首页 / 专利库 / 自然灾害的预防与保护 / 地震 / 用于浅层异常体地震探测装置及其三维观测方法

用于浅层异常体地震探测装置及其三维观测方法

阅读:737发布:2020-05-08

专利汇可以提供用于浅层异常体地震探测装置及其三维观测方法专利检索,专利查询,专利分析的服务。并且本 发明 属于浅层 地震 勘探技术领域,具体涉及一种用于浅层异常体地震探测装置及其三维观测方法,包括移动式载体、 检波器 耦合装置组、 震源 激发装置、 数据采集 基站和控制终端,所述检波器耦合装置组包括 连接杆 和滚轮式 传感器 ,所述连接杆的一端安装在移动式载体上,连接杆的另一端和滚轮式传感器或其他连接杆相连接。本发明能够对一个探测点下方的目标体实现更高的 覆盖 次数,而且可以通过连接杆的数量和方向来调节滚轮式传感器和震源以及滚轮式传感器之间的距离,完成多条测线同时探测,从而大大提高探测效率和探测 精度 。,下面是用于浅层异常体地震探测装置及其三维观测方法专利的具体信息内容。

1.用于浅层异常体地震探测的装置,其特征在于:包括移动式载体、检波器耦合装置组、震源激发装置、数据采集基站和控制终端,所述检波器耦合装置组包括连接杆和滚轮式传感器,所述滚轮式传感器包括滚轮、滚轴和检波器芯体,所述滚轮作为传感器的外壳体垂直于地面放置,直接与介质滚动耦合,所述检波器芯体设于滚轮中部的所述滚轴中,端座支架通过螺栓及弹垫安装于滚轮的两侧,减震螺丝安装于端座支架的上部并用于与连接杆固定;所述连接杆一端安装在移动式载体上,另一端连接到滚轮式传感器或者其他连接杆,若干根连接杆和检波器芯体构成级联体,所述连接杆采用隔震连接杆;所述的震源激发装置包括竖直杆件、重锤和竖直杆件顶部安装的滑轮,所述的竖直杆件通过支架固定在移动式载体的台面上或在移动式载体的周边通过支架单独固定;所述的检波器耦合装置组通过连接杆与移动式载体固定连接,所述的若干根连接杆在同一平面内安装在移动式载体周围或相互平行的通过支撑架安装在移动式载体一侧,连接杆的另一端和滚轮式传感器或其他连接杆相连;所述移动式载体移动时,多组检波器耦合装置组同步移动,并针对目标探测区域进行三维观测;所述采集基站通过无线通信技术与控制终端进行采集信号传输,所述控制终端具有数据处理系统功能。
2.根据权利要求1所述的用于浅层异常体地震探测的装置,其特征在于:所述的数据采集基站布设在移动式载体顶部台面上,并通过线缆与检波器耦合装置组中的每个检波器芯体连接,且所述数据采集基站具有无线传输功能,通过无线通信技术与控制终端进行无线数据传输。
3.根据权利要求1所述的用于浅层异常体地震探测的装置,其特征在于:所述移动式载体的底部安装有便于移动的转向滚轮,移动式载体可以是圆柱形或方形,移动式载体外周部设有固定孔,所述的竖直杆件通过支架固定在移动式载体的台面或通过支架单独固定在移动式载体周边。
4.根据权利要求1所述的用于浅层异常体地震探测的装置,其特征在于:所述滚轮式传感器上安装1~3个检波器芯体,当滚轮式传感器安装一个检波器芯体时,该检波器芯体为单分量,即单一垂直分量或单一平分量;当滚轮式传感器安装两个检波器芯体时,两个检波器芯体为两个水平分量,或者为一个水平分量一个垂直分量;当滚轮式传感器安装三个检波器芯体时,三个检波器芯体为水平面上相互垂直的两个水平分量,加上一个垂直分量。
5.基于权利要求1-4任一项所述装置的三维观测方法,其特征在于:包括以下步骤:
(1)所述用于浅层异常体地震探测装置对目标探测区域进行地震探测,通过检波器耦合装置组中的检波器获取目标探测区域内地震信号;
(2)数据采集基站将步骤(1)中通过检波器芯体获取的地震信号进行前端调理、模/数转换、放大等处理,将模拟信号转换为数字信号,最终通过无线通信技术传送至控制终端,通过控制终端提取地震数据,进行反射波、散射波、面波地震处理,获取目标探测区域的地下界面层位信息和异常体的形态分布情况;
(3)根据目标探测区域的探测精度要求和步骤(2)中地震反射波、散射波和面波处理的空间采样率要求,确定接收间距、炮检偏移距和移动步距;
(4)根据步骤(3)中的接收间距和炮检偏移距,通过连接杆的数量和方向来调节滚轮式传感器和震源之间以及滚轮式传感器之间的距离;根据介质有效波发育情况及施工环境,确定使用的震源类型;基于所述的震源类型和步骤(3)所述的接收间距、炮检偏移距、移动步距安装整体探测装置;将所述整体装置依次移动到探测目标标定的位置进行地震信号采集,完成探测任务。
6.根据权利要求5所述的三维观测方法,其特征在于:步骤(3)中,所述的接收间距根据目标探测区域的探测精度要求和横向分辨率公式确定,横向分辨率计算公式为所述炮检偏移距根据公式 计算,其中Δx为横向分辨率,vc为目标探测区域的层速度,fmax为目标探测区域内最高有效频率,d为炮检距,k为系数,h表示探测深度;所述移动步距根据 计算,其中N为观测点范围内的接收道数,x为接收间距,n为探测点覆盖次数。

