首页 / 专利库 / 建筑材料 / 建筑材料 / 绝热材料 / 绝热材料及其制造方法和使用了其的电子设备及汽车

绝热材料及其制造方法和使用了其的电子设备及汽车

阅读:652发布:2020-05-08

专利汇可以提供绝热材料及其制造方法和使用了其的电子设备及汽车专利检索,专利查询,专利分析的服务。并且本 发明 涉及 绝热材料 及其制造方法和使用了其的 电子 设备及 汽车 。使用包含气凝胶的绝热材料且所述气凝胶具有大孔和中孔。使用一种绝热材料的制造方法,其包括:溶胶制备工序,相对于 硅 酸钠中的NaO2,按照以摩尔比计达到0.1以上且小于0.75的方式添加凝胶剂,在硅 氧 烷骨架中残留未反应的Na和非交联氧,由此制备导入了大孔的溶胶;浸渗/凝胶化工序,使溶胶浸渗于 无纺布 纤维 结构体,生成 水 凝胶-无纺布纤维的 复合体 ;疏水化工序,将生成的上述水凝胶-无纺布纤维的复合体与甲硅烷基化剂混合,进行表面修饰;以及干燥工序,将经表面修饰的上述水凝胶-无纺布纤维的复合体中所含的液体在小于临界 温度 和压 力 的条件下进行干燥而去除。,下面是绝热材料及其制造方法和使用了其的电子设备及汽车专利的具体信息内容。

1.一种绝热材料,其包含具有大孔和中孔的气凝胶。
2.根据权利要求1所述的绝热材料,其包含具有1μm~10μm的大孔和2nm~50nm的中孔的所述气凝胶。
3.根据权利要求1所述的绝热材料,其包含所述中孔的平均细孔直径为20nm~40nm、且所述大孔的平均细孔直径为2μm~6μm的所述气凝胶。
4.根据权利要求1所述的绝热材料,其包含具有相对于全部细孔容积为7vol%~
60vol%的所述大孔、相对于全部细孔容积为15vol%~60vol%的所述中孔的气凝胶。
5.根据权利要求1所述的绝热材料,其中,在无纺布纤维中保持有所述气凝胶。
6.根据权利要求1所述的绝热材料,其压缩后的导热率相对于初始导热率低5%以上。
7.根据权利要求6所述的绝热材料,其在5MPa压缩后的导热率相对于初始导热率低5%以上。
8.根据权利要求1所述的绝热材料,其中,所述气凝胶为气凝胶。
9.一种电子设备,在伴有发热的电子部件与壳体之间使用了权利要求1所述的绝热材料。
10.一种汽车,在电池之间使用了权利要求1所述的绝热材料。
11.一种绝热材料的制造方法,其包括:
溶胶制备工序,相对于硅酸钠中的NaO2,按照以摩尔比计达到0.1以上且小于0.75的方式添加凝胶剂,在硅氧烷骨架中残留未反应的Na和非交联氧,由此制备导入了大孔的溶胶;
浸渗/凝胶化工序,使溶胶浸渗于无纺布纤维结构体,生成凝胶-无纺布纤维的复合体
疏水化工序,将生成的所述水凝胶-无纺布纤维的复合体与甲硅烷基化剂混合,进行表面修饰;以及
干燥工序,将经表面修饰的所述水凝胶-无纺布纤维的复合体中所含的液体在小于临界温度和压的条件下进行干燥而去除。

说明书全文

绝热材料及其制造方法和使用了其的电子设备及汽车

技术领域

[0001] 本发明涉及绝热材料及其制造方法、使用了其的电子设备和汽车。尤其涉及气凝胶复合绝热材料及其制造方法及其应用。

背景技术

[0002] 当今,作为优异的绝热材料,利用了在纤维中保持有气凝胶的绝热材料(专利文献1~3)。
[0003] 现有技术文献
[0004] 专利文献
[0005] 专利文献1:日本特许第6064149号公报
[0006] 专利文献2:日本特愿2014-79802号公报
[0007] 专利文献3:日本特愿2013-181138号公报

