首页 / 专利库 / 油,脂肪和蜡 / 润滑剂 / 两个混合球轴承和压缩机轴承装置

两个混合球轴承压缩机轴承装置

阅读:0发布:2020-09-02

专利汇可以提供两个混合球轴承压缩机轴承装置专利检索,专利查询,专利分析的服务。并且两个混合球 轴承 和一种 压缩机 轴承装置,所述压缩机轴承装置具有两个混合球轴承,所述两个混合球轴承用于压缩机的 转子 对压缩机的 定子 的可旋转 支撑 。所述两个混合球轴承被布置成面对面或背靠背,所述两个混合球轴承被构造成分别根据混合球轴承中的一者的环形的内 滚道 元件的内径和所述两个混合球轴承中的一者的 节圆 直径而具有最优的轴向间隙,以具有与最优的压缩机运行性能有关的长的轴承寿命。,下面是两个混合球轴承压缩机轴承装置专利的具体信息内容。

1.两个混合球轴承,包括:
至少一个环形的内滚道元件,所述内滚道元件具有内径,所述两个混合球轴承中的至少一者的球在所述内滚道元件上滚动,
如果所述两个混合球轴承被布置成面对面或背靠背,则所述两个混合球轴承被构造成提供如下在零测量和零安装载荷下的轴向间隙:
如果所述内径小于等于80mm,则所述轴向间隙在-5μm至5μm或25μm至40μm之间,如果所述内径大于80mm且小于等于180mm,则所述轴向间隙在-5μm至20μm之间,以及如果所述内径大于180mm,则所述轴向间隙在-5μm至30μm之间。
2.根据权利要求1所述的两个混合球轴承,其特征在于,所述两个混合球轴承在未使用的、分别是新的、未运行的状况下,并且所述两个混合球轴承是相同的。
3.根据权利要求1所述的两个混合球轴承,其特征在于,所述两个混合球轴承的滚道元件由制成,特别是用于滚动轴承的不锈高氮钢,所述球由陶瓷材料制成,所述球用的保持架由塑料制成,特别是玻璃纤维增强塑料,特别是包括PEEK。
4.根据权利要求1所述的两个混合球轴承,其特征在于,所述两个混合球轴承中的第一者包括环形的第一外滚道元件和第一内滚道元件,所述两个混合球轴承中的第二者包括环形的第二外滚道元件和第二内滚道元件,至少一个中空圆柱形距离元件特别是润滑间隔件或距离环被设置和定位在两个外滚道元件和/或两个内滚道元件之间。
5.根据权利要求1所述的两个混合球轴承,其特征在于,所述两个混合球轴承是混合接触球轴承,其接触角在10°至40°之间,特别是在15°至30°之间。
6.根据权利要求5所述的两个混合球轴承,其特征在于,所述两个混合球轴承的接触角是不同的,其中特别是所述两个混合球轴承中的第一者的接触角在10°至20°之间,所述两个混合球轴承中的第二者的接触角在21°至35°之间。
7.根据权利要求1所述的两个混合球轴承,其特征在于,所述两个混合球轴承中的至少一者被构造用于在2500rpm至25000rpm之间的高转速或在500000至1200000mm/60s之间的ndm值,其中所述ndm值是转速与节圆直径的乘法结果。
8.根据权利要求1所述的两个混合球轴承,其特征在于,所述两个混合球轴承被配对形成同步组。
9.两个混合球轴承,在所述两个混合球轴承被布置成面对面或背靠背时,所述两个混合球轴承被构造成提供以下在零测量和零安装载荷下的轴向间隙,包括:
如果所述两个混合球轴承中的一者的节圆直径小于等于100mm,则所述轴向间隙在-5μm至5μm或25μm至40μm之间,
如果所述两个混合球轴承中的一者的节圆直径大于100mm且小于等于200mm,则所述轴向间隙在-5μm至20μm之间,以及
如果所述两个混合球轴承中的一者的节圆直径大于200mm,则所述轴向间隙在-5μm至
30μm之间。
10.根据权利要求9所述的两个混合球轴承,其特征在于,所述两个混合球轴承在未使用的、分别是新的、未运行的状况下,并且所述两个混合球轴承是相同的。
