首页 / 专利库 / 自然灾害的预防与保护 / 地震 / 一种储层烃类检测方法

一种储层类检测方法

阅读:454发布:2023-12-27

专利汇可以提供一种储层类检测方法专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种储层 烃 类检测方法,其特征在于,包括;获得地下介质的粘弹性参数,包括:纵 波速 度、横波速度、 密度 、纵波衰减以及横波衰减参数;根据粘弹性介质AVAF关系近似式,计算出反射系数随入射 角 、 频率 的变化关系;根据所述反射系数随入射角、频率的变化关系,获得储层发育的详细信息,由此推测出储层的烃类含量。本发明在常规的振幅随入射角变化关系(AVA)的 基础 上引入了频率对 地震 振幅的影响,能更加方便、精确地描述发生在界面处的反射,易于实现油气勘探领域中储层的精细描述,可以准确推测出储层的烃类含量。,下面是一种储层类检测方法专利的具体信息内容。

1.一种储层类检测方法,其特征在于,包括以下步骤;
获得地下介质的粘弹性参数,包括:纵波速度、横波速度、密度、纵波衰减以及横波衰减参数;
根据粘弹性介质AVAF关系近似式,计算出反射系数随入射频率的变化关系:
其中,Vp表示介质的纵波速度,Vs表示介质的横波速度,ρ表示介质的密度,θ分别表示地震波由上覆地层进入下方地层的入射角,ω表示地震波的频率,为频率相关项,αp表示纵波衰减因子,αs表示横波衰减因子;
根据所述反射系数随入射角、频率的变化关系,获得储层发育的详细信息,由此推测出储层的烃类含量。
2.根据权利要求1所述的储层烃类检测方法,其特征在于,所述根据所述反射系数随入射角、频率的变化关系,获得储层发育的详细信息可以包括:所述根据所述反射系数随入射角、频率的变化关系,得到三维数据体,利用该三维数据体,获得储层发育的详细信息。
3.根据权利要求1所述的储层烃类检测方法,其特征在于,所述储层发育的详细信息包括:储层发育的孔隙度,以及所含的流体及储层是否属于优质储层。
4.根据权利要求1所述的储层烃类检测方法,其特征在于,所述推测出储层的烃类含量包括:
根据所述反射系数随入射角、频率的变化关系,反演出地震波在储层中传播时的能量衰减异常,由此推测出储层的烃类含量。

说明书全文

一种储层类检测方法

技术领域

[0001] 本发明属于石油地球物理勘探领域,具体涉及一种使用粘弹性介质振幅随入射频率变化关系的储层烃类检测方法。

背景技术

[0002] 可靠的烃类检测可降低勘探险与投入成本,对储层评价和油气勘探具有重要意义。自20世纪70年代以来,基于地震振幅差异和储层弹性参数的烃类检测技术一直是主导应用技术,如最初的“亮点”和AVO分析技术,以及后来的LMR(拉梅参数)技术、Russell流体因子和泊松阻抗方法等。这些技术虽然在提高油气勘探成功率上做出了巨大的贡献,但随着勘探主体变为隐蔽岩性油气藏或深海油气藏,单纯依靠振幅异常和储层弹性参数的烃类检测技术在实际储层预测中逐渐显露出局限性。
[0003] 首先,隐蔽岩性油气藏的气关系复杂、储层非均质性强、地震振幅响应与弹性参数异常特征不明显,常规方法的多解性严重;另外,海上钻井较少,叠前地震反演的实施难度较大,影响了弹性参数的精确求取。