说明书全文

用于浅层异常体地震探测装置及其三维观测方法

技术领域

[0001] 本发明属于浅层地震勘探技术领域,具体涉及一种利用地震波进行浅层异常体地震探测装置及其三维观测方法。

背景技术

[0002] 随着社会经济发展,城市高架、地项目施工日益增多。在城市施工过程中,常见的地下异常包括溶洞、松散层以及影响施工的孤石、地下管道、暗河、民防工程等,这些问题导致施工过程速度减慢,造成经济损失,甚至导致地面塌陷,威胁生命安全。
[0003] 目前,钻探和物探是目前进行地面探测的常用方法。钻探的优点在于能够直接反映局部钻探位置地下介质的情况,但其施工效率低,成本高,对道路破坏较大,而且对地下异常判断具有‘一孔之见’,难以对连续的地下介质情况进行完整的描述,即使加大钻孔密度,也会使钻探工程量大大增加,同样难以避免地下异常分辨的局限性。相比于钻探,由于物探通过用物理学的原理和方法,对地球内部结构与构造进行观测,具有先天的优势。
[0004] 地质雷达探测方法和浅层地震法是物探中常用的方法:
[0005] 其中,地质雷达探测方法是以高频电磁波作为探测场源,由一个发射天线向地下发射一定中心频率的电磁脉冲波,另一天线接收由地下不同介质界面产生的反射回波,电磁波在介质中传播时,其传播时间、电磁场强度和极化方向随电磁波所通过介质的电性参数及目标体的几何形态的差异而产生变化,根据接收的回波旅行时间、幅度等信息,可高精度探测地下目标体的结构和位置信息。由于,高频电磁波在金属体及地下低阻介质作用下,使得电磁波能量衰减快,屏蔽作用加强,导致地质雷达难以对潜面以下地质体进行有效探测,还受到城市路面与高架桥内金属体的影响,限制了其探测应用范围。
[0006] 其中,浅层地震法是基于地震波勘探的反射、散射和面波原理进行的,只要地下不同界面之间具有波阻抗差异,在地震波传播过程中,地震波就会产生反射、散射与频散等现象,通过激发、接收地震波信号,通过对接收信号进行不同方法的数据处理与提取,来反映地下界面及异常体的分布情况。
[0007] 浅层地震波法的优点在于:不受金属体、地下水的干扰,可以探测地下不同地层的地质情况,而且可以采用多种激发震源、观测方法和处理手段,探测深度大,探测精度相对较高,是目前值得推广的方法。
[0008] 浅层地震波法的不足在于:1)实际探测施工时多为线性激发接收观测模式,在探测精度要求较高时,需要增大测线的分布密度,以增加对地下目标体的覆盖次数,造成工程量增大,施工效率较低;2)由于外界干扰因素较多,特别是城市道路的车流量大,地面多为沥青混凝土路面,这种情况导致检波器耦合性差,数据采集质量不高;3)激发震源受地面情况影响较大,锤击不均匀,震源类型单一,导致探测效果欠佳。