发明内容

[0008] 发明要解决的课题
[0009] 以往的使用了二氧化硅气凝胶的绝热材料夹在各种设备内使用时,存在其被压缩而导致密度上升,导热率上升(=热阻降低)的课题。
[0010] 因而,本发明的课题在于,提供即使经压缩变形其导热率也不会上升的绝热材料及其制造方法和使用了其的电子设备及汽车。
[0011] 用于解决课题的方案
[0012] 使用包含气凝胶的绝热材料,所述气凝胶具有大孔和中孔。使用在伴有发热的电子部件与壳体之间使用了上述绝热材料的电子设备。使用在电池之间使用了上述绝热材料的汽车。
[0013] 此外,使用一种绝热材料的制造方法,其包括:溶胶制备工序,相对于硅酸钠中的NaO2,按照以摩尔比计达到0.1以上且小于0.75的方式添加凝胶剂,在硅氧烷骨架中残留未反应的Na和非交联氧,由此制备导入了大孔的溶胶;浸渗/凝胶化工序,使溶胶浸渗于无纺布纤维结构体,生成凝胶-无纺布纤维的复合体;疏水化工序,将生成的上述水凝胶-无纺布纤维的复合体与甲硅烷基化剂混合,进行表面修饰;以及干燥工序,将经表面修饰的上述水凝胶-无纺布纤维的复合体中所含的液体在小于临界温度和压的条件下进行干燥而去除。
[0014] 发明效果
[0015] 本发明的具有大孔和中孔的气凝胶复合绝热材料因压缩变形而导致对降低导热率没有贡献的大孔大幅减少,因此导热率降低,在夹持于方型电池之间使用的情况下,即使电池发生膨胀也会确保与膨胀前同等或更好的绝热性。附图说明
[0016] 图1是表示实施方式的气凝胶可呈现的细孔分布的图
[0017] 图2是表示实施方式的硅氧烷骨架中的未反应的Na和非交联氧的图
[0018] 图3是表示实施方式的具有大孔和中孔的二氧化硅气凝胶的图
[0019] 图4是表示基于压汞孔率计的细孔分布测定结果的图
[0020] 图5是实施例1和比较例1的气凝胶复合绝热材料的基于微X射线CT测定的立体图像以及XY、YZ、XZ断层图像的图
[0021] 图6是表示实施例1和比较例1的气凝胶复合绝热材料的膜厚方向上的大孔(空隙率)的分布的图
[0022] 附图标记说明
[0023] 1 中孔
[0024] 2 大孔
[0025] 3 Na
[0026] 4 非交联氧
[0027] 5 中孔
[0028] 6 二氧化硅气凝胶
[0029] 7 大孔

