向三车道的高速公路,如果发生事故的车辆处于中间第二条车道,而后方来车20处于最左边第一超车道,事故车辆10需要从第二车道跨越右边第一车道行驶到最右边应急车道,则后车可以确定本车沿着现在车道行驶不会与前方事故车发生连环碰撞,即回复“1”,表明允许前方车辆启动并按照预设的轨迹行驶,如果车辆处于中间第二车道,即与事故车辆10处于同一车道,即均在第二车道,则控制本车向第一车道行驶,同时返回信号“2”,将本车的行车信息和车辆状态消息发送给前方车辆,前方车辆在接收到“2”信号后,通过接收到的环境传感信号以及本车车辆状态信息和后方来车20发送的后方来车20配置信息,综合判断微调行车路线,行车启动时间,在确定安全的情况下,行驶到应急车道。如果后方来车20位于第三条车道,且此时两车的距离较近,后车应该保持本车在该车道上行驶,同时向前车发送“0”信号,即立即停止启动的信号,维持前方车辆保持在原地不动,待后方来车20经过后在开始启动,防止二次碰撞事故的发生。
[0087] 步骤S10:当车辆收到后方反馈的确认信息“1”时,表明此时行车是安全的,便控制车辆按照预设的运行轨迹启动,尽快按照预定路线行驶至应急车道;
[0088] 步骤S11:更新车辆的位置坐标,上传到外部通讯系统3,将此时GPS113中的车辆位置坐标传给外部通讯系统3,便于及时的救援;
[0089] 步骤S12:判断车辆是否按规定路线安全行驶到应急车道,如果是,则结束,否则,车辆将反馈此时的车辆状态信息,转向角,转向速率,制动力的大小,驱动力大小,车辆的动力学参数等到步骤S5,重新规划车辆的行车路径以及行车动作。
[0090] 本发明的方法:车辆要能够分辨出行驶到应急车道一共需要跨越多少条车道,每条车道线的宽度可以根据车辆的摄像头拍摄的车道线图像,利用多项式拟合出来的车道线信息,通过像素点的匹配来具体估算出来,识别出跨越的车道线数以及每个车道线的边界,可以确定后方来车20是否与本车处于同一车道线,即确定后车的驾驶行为是否会影响到本车;本发明针对高速公路上发生碰撞的情况,提出了自启动车辆并将车辆自动行驶道应急车道的方法,为了保证车辆根据行驶环境在保证行车安全的前提下不断启动,启用了车辆内部时钟73的计时方式,同时通过相应的编码解码技术保证能够及时传送车辆人员的受伤情况,便于伤员的及时救助,给出了具体的功能模块连接关系,保证了功能良好的实现,针对可能出现的一系列情况,也给出了相应的解决方案,本发明可以较好地保证车辆发生碰撞后及时自启动行驶到应急车道,避免了连环事故的伤害;本发明的车辆安全系统可以确定自启动的时刻,也可以根据车辆内部时钟73,通过接受传感器的信息保证安全后再次进行自启动,从而可以保证车辆不断尝试行驶到应急车道。
[0091] 如图1所示,其中,传感器信号采集模块11用来获取车内以及车外的各种场景信息,包括车内乘员(也包括驾驶员)的图像信息,车外障碍物的位置信息,以及后方来车20的速度,方向,位置等信息。双目摄像头111,用于检测事故车辆10前方的车辆,交通标志,以及车道线,还可以用于双目定位,估算目标物体与本车的相对距离和相对速度。激光雷达112用于测量后方来车20的速度,位置,姿态等。GPS113,用于获取车辆的具体位置信息,实现车辆的定位,同时这些位置信息能够被上传到云端,给救援人员提供事故车辆10的位置,便于及时的救援。安装在车内的六个单目摄像头116用于对车内驾驶员和车内乘员的姿态进行识别及分类,确定车内驾驶员和乘员的状态。24GHz的毫米波雷达115用于汽车的盲点监测,变道辅助,77GHz的毫米波雷达115用于探测与前车的距离以及前车的速度,用于紧急制动。