发明内容

[0009] 本发明为了解决上述技术问题,采用了以下技术方案:用于浅层异常体地震探测装置,包括移动式载体、检波器耦合装置组、震源激发装置、数据采集基站和控制终端,所述检波器耦合装置组包括连接杆和滚轮式传感器,所述连接杆一端安装在移动式载体上,另一端和滚轮式传感器或者其他连接杆相连接;若干根连接杆和检波器芯体构成级联体。所述滚轮式传感器包括检波器芯体和滚轮,所述检波器芯体通过滚轮与地面耦合,滚轮式传感器固定在连接杆上。所述的震源激发装置包括竖直杆件、重锤和竖直杆件顶部安装的滑轮,所述的竖直杆件通过支架固定在移动式载体台面上或在移动式载体的周边通过支架单独固定;
[0010] 所述的检波器耦合装置组通过连接杆与移动式载体固定连接,所述的多根连接杆在同一平面内安装在移动式载体周围或相互平行的通过支撑架安装在移动式载体一侧。所述连接杆的另一端和滚轮式传感器或其他连接杆固定连接。
[0011] 所述连接杆为隔震连接杆。
[0012] 所述的数据采集基站布设在移动式载体的顶部台面上,并通过线缆与检波器耦合装置组中的每个检波器连接,且所述数据采集基站具有无线传输功能,通过无线通信技术与控制终端进行无线数据传输。
[0013] 所述移动式载体的底部安装有转向滚轮便于移动,移动式载体可以是圆柱形或方形,移动式载体外周设有固定孔,所述的竖直杆件通过支架固定在移动式载体的台面上或通过支架单独固定在移动式载体周边。
[0014] 所述滚轮式传感器上安装1~3个检波器芯体,当滚轮式传感器安装一个检波器芯体时,该检波器芯体为单分量,即单一垂直分量或单一水平分量;当滚轮式传感器安装两个检波器芯体时,两个检波器芯体为两个水平分量,或者为一个水平分量一个垂直分量;当滚轮式传感器安装三个检波器芯体时,三个检波器芯体为水平面上相互垂直的两个水平分量,加上一个垂直分量。
[0015] 所述滚轮式传感器还包括端座支架、减震螺丝、滚轴、螺栓和弹垫,所述传感器芯体的外部金属滚轮垂直于地面放置;所述滚轴位于所述滚轮的中心位置,所述检波器芯体位于所述滚轴中;所述端座支架通过所述螺栓及弹垫安装于滚轮的两侧;所述减震螺丝安装于端座支架的上部;滚轮式传感器通过外部端座支架和减震螺丝固定于连接杆上;滚轴式传感器质量不低于1.5Kg,达到自重耦合地面的要求。
[0016] 本发明还提供一种用于所述浅层异常体地震探测装置的三维观测方法,其特征在于:包括以下步骤:
[0017] (1)所述用于浅层异常体探测的装置对目标探测区域进行地震探测,通过检波器耦合装置组中的检波器获取目标探测区域内地震信号;
[0018] (2)数据采集基站将步骤(1)中通过检波器芯体获取的地震信号进行前端调理、模/数转换、放大等处理,将模拟信号转换为数字信号,最终经由无线通信传输技术传送至控制终端,通过控制终端提取地震数据中地震波的视速度、频率和视波长,进而分析获取目标探测区域的地下界面层位信息和异常体的形态分布情况;