11.根据权利要求9所述的两个混合球轴承,其特征在于,所述两个混合球轴承是混合角接触球轴承,其接触角在10°至40°之间,特别是在15°至30°之间。
12.根据权利要求11所述的两个混合球轴承,其特征在于,所述两个混合球轴承的接触角是不同的,特别是所述两个混合球轴承中的第一者的接触角在10°至20°之间,所述两个混合球轴承中的第二者的接触角在21°至35°之间。
13.根据权利要求9所述的两个混合球轴承,其特征在于,所述两个混合球轴承中的至少一者被构造用于在2500rpm至25000rpm之间的高转速或在500000至1200000mm/60s之间的ndm值,其中所述ndm值是转速与节圆直径的乘法结果。
14.根据权利要求9所述的两个混合球轴承,其特征在于,所述两个混合球轴承被配对形成同步组。
15.一种压缩机轴承装置,包括:
两个混合球轴承,用于压缩机的转子对压缩机的定子的可旋转支撑,其中,所述两个混合球轴承被布置成面对面或背靠背,具有以下在零测量和零安装载荷下的轴向间隙,
如果所述两个混合球轴承中的至少一者的环形的内滚道元件的内径小于等于80mm或者如果所述两个混合球轴承中的一者的节圆直径小于等于100mm,则所述轴向间隙在-5μm至5μm或25μm至40μm之间,
如果所述两个混合球轴承中的至少一者的环形的内滚道元件的内径大于80mm且小于等于180mm或者如果所述两个混合球轴承中的一者的节圆直径大于100mm且小于等于
200mm,则所述轴向间隙在-5μm至20μm之间,以及
如果所述两个混合球轴承中的至少一者的环形的内滚道元件的内径大于180mm或者如果所述两个混合球轴承中的一者的节圆直径大于200mm,则所述轴向间隙在-5μm至30μm之间。
16.根据权利要求15所述的压缩机轴承装置,其特征在于,所述两个混合球轴承中的第一者包括环形的第一外滚道元件和第一内滚道元件,所述两个混合球轴承中的第二者包括环形的第二外滚道元件和第二内滚道元件,至少一个中空圆柱形距离元件特别是润滑间隔件或距离环被设置和定位在两个外滚道元件和/或两个内滚道元件之间。
17.根据权利要求15所述的压缩机轴承装置,其特征在于,所述两个混合球轴承是混合角接触球轴承,其接触角在10°至40°之间,特别是在15°至30°之间。
18.根据权利要求17所述的压缩机轴承装置,其特征在于,所述两个混合球轴承的接触角是不同的,特别是所述两个混合球轴承中的第一者的接触角在10°至20°之间,所述两个混合球轴承中的第二者的接触角在21°至35°之间。
19.根据权利要求15所述的压缩机轴承装置,其特征在于,所述两个混合球轴承中的至少一者被构造用于在2500rpm至25000rpm之间的高转速或在500000至1200000mm/60s之间的ndm值,其中所述ndm值是转速与节圆直径的乘法结果。
20.根据权利要求15所述的压缩机轴承装置,其特征在于,所述两个混合球轴承中的至少一者用超低粘度润滑剂润滑,特别是纯制冷剂或具有至多总共为最大值1%的量的至少一种其它特别润滑相关的物质的制冷剂。

说明书全文

两个混合球轴承压缩机轴承装置

技术领域

[0001] 本发明涉及两个混合球轴承和压缩机轴承装置。

背景技术

[0002] 例如,在制冷剂压缩机的领域,原则上已知的是,在具有超纯(ultra-pure)润滑膜厚度的润滑的意义下,将制冷剂本身作为超低粘度润滑剂供应到压缩机的滚动轴承。除了通常存在于制冷剂中的液体杂质之外,这可以是纯制冷剂润滑。在一种改进(/修改)方案(modification)中,可以将一种或多种其它特别与润滑有关的物质添加到制冷剂中,例如总计(至多)达到最大1%浓度。此外,这些压缩机中的一些(压缩机)以相对高速的转数运转。因此,轴承寿命的优化受到若干约束。