具体实施方式

[0030] 接着,列举出发明的优选实施方式来说明本实施方式。
[0031] <具有大孔的气凝胶复合绝热材料的设计构思>
[0032] 截止至今已知若干种包含二氧化硅气凝胶和无纺布纤维的气凝胶复合绝热材料。其中大多数的处理性得到改善。但是,气凝胶复合绝热材料尚不兼具可耐受5MPa载荷的强度。因此,气凝胶复合绝热材料因压缩变形而导致中孔被压扁。其结果,气凝胶复合绝热材料中,二氧化硅粒子彼此的接触点急剧增加而导致密度上升,导热率上升。
[0033] 本实施方式的气凝胶复合绝热材料的最大特征在于,气凝胶具有1~10μm的大孔2和2~50nm的中孔1。因此,对于气凝胶复合绝热材料而言,即使对绝热材料施加高达5MPa的载荷,导热率也不会上升(恶化)。气凝胶复合绝热材料的导热率反而降低(优化)。机理如后所述。
[0034] 优选为大孔2与中孔1的双峰式(バイモ一ダル)细孔分布。此处,所谓双峰式细孔分布是指在细孔分布中存在两个峰的分布,也称为“二峰性”、“双峰性”等。但是,双峰式不是必需的。
[0035] 图1示出气凝胶可呈现的细孔分布的图案。横轴为孔径。纵轴为个数。表1示出图1各自的中孔1和大孔2的比例。需要说明的是,表1的%是体积比率。
[0036] [表1]
[0037]
[0038] 如图1所示那样,细孔分布的图案存在(a)~(h)这8种,本发明的实施方式的气凝胶如(g)、(h)那样具有中孔1和大孔2这两者的细孔分布。需要说明的是,(h)也可以不是双峰式。
[0039] 中孔1的细孔分布为2~50nm,平均细孔直径为20~40nm,相对于全部细孔容积的体积比率为15%~60%。
[0040] 此处,平均细孔直径D可以利用气体吸附法来求出,因此如下所示。可以仅由比表面积A和全部细孔容积V这两个物性值来计算。该平均细孔直径D如下考虑:将全部细孔用一个(大的)圆筒形细孔来表示。一个大的圆筒形细孔具备体积V、表面积A(侧面积)。由于为圆筒形,因此,体积V、表面积A和圆筒的高度H可分别由下式来确定。
[0041] V=πD2H/4···(式1)
[0042] A=πDH····(式2)
[0043] 若从这些式1、式2中消除H则能够获得下式。
[0044] D=4V/A·····(式3)
[0045] 优选的是:大孔2的细孔分布为1~10μm,平均细孔直径为2~6μm,相对于全部细孔容积而具有7%~60%的体积比率。若在该范围内,则可以具有小于2nm的微孔和大于50nm且小于1μm的大孔。优选不存在大于10μm的大孔。需要说明的是,复合材料中的大孔的比例能够以空隙率的形式利用具备1μm左右的分辨率的微X射线CT测定来求出。
[0046] 此时,作为构成气凝胶的材料,可列举出二氧化硅(SiO2)、二氧化(TiO2)、氧化(Al2O3)、氧化锆(ZrO2)等金属氧化物系纳米粒子;间苯二酚-甲(RF)、聚酰亚胺、甲酸酯等有机化合物;将RF气凝胶烧成而得到的气凝胶。
[0047] 如上所述地显示特异性举动的机理在于,存在于绝热材料内部的大孔2在按压时被牺牲而压扁。另一方面,可认为这是因为:中孔分布仍然存留而未被压扁,并得以维持。在具有比静止空气(氮分子)的平均自由程68nm更大的细孔径分布的多孔体材料中,因空气对流而容易发生导热,因此导热率总体变高。因此,具有双峰式分布的绝热材料因按压而导致导热率降低的原因在于,因大孔消失而导致空气对流受到抑制。
[0048] <具有大孔2的气凝胶复合绝热材料的压缩后导热特性>
[0049] 以0.75~5MPa进行加压时的实施方式的复合绝热材料的导热率与初始导热率相比优选低1%~10%,进一步优选低5%~10%。
[0050] 复合绝热材料的导热率与初始导热率相比低不足1%的情况下,难以抑制复合绝热材料在压缩时的热链(heat chain)。
[0051] 如果复合绝热材料的导热率与初始导热率相比低5%~10%,则能够有效地抑制复合绝热材料在压缩时的热链。
[0052] <气凝胶复合绝热材料的原料种类和原料浓度>
[0053] 作为具有双峰式分布的气凝胶的原料,可以使用公知的金属醇盐、水玻璃等通用原料,以达到期望原料浓度的方式添加水,制备分散液或溶液并使用。
[0054] 作为金属种类,可列举出Si、Ti、Al、Zr等。可以认为Na离子对高密度气凝胶中的多孔结构的致密化、高密度化造成影响,因此可适合使用包含Na离子的水玻璃。原料分散液或溶液中的二氧化硅浓度只要是能够合成气凝胶的浓度就没有特别限定,优选为6%~22%。