[0019] (3)根据目标探测区域的探测精度要求和步骤(2)中地震反射波、散射波和面波处理的空间采样率要求,确定接收间距、炮检偏移距和移动步距;
[0020] (4)根据步骤(3)中计算的接收间距和炮检偏移距,通过连接杆的数量和方向来调节滚轮式传感器和震源之间以及滚轮式传感器之间的距离;根据介质有效波发育情况及施工环境,确定使用的震源类型;基于所述的震源类型和步骤(3)所述的接收间距、炮检偏移距、移动步距安装整体探测装置;将所述整体装置依次移动到探测目标标定的位置进行地震信号采集,完成探测任务。
[0021] 步骤(3)中,所述的接收间距根据目标探测区域的探测精度要求和横向分辨率公式确定,横向分辨率计算公式为 所述炮检偏移距根据公式 计算,其中Δx为横向分辨率,vc为目标探测区域的层速度,fmax为目标探测区域内最高有效频率,d为炮检距,k为系数,h为探测目标深度;所述移动步距根据 计算,其中N为观测点范围内的接收道数,x为接收间距,n为探测点覆盖次数。
[0022] 本发明具有以下有益效果:
[0023] (1)本发明中所述的检波器耦合装置组包括连接杆和滚轮式传感器,连接杆的一端安装在移动式载体上,另一端和滚轮式传感器或其他连接杆相连,将多个检波器耦合装置组安装在移动载体周边,能够对一个探测点下方的目标体实现更高覆盖次数;而且可以通过连接杆的数量和方向来调节滚轮式传感器和震源之间以及滚轮式传感器之间的距离,连接杆以相互平行的排列通过支撑架安装在移动式载体一侧,同时完成多条测线的探测,从而达到快速探测高精度探测和的目的;
[0024] (2)本发明中可以确定多种不同接收间距和三维观测方式的观测系统,采用多种震源类型,更能为后期提供多种处理方式;
[0025] (3)本发明中的滚轮式传感器通过转向滚轮与地面耦合的布设方式,减小了人工干预,保证了数据采集质量;
[0026] (4)本发明中的浅层异常体地震探测装置能够快速无损地进行浅层地面异常体探测,载体便于移动,而且实际施工时组装方便,震源高度和强度通过滑轮和重锤的配合便于调节。附图说明
[0027] 下面结合附图和实施例对本发明进一步说明:
[0028] 图1为本发明实施例1的俯视结构示意图;
[0029] 图2为本发明实施例1的侧视结构示意图;
[0030] 图3为本发明实施例2的俯视结构示意图;
[0031] 图4为本发明实施例2的侧视结构示意图;
[0032] 图5为滚轮式传感器结构示意图。
[0033] 1-移动式载体;2-数据采集基站;3-控制终端;4-连接杆;5-滚轮式传感器;6-检波器芯体;7-转向滚轮;8-竖直杆件;9-重锤;10-滑轮;11-支架;12-支撑架,13、减震螺丝,14、滚轮,15、端座支架,16、螺栓,17、滚轴。