发明内容

[0003] 两个混合球轴承具有至少一个环形的内滚道元件,所述两个混合球轴承中的至少一者的球在所述内滚道元件上滚动,所述内滚道元件具有内径,如果所述两个混合球轴承被布置成面对面或背靠背,则所述两个混合球轴承被构造成提供如下在零测量和零安装载荷下的轴向间隙(clearance):
[0004] 如果所述内径小于等于80mm,则所述轴向间隙在-5μm至5μm或25μm至40μm之间,[0005] 如果所述内径大于80mm且小于等于180mm,则所述轴向间隙在-5μm至20μm之间,以及
[0006] 如果所述内径大于180mm,则所述轴向间隙在-5μm至30μm之间。
[0007] 如果所述两个混合球轴承被布置成面对面或背靠背,则所述两个混合球轴承被构造成提供如下在零测量和零安装载荷下的轴向间隙:
[0008] 如果所述两个混合球轴承中的一者的节圆直径小于等于100mm,则所述轴向间隙在-5μm至5μm或25μm至40μm之间,
[0009] 如果所述两个混合球轴承中的一者的节圆直径大于100mm且小于等于200mm,则所述轴向间隙在-5μm至20μm之间,以及
[0010] 如果所述两个混合球轴承中的一者的节圆直径大于200mm,则所述轴向间隙在-5μm至30μm之间。
[0011] 一种压缩机轴承装置,具有两个混合球轴承,用于压缩机的转子对(versus)压缩机的定子的可旋转支撑,其中所述两个混合球轴承被布置成面对面或背靠背,具有以下在零测量和零安装载荷下的轴向间隙:
[0012] 如果所述两个混合球轴承中的至少一者的环形的内滚道元件的内径小于等于80mm或者如果所述两个混合球轴承中的一者的节圆直径小于等于100mm,则所述轴向间隙在-5μm至5μm或25μm至40μm之间,
[0013] 如果所述两个混合球轴承中的至少一者的环形的内滚道元件的内径大于80mm且小于等于180mm或者如果所述两个混合球轴承中的一者的节圆直径大于100mm且小于等于200mm,则所述轴向间隙在-5μm至20μm之间,以及
[0014] 如果所述两个混合球轴承中的至少一者的环形的内滚道元件的内径大于180mm或者如果所述两个混合球轴承中的一者的节圆直径大于200mm,则所述轴向间隙在-5μm至30μm之间。
[0015] 进行了广泛的一系列的调查(/研究)(investigations)。这些调查被对于高转速(在2500至25000rpm之间或ndm值在500000至1200000mm/60s之间)制冷剂压缩机应用的X-和O-布置的各组的两个混合球轴承来执行。轴承特别是混合接触球轴承利用超低粘度润滑剂来润滑(其形成200nm以下的超薄润滑膜厚度),特别是现代环保制冷剂,或者是这样的制冷剂:该制冷剂具有总计最多达到1%浓度的一种或多种其它特别(与)润滑相关的物质。由此调查了各种尺寸以及内、外公差的轴承组。这些调查的重点在于与优化的压缩机运行性能有关的优化的轴承寿命。由此这些广泛的调查的关键发现是:长的轴承寿命与良好的压缩机运行性能(这两者一起)受两个混合球轴承的轴向间隙的正确选择的强烈影响,并且(发现)最优的轴向间隙取决于轴承尺寸,特别是取决于轴承的环形的内滚道元件(或短内圈)的内径,取决于球的节圆直径,例如对于不存在传统的轴承内圈的装置(例如,如果内滚道直接在旋转轴上制成)。而特别地是,过小的轴向间隙导致高的内轴承载荷状况、高的接触应和润滑剂膜的穿破(break-throughs),导致了轴承寿命短。另一方面,如果轴向间隙过大,在球与滚道之间发生滑动运动,则接触应力过低从而引起粘度(viscosity)增大和润滑剂膜厚度减小,导致进一步磨损和轴承寿命短。轴承刚度和转子定位精度也受到过大间隙的负面(/不利)影响。因此,上述段落中的设计规则确保了与良好的压缩机运行性能相关的长的轴承寿命。
[0016] 本发明的另外的优点、特征和细节由以下参照附图描述的本发明的示例性实施方式引起(/得到)。