[0055] <气凝胶复合绝热材料的凝胶剂和浓度>
[0056] 作为本实施方式的具有中孔和大孔的气凝胶的合成所使用的凝胶剂的种类,没有特别限定,只要是公知的凝胶剂即可。可以使用例盐酸硫酸硝酸磷酸无机酸;甲酸、乙酸、柠檬酸酒石酸有机酸;二氧化碳、碳酸酯等产生碳酸的物质。其不仅针对二氧化硅,对于二氧化钛、氧化铝、氧化锆也相同。
[0057] 关于凝胶剂的添加量,按照相对于硅酸钠中的NaO2以摩尔比计达到0.50以下的化学计量比的方式进行添加。例如,在含有5wt%NaO2的硅酸钠水溶液100g中存在8mmol的NaO2。
[0058] 但是,通过以化学计量比计添加0.50、换言之4mmol以下的凝胶剂,能够在图2所示那样的硅氧烷骨架中残留未反应的Na3和非交联氧4。其不仅针对二氧化硅,对于二氧化钛、氧化铝、氧化锆也相同。
[0059] 如此操作,能够以分子水平导入缺陷,如图3所示那样,在具有中孔5的二氧化硅气凝胶6骨架中生成大孔7。基于这种机理而形成大孔。从生产率(原料液体浸渗至无纺布的速度等)、成本的关系出发,凝胶剂的添加量相对于硅酸钠中NaO2的化学计量比以摩尔比计优选为0.1~0.50。
[0060] <气凝胶复合绝热材料的厚度>
[0061] 气凝胶复合绝热材料的厚度处于0.03mm~3.0mm的范围内,优选处于0.05mm~1.5mm的范围内。在气凝胶复合绝热材料比0.03mm薄的情况下,厚度方向的绝热效果降低,因此,如果不实现导热率接近真空这一水平的非常低的导热率,则无法良好地降低从其一面朝向另一面的厚度方向上的导热。若厚度为0.05mm以上,则能够确保厚度方向的绝热效果。另一方面,如果气凝胶复合绝热材料比1.5mm厚,则难以组装至车载/产业设备中。尤其是,在车载领域中,若比3.0mm厚,则更难向设备中组装。
[0062] <无纺布纤维的单位面积重量>
[0063] 作为用于制造气凝胶复合绝热材料的无纺布纤维的单位面积重量,为了维持作为气凝胶的支承体所需的最低限的刚性,优选为5~200g/m2。单位面积重量是单位面积的纤维重量。
[0064] <无纺布纤维的体积密度>
[0065] 从提高气凝胶复合绝热材料中的二氧化硅干凝胶的含有率、进一步降低导热率的观点出发,无纺布纤维的体积密度优选为100~500kg/m3的范围。
[0066] 为了形成具备作为连续体的机械强度的无纺布,体积密度至少需要为100kg/m3。此外,在无纺布的体积密度大于500kg/m3的情况下,无纺布中的空间体积变少,因此,能够填充的二氧化硅干凝胶相对减少,导热率上升。
[0067] <无纺布纤维的材质>
[0068] 作为用于制造气凝胶复合绝热材料的无纺布纤维的材质,可以利用无机纤维系的玻璃、玻璃纸、岩棉树脂系的聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚丙烯(PP)、聚四氟乙烯(PTFE)、天然系的羊毛、纤维素、碳毡等。
[0069] <气凝胶复合绝热材料的制造方法>
[0070] 为了制作具有大孔和中孔的双峰式气凝胶,需要向硅氧烷网络中以分子水平战略性地导入缺陷。作为基本的合成步骤,包含a)~c)这三个步骤。
[0071] a)相对于硅酸钠组合物中的Na2O,按照以摩尔比计达到0.1以上且小于0.75的方式添加凝胶剂,使由此制备的溶胶浸渗于无纺布纤维结构体,生成水凝胶-无纺布纤维的复合体。
[0072] b)将步骤a)中生成的水凝胶-无纺布纤维的复合体与甲硅烷基化剂混合,进行表面修饰。
[0073] c)将步骤b)中得到的经表面修饰的水凝胶-无纺布纤维的复合体中所含的液体在小于临界温度和压力的条件下进行干燥而去除。
[0074] 实施例
[0075] 以下,基于实施例来说明本实施方式。其中,本实施方式不限定于下述实施例。所有反应在大气下进行。将条件和结果示于表2。
[0076] [表2]
[0077]  实施例1 比较例1
SiO2浓度[wt%] 20 20
凝胶剂相对于Na2O的摩尔比 0.375 0.75
初始导热率[mW/mK] 45 46
压缩后导热率[mW/mK] 42 46
导热率压缩前后的变化率[%] 7 0
细孔容积[cc/g] 0.432 0.136
中孔1相对于全部细孔容积的比率[%] 15 30
大孔2相对于全部细孔容积的比率[%] 30 2
由微X射线CT图像求出的大孔比例[%] 9.25 5.30
综合判定 ○ ×
[0078] <评价>