具体实施方式

[0034] 下面结合附图和实施例对本发明作进一步的说明:
[0035] 实施例1
[0036] 如图1-2所示用于浅层异常体地震探测装置,包括移动式载体1、检波器耦合装置组、震源激发装置、数据采集基站2和控制终端3,检波器耦合装置组包括连接杆4和滚轮式传感器5,连接杆4的一端安装在移动式载体1上,连接杆4的另一端和滚轮式传感器5或者其他连接杆4相连接;滚轮式传感器5包括检波器芯体6和滚轮14,检波器芯体6通过滚轮14与地面耦合。震源激发装置包括竖直杆件8、重锤9和竖直杆件8顶部安装的滑轮10,所述的竖直杆件8通过支架11固定在移动式载体1的台面上。连接杆4采用隔震连接杆。
[0037] 所述的数据采集基站2布设在移动式载体1的顶部台面上,并通过线缆与检波器耦合装置组中的每个检波器6连接,且所述数据采集基站2具有无线传输功能,通过无线通信传输技术与控制终端3进行数据传输。
[0038] 移动式载体1的底部安装有转向滚轮7,移动式载体1可以是圆形或方形结构,转向滚轮7安装在移动式载体1的底部,便于移动式载体1的移动,转向滚轮7中部不设置检波器芯体。竖直杆件8通过支架11固定在移动式载体1的顶部;连接杆4的一端安装在移动式载体1外周上开设的安装孔中,另一端与检波器耦合装置组或其他连接杆4相连接,所有的连接杆4在同一水平面内。
[0039] 连接杆4上的滚轮式传感器5可根据实际探测需要通过连接杆4相互连接,形成1~2个检波器耦合装置组,甚至更多。控制终端3通过无线通信传输技术,如WiFi和数据采集基站2通信和传输数据,同时负责采集数据的显示和保存。
[0040] 如图5所示,滚轮式传感器还包括端座支架15、减震螺丝13、滚轴17、螺栓16和弹垫,传感器芯体6的外部金属滚轮垂直于地面放置;滚轴17位于滚轮14的中心位置,检波器芯体6位于滚轴17中;端座支架15通过螺栓16及弹垫安装于滚轮的两侧;减震螺丝13安装于端座支架的上部;滚轮式传感器通过外部端座支架和减震螺丝固定于连接杆上。
[0041] 滚轮式传感器上安装1~3个检波器芯体,当滚轮式传感器安装一个检波器芯体时,该检波器芯体为单分量,即单一垂直分量或单一水平分量;当滚轮式传感器安装两个检波器芯体时,两个检波器芯体为两个水平分量,或者为一个水平分量一个垂直分量;当滚轮式传感器安装三个检波器芯体时,三个检波器芯体为水平面上相互垂直的两个水平分量,加上一个垂直分量。
[0042] 实施例2
[0043] 如图3-4所示用于浅层异常体探测的装置,包括移动式载体1、检波器耦合装置组、震源激发装置、数据采集基站2和控制终端3,检波器耦合装置组通过支撑架12与移动式载体1固定连接,支撑架底部装有转向滚轮7便于移动,并通过移动式载体1上的固定孔与移动式载体1固定链接,连接杆4相互平行地排列在支撑架12的一侧,连接杆4的一端安装在支撑架12上,连接杆4的另一端和滚轮式传感器5或其他连接杆4相连接;震源激发装置包括竖直杆件8、重锤9和竖直杆件8顶部安装的滑轮10,竖直杆件8在移动式载体1的周边通过支架11单独固定。
[0044] 移动式载体1的底部安装有转向滚轮7,便于移动,移动式载体1为方形结构,外部设有固定孔,转向滚轮7安装在移动式载体1的底部,移动式载体1和支撑架12固定连接。转向滚轮7中部不设置检波器芯体。滚轮式传感器结构与实施例一相同。
[0045] 实施例2与实施例1不同之处在于连接杆4相互平行排列,连接杆4的一端和支撑架12固定连接,另一端和滚轮式传感器5或其他连接杆4相连接,形成1~4个检波器耦合装置组。并将震源激发装置和移动式载体1分开,形成独立的激发震源。可以根据探测需求通过连接杆4连接更多的连接杆4和滚轮式传感器5,形成更多的检波器耦合装置组,根据实际施工需求,每个排列可以同时布设16个滚轮式传感器5。震源激发装置单独固定在支架11上,可任意挪动,单次多点激发。
[0046] 具体使用时,包括以下步骤:
[0047] (1)所述用于浅层异常体地震探测装置对目标探测区域进行地震探测,通过检波器耦合装置组中的检波器获取目标探测区域内地震信号;
[0048] (2)步骤(1)中通过检波器获取的地震信号进行前端调理、模/数转换等处理,将模拟信号转换为数字信号,最终经由无线通信技术传送至控制终端,通过控制终端提取地震数据中地震波的视速度、频率和视波长,进而分析获取目标探测区域的地下界面层位信息和异常体的形态分布情况;
[0049] (3)根据目标探测区域的探测精度要求和步骤(2)中地震反射波、散射波和面波处理的空间采样率要求,确定接收间距、炮检偏移距和移动步距;
[0050] (4)根据所述(3)计算的接收间距和炮检偏移距,通过连接杆4的数量和方向来调节滚轮式传感器和震源9之间以及滚轮式传感器5之间的距离;根据介质有效波发育情况及施工环境,确定使用的震源类型;基于所述的震源类型和步骤(3)所述的接收间距、炮检偏移距、移动步距安装整体探测装置;将所述整体装置依次移动到在探测目标标定的位置进行地震信号采集,完成探测任务。
[0051] 步骤(3)中,所述的接收间距根据目标探测区域的探测精度要求和横向分辨率公式确定,横向分辨率计算公式为 所述炮检偏移距根据公式 计算,其中Δx为横向分辨率,vc为目标探测区域的层速度,fmax为目标探测区域内最高有效频率,d为炮检距,k为系数,h为探测目标深度;所述移动步距根据 计算,其中N为观测点范围内的接收道数,x为接收间距,n为探测点覆盖次数。
[0052] 以上实施例并非仅限于本发明的保护范围,所有基于本发明的基本思想而进行的修改或变动都属于本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