发明内容

[0004] 本发明的目的在于解决上述现有技术中存在的难题,提供了一种储层烃类检测方法,可以利用粘弹性介质振幅随入射角及频率变化关系(AVAF),更好地描述反射波随频率的变化关系,实现对储层烃类的有效检测,提高储层含油气性预测的准确性。
[0005] 本发明是通过以下技术方案实现的:
[0006] 获得地下介质的粘弹性参数,包括:纵波速度、横波速度、密度、纵波衰减以及横波衰减参数;
[0007] 根据下列公式,计算出反射系数随入射角、频率的变化关系:
[0008]
[0009] 其中,Vp表示介质的纵波速度,Vs表示介质的横波速度,ρ表示介质的密度,θ分别表示地震波由上覆地层进入下方地层的入射角,ω表示地震波的频率,为频率相关项,αp表示纵波衰减因子,αs表示横波衰减因子;
[0010] 根据所述反射角随入射角、频率的变化关系,获得储层发育的详细信息,由此推测出储层的烃类含量。
[0011] 与现有技术相比,本发明的有益效果是:本发明在常规的振幅随入射角变化关系(AVA)的基础上引入了频率对地震振幅的影响,即AVAF。首先,粘弹性介质的假设更符合地下介质的实际情况,这对理论进行了完善;其次,频率的引入将为基于地震数据的反演和分析带来更多有用的信息。粘弹性介质AVAF近似式将更加方便、精确地描述发生在界面处的反射,为在粘弹性介质反演与分析奠定良好的理论基础,易于实现油气勘探领域中储层的精细描述,可以准确推测出储层的烃类含量。附图说明
[0012] 图1为本发明的储层烃类检测方法的流程图
[0013] 图2为含气砂岩储层模型示意图;
[0014] 图3为储层顶界面精确反射系数随入射角和频率的变化;
[0015] 图4为储层顶界面近似反射系数随入射角和频率的变化;
[0016] 图5为储层顶界面反射系数误差分析;