附图说明

[0017] 图1a和图1b示出了两个混合球轴承的上半部的纵向截面,这两个混合球轴承在图1a中被布置成面对面、在图1b中被布置成背靠背,
[0018] 图2示出了制冷剂压缩机的轴承装置的上部区域的纵向截面,以及
[0019] 图3示出了(/穿过)图2中的装置的中心的截面。

具体实施方式

[0020] 作为本发明的实施方式,图1a和图1b示出了(穿过)两个混合球轴承的上半部的纵向截面。由此图1a示出了两个混合角接触球轴承的轴承装置(/布置),其中这两个轴承以面对面的布置(这也被称为X布置)相对于彼此布置。图1b示出了两个混合角接触球轴承的轴承布置,其中这两个轴承以背靠背的布置(这也被称为O布置)相对于彼此布置。图1a和图1b的两个混合角接触球轴承中的每一个包括环形的外滚道元件12和22以及内滚道元件11和21。内滚道元件和外滚道元件11、21、12和22由不锈制成,特别是高氮不锈钢,例如Chromex 40,Cronidur 30;X30CrNoN15-1,X40CrMoVN16-2,NitroMax或至少在滚道处具有大于HRC 58的硬度并且耐腐蚀性的点蚀电位高于或等于(根据ASTM G61-86)-225mV的类似物。内滚道元件11和21分别具有内(直)径d和d’。
[0021] 一系列陶瓷球15和25(例如采用Si3N4)被设置用于每个球轴承,位于对应的球轴承的内滚道元件与外滚道元件11、21、12和22之间。球15和25被卡接(snapped)并保持在保持架14和24中。在这种情况下,保持架14和24防止在对应的球15和25的列内的球15和25相互接触。保持架14和24由纤维增强PEEK制成。因此,球15的列限定出节圆直径(pitch diameter)dm,直径dm是穿过所有球15的中心点的圆的直径;球25的列以类似的方式限定出节圆直径dm’。
[0022] 混合角接触球轴承中的每一者分别示出了接触角α和β。该接触角α和β是这样的(/以下两方面之间的)角:(一方面)球15或25与外滚道元件和内滚道元件12和11以及22和21的公称接触点(/标称接触点)(nominal contact points)之间的连接线与(另一方面)球轴承的与轴向垂直的平面之间的角。
[0023] 在图1a和图1b中,两个混合角接触球轴承是相同的,尤其意思是内径d和d’、节圆直径dm和dm’以及接触角α和β是相同的。在其它实施方式中,特别是接触角α和β彼此不同,例如,以应对(cope with)在一个轴向上和在另一个轴向上不同的预期(expected)轴向载荷。当然,存在两个混合球轴承的内径d和d’和/或节圆直径dm和dm’也彼此不同的特别情况。
[0024] 两个混合球轴承被构造和制造用于在2500至25000rpm之间的高转速或者在500000至1200000mm/60s之间的ndm值,其中ndm值是转速与节圆直径dm或dm’的乘法(运算)结果。此外,两个混合球轴承被构造和制造成使得(/以如下方式构造和制造:)它们在不使用(像新的未运行)的状况下展现出(有)特定的轴向间隙C(在零测量和零安装载荷的情况下),如上所述作为本发明的认识,以确保优化的轴承寿命与优化的压缩机运行性能(这两者一起被实现)。
[0025] 更特别地,两个混合角接触球轴承具有内径d=d’=150mm,节圆直径dm=dm’=187.5mm,接触角α=β=15°并且在零测量(/零位测量)(zero measuring)和零安装载荷的情况下的轴向间隙C为大约15μm。在与前面提到的不同的另一实施方式中,两个混合球轴承的接触角α和β是不同的,例如,α=15°,β=30°,然后C为大约13μm。