超声波雷达114用于自动泊车,车后的四个短距超声波雷达114负责探测倒车时与障碍物之间的距离,一侧的长距超声波雷达114负责探测停车空间,车的距离以及前车的速度,用于紧急制动。在三维重建模块23中获得三维网格数据,输入至乘员检测系统24中,从而将乘员姿态识别结果输入到行车规划模块22,同时行车规划模块22中还接收行车环境检测模块21的检测结果,在行车规划模块22中将两者融合后,同时考虑进去车辆的状态信息,发出一系列规划指令,传输到车载通信模块4中的无线通讯模块41和CAN通讯模块42。
[0092] 所述乘员特征数据库241与乘员姿态数据库242由公开的乘员特征与姿态特征以及车辆自主采集存储,乘员特征数据库241既包括驾驶员的驾驶习性特征,还包括车内乘客的乘坐特征,这些特征同时包括车辆正常行驶时的乘员特征与姿态数据,以及车辆发生碰撞后的乘员姿态与特征数据,通常这些特征可以是深度学习特征或是其他特征,乘员姿态数据库242包括坐姿,单手握方向盘,睁眼,闭眼,双手握方向盘,趴姿,可以是躺姿,睡姿等,其中乘员包括车内的驾驶员和乘客,所述乘员检测模块243通过特征匹配算法对比三维重建模块23传来的车内三维网络数据以及摄像头拍到的图像数据,进行特征匹配,同时对比乘员特征数据库241,之后通过乘员关键点检测模块244,确定乘员检测的关键点,采用关键点检测检测出乘员的关节,头,手等关键特征,与乘员姿态数据库242进行对比得出乘员的姿态,并将乘员姿态识别结果传输给行车规划模块22(乘员检测模块243通过配准仅仅检测到乘员即可,而乘员关键点检测模块244需要在检测到的成员的基础上,确定手,胳膊等具体关键点的姿态,通过和数据库的校准,以确定乘员是否受伤。一个强调乘员是否检测出来,一个强调检测乘员的具体姿态,确定乘员的受伤情况);当检测到乘员失去行动能力(如昏迷等)通过CAN通讯模块42将车辆启动信号发送给车辆整车控制器65,同时若检测到乘员的伤亡,则将伤亡的消息通过CAN通讯模块42发送给网联通讯模块5。乘员检测系统24与三维重建模块23相连接,通过特征匹配算法对从上述三维重建模块23获取的三维立体环境的网格进行乘员识别检测,并对乘员进行状态检测,将乘员状态检测结果传递给行车规划模块22。
[0093] 行车环境检测模块21向前,接收视觉感知模块1中双目摄像头111、激光雷达112、GPS113、超声波雷达114以及毫米波雷达115中的数据信号,之后对这些数据进行处理,最后将处理后的结果传送给后面的行车规划模块22。周围环境点的检测211主要借助于双目摄像头111数据以及毫米波雷达115数据来完成,通过融合两者的数据,识别出周围环境中的障碍物,车道线,交通标志等位置以及距离信息。可行区域的检测212主要借助于激光雷达112的数据辅以双目摄像头111的数据,基于激光雷达112的可行区域检测有时会出现点云稀疏的问题,双目摄像头111具有信息丰富的优点,通过检测图像中的特征,包括颜色,纹理,形状模型,消失点等,可以辅助激光雷达112有效的检测出可行区域。