具体实施方式

[0017] 下面结合附图对本发明作进一步详细描述。
[0018] 发明人通过深入的研究发现,地震波在含油气储层中传播时会发生能量衰减异常,可利用衰减特征参数进行储层烃类检测,这样不仅能较好地弥补无法实施传统方法的不足,而且可与其他相关方法相互补充验证,降低预测结果的多解性。
[0019] 基于此,本发明提出了一种储层烃类检测方法,图1示出了本发明的储层烃类检测方法的流程图。
[0020] 参考图1,在步骤101中,获得地下介质的粘弹性参数,包括:纵波速度、横波速度、密度、纵波衰减以及横波衰减参数。
[0021] 在步骤102中,根据粘弹性介质AVAF关系近似式,计算出反射角随入射角、频率的变化关系。
[0022] 首先,由运动方程和虎克定律可推导出弹性波方程,在此基础上结合连续性方程、平面波的解、斯奈尔定律可得到Zoeppritz方程:
[0023]
[0024] 其中,VP,VS,ρ依次分别表示介质的纵波速度,横波速度和密度,θ表示入射角,RPP,RPS,TPP,TPS依次分别表示PP波反射系数、PS波反射系数,PP波透射系数和PS波透射系数。
[0025] 对于粘弹性介质,相速度V(ω)是包含频率信息的复数,写为:
[0026]
[0027] 其中,H(ω)和F(ω)分别为新定义参数,V(ω)是相速度,ωr是参考频率,Vr是参考频率的相速度,Q为地下介质的衰减,请发明人补充方程(2)中参数的含义。需要注意的是,式中的速度和衰减即包含了纵波也包含了横波。当反射界面上下的速度差不是很大时,由传统的Aki-Richards近似可以得到:
[0028]
[0029] 其中,VP,VS,ρ依次分别表示介质的纵波速度、横波速度和密度,θ表示入射角,Δ表示上下介质的差,
[0030] 将(2)式代入(3),
[0031]
[0032] 其中,R(θ,ω)表示随入射角和频率变换的反射系数,Vp表示介质的纵波速度,Vs表示介质的横波速度,ρ表示介质的密度,θ分别表示地震波由上层介质进入下层介质的入射角,ω表示地震波的频率,下标1和2分别表示上下介质,下标r表示参数H(ω)的实部(关于H(ω)的定义见式2)
[0033] 对(4)式中的速度项进行泰勒(Taylor)展开,展开条件如下:
[0034]
[0035] 其中符号“→”表示“趋近于”。
[0036] 在(5)条件下将纵波速度反射和横波速度反射展开成:
[0037]
[0038] 将(6)式代入Aki-Richards近似式,可以得到粘弹性介质下线性化的AVAF关系式:
[0039]
[0040] 其中,HP(ω)和HS(ω)分别表示与P波和S波相关的参数,H(ω)的定义仍然参照式(2)。
[0041] 进一步线性化,得到:
[0042]
[0043] 其中α=Q-1,由此(7)式写为:
[0044]
[0045] 方程式(9)即为粘弹性介质AVAF关系近似式,其中,Vp表示介质的纵波速度,Vs表示介质的横波速度,ρ表示介质的密度,θ分别表示入射角,ω表示频率,为频率相关项,αp表示纵波衰减因子,αs表示横波衰减因子。
[0046] 利用在步骤101中获得的纵波速度、横波速度、密度、纵波衰减以及横波衰减参数,根据公式(9),可以计算出反射系数随入射角、频率的变化关系,即得到一个三维数据体(即由入射角度域、频率域和时间域组成的三维空间,在这个空间内的每一个点都对应一个数据值,即三维数据体),由此可获得储层发育的详细信息。根据反射系数随入射角和频率的变化关系可以推知是否有储层发育以及是何种类型储层,例如:如看到反射系数随入射角增大而逐渐增大,那么该层段极有可能是含气性储层;同理,如看到反射系数随入射角增大而出现先增大后减小态势,则为含油储层,由此即实现了对储层烃类的检测作用。
[0047] 下面通过一个含气砂岩储层模型来说明本发明的效果。模型为泥岩层中间夹有含气砂岩储层(如图1所示),三层界面的参数分别设为:3
[0048] Vp1=3000m/s,Vs1=1500m/s,ρ1=2700kg/m,Qp1=100,Qs1=150;3
[0049] Vp2=2800m/s,Vs2=1200m/s,ρ2=2650kg/m,Qp2=10,Qs2=20;3
[0050] Vp3=3500m/s,Vs3=1800m/s,ρ3=2750kg/m,Qp3=100,Qs3=150;
[0051] 其中,Vp,Vs,ρ,Qp和Qs依次分别代表介质中纵波速度、横波速度、密度、纵波品质因子和横波品质因子,下标代表不同的层。
[0052] 储层顶界面位于100ms处,实验模拟的入射角度范围从0°—50°变化,频率范围为:0hz—100hz。
[0053] 图2和图3分别为储层顶界面精确AVAF关系与近似AVAF关系,仅从AVO分类上二者都体现出III类AVO效应,如果同时考虑频率引起的变换,可以看到当入射角增大时,反射系数随频率增加而减小,绝对值增大。
[0054] 图4为本发明近似式与精确反射系数之间的误差,在常规勘探的入射角和频带范围内,二者的误差很小,几乎可以忽略。说明本发明在地球物理勘探领域具有良好的适用性。
[0055] 本发明针对传统的AVO或AVA分析存在的缺陷专利提出了一种粘弹性介质振幅随入射角和和频率变化的近似技术。该技术基于粘弹性介质理论,可有效分析来自储层顶、底界面反射系数随入射角和频率的变化规律,实现储层的精细刻画与描述。同时,近似式的表达具有较高的准确性,为通过利用角度和频率信息进行反演,实现储层定量化描述奠定了良好的基础。
[0056] 上述技术方案只是本发明的一种实施方式,对于本领域内的技术人员而言,在本发明公开了应用方法和原理的基础上,很容易做出各种类型的改进或变形,而不仅限于本发明上述具体实施方式所描述的方法,因此前面描述的方式只是优选的,而并不具有限制性的意义。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