[0026] 由此负的轴向间隙C须通过参照图1a和图1b理解如下:对于图1a的面对面的布置,负的轴向间隙C意味着轴向空隙不再在两个内滚道元件11与21之间(然后这两个内滚道元件11与21彼此接触),而是在两个外滚道元件12与22之间(示出了负的轴向间隙C的绝对值)。对于图1b的背靠背的布置,负的轴向间隙C意味着轴向空隙不再在两个外滚道元件12与22之间(然后这两个外滚道元件12与22彼此接触),而是在两个内滚道元件11与21之间(示出了负的轴向间隙C的绝对值)。
[0027] 由此两个混合角接触球轴承可以是配对轴承(paired bearings),这增大了自由度以确保期望的(desired)轴向间隙C;或者它们是非配对的,这增大了对单个轴承的公差的要求以确保期望的轴向间隙C,但当然,从操作和安装角度来看这更容易,因为无须遵循配对关系。
[0028] 当然,在其它实施方式中,根据在轴承的对应安装位置处所要求的带载能力(load carrying capacity)和应用要求,可以在图1a和图1b的轴承的左侧和/或右侧,或者还可以在图1a和图1b的两个轴承之间,有一个或多个额外的混合球和/或滚子(特别是圆柱滚子)轴承。由此,这些额外的轴承不影响图1a和图1b中的两个轴承的所述轴向间隙。
[0029] 作为本发明的示例性实施方式,图2示出了(穿过)制冷剂压缩机的轴承装置的上部区域的纵向截面,制冷剂压缩机特别是具有直接驱动(/直接驱动器)的大型离心式空调压缩机,图3示出了穿过图2的图示的中心的截面。压缩机包括壳体110,在图2和图3中,仅示出了壳体的与轴承装置连接(/有关)(in connection with)的区域。此外,壳体110包括轴向圆柱形孔(axial circular cylindrical bore)118,孔118容纳混合球轴承和外中间环130。
[0030] 在孔118中,根据图1b的两个混合角接触球轴承通过外中间环130而彼此间隔开。环形的外滚道元件12和22以本身已知的方式(但并未详细示出)固定在壳体110中。同样,内滚道元件11和21以已知的方式(但并未示出)固定在也未示出的压缩机的轴上,压缩机的轴被设置用于相对于壳体110旋转。在这种情况下,轴例如可以并入于(merge into)用于驱动轴电机的转子。例如,在图2的图示的右侧,用于空调系统的制冷剂的压缩机的叶轮可以布置在轴上。无论如何,轴可以具有与图2所示的轴承位置有距离的(/间隔开的)另一个轴承位置,例如,在驱动(/驱动器)的另一轴向侧。该另一轴承位置可以是与图2和图3所示相同、相似、但也可以是不同的设计。
[0031] 一系列陶瓷球15和25被布置在对应的球轴承的外滚道元件与内滚道元件12、22、11和21之间。球15和25分别被卡接并保持在保持架14和24中。保持架14和24防止在对应列的球15和25内的球15和25相互接触。
[0032] 外中间环130布置在两个混合角接触球轴承的两个外滚道元件12和22之间,内中间环138布置在两个球轴承的内滚动表面元件11和12之间。壳体110包括径向圆柱(形)孔112,穿过孔112的制冷剂用的喷嘴140可以被(螺接)拧入(screwed)孔112中。外中间环130形成有:狭槽(/缝)(slot)132,其与径向孔112对齐;和径向的圆柱形穿透部(penetration)
134,其与狭槽132相对(opposite)。径向穿透部134在其位置(处)对应于设置在壳体110中的径向孔114,孔114用作供给到轴承装置的制冷剂的排出部(drain)。