[0079] 需要说明的是,在实施例中,作为原料而使用硅酸钠,作为凝胶剂而使用碳酸酯,变更水玻璃原料的二氧化硅浓度来制作绝热片,评价导热率、压缩形变、热阻值。
[0080] 导热率的测定使用了热流计HFM436Lamda(NETZCH公司制)。气凝胶复合绝热材料的中孔使用高精度气体/蒸气吸附量测定装置BELSORP-max42N-VP-P(MICROTRAC-BELL公司制)进行评价。此外,大孔的比例(以空隙率计)和分布通过基于微X射线CT的非破坏检查来调查(三维测量X射线CT装置:TDM1000-IS/SP(YAMATO科学公司制),三维体绘制软件:VG-Studio MAX(Volume Graphics公司制))。各实施例、比较例的详细条件如下说明。
[0081] <压缩后的导热率合格基准>
[0082] 将以5.0MPa、50℃按压30分钟的处理实施3次后的导热率相对于初始导热率降低5%以上的条件记作合格。小于5%时,即使在高负荷时,也难以有效地抑制热链。
[0083] <实施例1>
[0084] 在硅酸钠水溶液(SiO2浓度为20wt%、Na2O浓度为5wt%)中,按照相对于Na2O以摩尔比计达到0.375的方式添加凝胶剂(碳酸亚乙酯),充分搅拌而使其溶解,从而制备溶胶液。
[0085] 接下来,通过向无纺布纤维(材质:玻璃纸、厚度1mm、单位面积重量:155g/m2、尺寸:12cm见方)中注入溶胶溶液而使溶胶溶液浸渗至无纺布。将浸渗有溶胶溶液的无纺布夹持于PP膜(厚度50um×2片),在室温23℃下放置3分钟而使溶胶发生凝胶化。确认凝胶化后,使连同膜一起的浸渗无纺布穿过间隙设定为1.00mm(包括膜厚在内)的双轴辊,从无纺布中挤出多余的凝胶而以厚度1.00mm作为目标进行控制。
[0086] 接下来,剥离膜而将凝胶片浸渍于6当量浓度的盐酸中,然后以常温23℃放置10分钟,从而使盐酸进入凝胶片中。接下来,使凝胶片浸渍于作为甲硅烷基化剂的八甲基三硅氧烷与2-丙醇(IPA)的混合液中,并投入至55℃的恒温槽中使其反应2小时。若开始形成三甲基硅氧烷键,则从凝胶片排出盐酸水,呈现二液分离的状态(上层为硅氧烷、下层为盐酸水、2-丙醇)。将凝胶片转移至设定为150℃的恒温槽并在大气气氛下干燥2小时,由此得到绝热片。
[0087] 测定该气凝胶复合绝热材料的导热率,结果为45mW/mK。此外,如基于压汞孔率计的细孔分布测定的结果、即图4所示那样,确认到1μm以上的大孔的存在为15%以上。
[0088] 图5示出通过微X射线CT测定而取得的气凝胶复合绝热材料的立体图像以及XY、YZ、XZ断层图像。本装置的分辨率为1μm,视觉上确认到1μm的大孔的存在。
[0089] 图6示出膜厚方向的大孔(空隙率)的分布。定量性地明确了:实施例1中,表面附近的大孔比例较少,其具有比比较例1更多的大孔。
[0090] 实施例1中,由微X射线CT图像求出的大孔比例为9.25%(表2)。
[0091] 接下来,进行压缩后的导热率评价,结果为42mW/mK,相对于初始导热率降低7%(表2)。
[0092] <比较例1>
[0093] 除了将凝胶剂的添加量变更为以摩尔比计0.75之外,利用与实施例1相同的工艺条件来制作片材。测定该气凝胶复合绝热材料的导热率,结果为46mW/mK。此外,基于压汞孔率计的细孔分布测定结果如图4所示那样,确认到中孔分布,但未确认到大孔的存在。另一方面,在作为非破坏检查的微X射线CT测定中,如图5、6所示那样,虽然比实施例1少但仍然确认到大孔的存在。大孔的比例为5.30%(表2)。接下来,进行压缩后的导热率评价,结果为46mW/mK,相对于初始导热率未观察到变化(表2)。
[0094] 需要说明的是,优选在汽车的电池之间使用实施方式的绝热片。汽车的电池在充放电中频繁地膨胀收缩,因此,在其中适用实施方式的绝热片。
[0095] 此外,对于电子设备而言,可以在伴有发热的电子部件与壳体之间使用上述绝热片。
[0096] (作为整体)
[0097] 作为气凝胶而用二氧化硅进行了说明,但二氧化钛、氧化铝、氧化锆等也可以相同。孔径、浓度、特性也相同。
[0098] 产业上的可利用性
[0099] 实施方式的绝热片在电子设备、车载设备、产业设备内的狭小空间中也能够充分发挥出绝热效果,因此得以广泛利用。进而,可应用于便携设备、显示器、电气制品等与热相关的全部制品中。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