[0094] 针对连续跨越车道线的问题,本专利提出了可行区域检测的方法,可行区域的检测212依托激光雷达112扫描点在可行路面的连续性,首先用相邻扫描点之间的欧式距离对点聚类,然后用加权移动平均值对每类点平滑中值滤波,再利用斜率将数据点分割成多段近似直线段,利用最小二乘法法对线段进行二项式拟合,提高了检测的鲁棒性,同时还通过本车与后方来车20的信息交互实时更新控制决策,保证车辆安全,三维重建模块23的应用,增加了乘员检测的精确度和效率,最后根据线段的斜率和长度、高程信息从多条线段中选取可行路面,采用激光雷达112获得的点云信息能够更加清晰的表征出车辆行驶区域的道路状态,能够清晰的给出车辆前方障碍物的大小,距离,路面凹凸程度,路边缘等信息,相比于均值滤波,中值滤波更有助于消除椒盐干扰的影响,很大程度上减轻了高速路上石子等异常扫描点对检测效果的影响,通过最小二乘法对线段进行拟合,消除了车道线模糊,褪色,磨损等对可行区域检测的影响,使得可行区域的检测212更加鲁棒。
[0095] 后方来车的检测213主要基于获取到的激光雷达112和毫米波雷达115数据,获得后方来车20的距离,方位,速度等信息;主要借助于激光雷达112的数据,激光雷达112是以发射激光束探测目标的位置、速度等特征量的雷达系统,向目标发射探测信号,然后将接收到的从目标反射回来的信号与发射信号进行比较,作适当处理后,就可以获得目标的有关信息,如目标距离,目标方位,高度,姿态,甚至形状等参数。
[0096] 超声波雷达114主要用来在车辆靠边停车时探测车辆周围环境点的信息。
[0097] 所述行车规划模块22与行车环境检测模块21、乘员检测系统24相连接,接收行车环境检测模块21传递来的周围环境点检测结果信息,有效的可行区域信息以及后方来车20的位置,速度信息等,同时,接收乘员检测系统24传来的乘员状态信息,结合车载通信模块4传递的车辆的状态信息规划出车辆接下来的行驶路径,控制车辆的转向,驱动,制动等动作,同时设定相应的启动时间,启动电机转矩转速等。
[0098] 路径规划模块221可以采用A*算法对路径进行规划,从而规划出一条可行的路线,保证安全快速的控制车辆行驶到高速应急车道,动作规划模块222结合车辆本身的特征以及路径规划的路线,结合获得的车辆周围环境信息以及乘员姿态信息,计算车辆在运行时应采取的一系列动作,包括方向盘转角为多少,驱动力矩是多少,应该何时制动等。启动规划模块223在检查了车辆的设备信息能够正常运转并结合了后方来车20的信息做出启动的规划,比如何时启动,启动力矩是多少等等。
[0099] 无线通讯模块41通过无线信号与外部通讯系统3进行信息的交互,将碰撞发生的时间,地点,以及乘员检测系统24检测到的可能的人员伤亡上传到外部通讯系统3,外部通讯系统3收到消息后,可以第一时间定位发生事故的车辆,同时,能够迅速派救援人员到现场进行救助。
[0100] CAN通讯模块42用于将控制指令传递给车辆控制模块6的整车控制器65,并接受整车控制器65反馈回来的车辆状态参数,如车辆此时转向的角度,驱动电机612的转速,制动系统的制动压力等。
[0101] 车辆控制模块6根据CAN通讯模块42传递来的控制指令控制车辆启动,转向,制动,转向灯,应急灯等。
[0102] 如图2所示,网联通讯模块5中的处理器52,其允许处理在信号传输范围R中的其它车辆接收的DSRC信号S1中包含的DSRC消息,并且监视通过车载通信模块4传送的车载消息,根据接收到的DSRC消息S1,处理器52可以生成控制信号S2,该控制信号S2被传输到车载通信模块4和车辆控制模块6,并且包含对事故车辆10功能系统的请求。此外,存储器53,可以存储由车载通信模块4传送的某些车辆信息或参数,这些车载消息也可以由处理器52处理并且被考虑用于生成控制信号S2以及DSRC信号S1。事故车辆10和后方来车20必须均具备网联通讯模块5,所述网联通讯模块5被配置成经由彼此之间的车辆到车辆通信链路无线地传输DSRC信号。本身车辆通过网联通讯模块5接收和监视作为由所述DSRC信号被无线地传输的后车DSRC信号,包括制动配置消息、地理位置消息等,并接收和监视由CAN通讯模块42传输的诊断消息,即本车的制动性能值,事故车辆10的地理位置以及接收和监视由外部通讯系统3传输的外部消息。
[0103] 参阅图3,图3示意性地示出了根据本发明实施例的具有通信设备的两辆车之间的通讯。其中包括:事故车辆10,后方来车20,视觉感知模块1,车载计算模块2,外部通讯系统3,车载通信模块4,网联通讯模块5,车辆控制模块6,触发信号产生模块7。事故车辆10包括网联通讯模块5,用于建立处于信号传输范围R中的一个或多个后方来车20的无线V2V通信,优选地选用ISM频带中的无线电信号,例如使用专用短程通信(DSRC)或蓝牙,建立起事故车辆10和后方来车20的无线数据通信,使用V2V通信,事故车辆10和后方来车20可以发送和接收DSRC消息,以使本车有效的获取后方来车20的制动,转向以及反馈信息,同时,本车可以向后方来车20发送自己的驱动信息,转向信息等驾驶意图,实现车辆间信息的交互。
[0104] 网联通讯模块5包括处理器52,例如基带处理器,该处理器52被配置成充当各种信号的发送器和接收器的天线,网联通讯模块5还无线地广播包含DSRC消息的DSRC信号S1,其可以在具有相同或者相当的网联通讯模块5的信号传输范围R中后方来车20中进行记录和处理。
[0105] 所述网联通讯模块5通过车载接口54物理地连接到事故车辆10的车载通信模块4的CAN通讯模块42,例如CAN总线,以获得车载通信模块4传送的车辆信息或参数,并将控制信号S2传输到车辆控制模块6,以根据通过DSRC信号S1从范围内的后方来车20接受的DSRC消息,请求控制事故车辆10的车速及驱动。
[0106] 所述整车控制器65接收行车环境检测模块21和网联通讯模块5传递过来的消息,实时更新和计算,发送控制信号到驱动电机控制器611,驱动电机控制器611发送力矩指令给驱动电机612,驱动电机612输出为车轮驱动力,从而安全地启动车辆,在确定行车环境检测模块21检测到的车辆周围没有障碍物,网联通讯模块5传来的后方来车20反馈信息,判断车辆行驶处于安全状态时,控制车辆按照既定的路线行驶到高速路上的应急车道,同时,应该控制车辆打开双闪应急灯,以提醒后方来车20。
[0107] 整车控制器65发送控制信号到各个分控制器,反过来,整车控制器65接收各个分控制器传来的车辆状态信息,如车辆转向角,车辆转向速率,车辆制动力的大小,以及车辆转向灯信息,之后这些信息可以经过CAN线传递给网联通讯模块5,之后再经过DSRC无线电装置51将这些信息传递给后方来车20,同样,后方来车20的相关车辆制动,转向等信息也能够传递给车辆控制模块6和车载通信模块4,事故车辆10可以根据这些信息及时调整本车的行车录像,以及动作规划和启动等。
[0108] 网联通讯模块5用于建立处于信号传输范围R中的事故车辆10和后方来车20间的无线V2V通信,网联通讯模块5包括处理器52,例如基带处理器,该处理器52被配置成充当各种信号的发送器和接收器的天线。网联通讯模块5无线的广播包含DSRC消息的DSRC信号S1,使其能够被具有相同或相当的网联通讯设备5的信号传输范围R中后方来车20记录和处理,同时,事故车辆10的网联通讯模块5也能够获取后方来车20的相应设备发出的DSRC信号,实现信号的传递。
[0109] 以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