[0033] 轴承装置被构造用于利用或多或少的纯的无油制冷剂(例如现代环保制冷剂中的一种)来润滑,或者利用这样的制冷剂来润滑:该制冷剂具有一种或多种其它特别润滑相关的物质,总浓度达到(/多达)(up to)1%,如下所述:穿过孔110以及中间环130的狭槽132的喷嘴140被拧入壳体110的孔112内,并例如借助于调节螺母148固定。为此目的,喷嘴140至少在其上部区域被设计具有外螺纹,孔112至少在其上部区域被设计具有与其对应的内螺纹。此外,喷嘴140包括通道144,通道144在轴承侧合并成Y形出口通道144。由此,如果例如无法获得足够的空间用于T形设计,那么通道144的Y形设计是特别有利的。
[0034] 当相应的制冷剂管线连接在喷嘴140的上端时,然后经由通道142实现(/执行)了制冷剂供送。然后制冷剂经由Y形出口通道144(在保持架14和24的下边缘与内滚道元件11和21的外罩(mantles)之间)输送,并由此直接注射到混合角接触球轴承的滚动区域内。为此目的,球轴承以及喷嘴140相对于彼此以结构和几何上协调的方式构造,诸如(拧入)孔112内的拧入深度(等)。
[0035] 在压缩机运行期间,制冷剂以饱和状况的液体形式供应。轴承装置被构造成使得制冷剂的压力状态被保持,这在很大程度上防止了制冷剂进入(passing over into)气态。特别地,Y形出口通道的直径被相应地设置尺寸。此外,轴承的几何形状(/几何结构)(特别是关于注射的制冷剂的轴向自由通过可能性)而且还有排出部114的几何形状被相应地设计,特别是以限制的方式。由此,通道的直径的尺寸被设计成使得在Y形出口通道144的上游压降(pressure drop)非常小。制冷剂以液体形式通过出口通道144。在离开出口通道144之后,根据穿过(across)出口通道144的压降、轴承摩擦和流过所花费的时间,一些制冷剂转变成气体。
[0036] 在其它实施方式中,外中间环130还可以旋转180°安装,使得穿透部134与孔112对齐并且狭槽132与孔114对齐。还有这样的实施方式:狭槽132与穿透部134不彼此相对,而是被布置成例如在周向上错开(staggered)160°或140°。在另外的其它实施方式中,狭槽132可以被替换为另一径向穿透部。此外,外中间环还可以包括多个穿透部,以用于多于一个喷嘴并且还可能用于另外的流出部。作为另一种选择,排出部114和外中间环的相关联的穿透部或狭槽可以被省掉(dispensed with)。
[0037] 在其它实施方式中,内中间环138可以支持(/支撑)将制冷剂引入到滚出区域(rolling-off zones)中,特别是通过其外壳的径向向外鼓出的构造,例如采用顶盖(/屋顶)(roof)的形式。还在其它实施方式中,喷嘴当然还可以以另外的方式紧固在壳体中。
[0038] 在其它实施方式中,可以根据DE 20 2017 106 076 U1和CN 205 025 807 U构造润滑间隔件。
[0039] 当然,必须要强调的是,中间环130和138不影响期望的轴向间隙C(在轴承的零测量和零安装载荷的情况下)。在其它实施方式中,其还可以是单件式(/一体式)中间环或者还可以是各另外的轴承有更多个这样的中间环。在其它实施方式中,其例如还可以是单个垫圈,所述垫圈位于内滚道元件11和21或外滚道元件12和22之间,特别是与润滑制冷剂的不同的供给有关,例如,与侧面中的至少一个轴向(/在轴向上)隔开。于是由此垫圈也可以被包括在该装置中以控制期望的轴向间隙C,由此原则上对此还可以使用和构造这种中间环。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