首页 / 专利库 / 农用化学品和农药 / 目标害虫 / 杀虫蛋白的用途

杀虫蛋白的用途

阅读:604发布:2020-05-15

专利汇可以提供杀虫蛋白的用途专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种杀虫蛋白的用途,包括:将豆天蛾 害虫 至少与Cry2Ab蛋白 接触 。本发明通过 植物 体内产生能够杀死豆天蛾的Cry2Ab蛋白来控制豆天蛾害虫;与 现有技术 使用的农业防治方法、 化学防治 方法、物理防治方法和 生物 防治方法相比,本发明对植物进行全生育期、全植株的保护以防治豆天蛾害虫的侵害,且无污染、无残留,效果稳定、彻底,简单、方便、经济。,下面是杀虫蛋白的用途专利的具体信息内容。

1.一种控制豆天蛾害虫的方法,其特征在于,包括将豆天蛾害虫至少与Cry2Ab蛋白接触
2.根据权利要求1所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白存在于至少产生所述Cry2Ab蛋白的宿主细胞中,所述豆天蛾害虫通过摄食所述宿主细胞至少与所述Cry2Ab蛋白接触。
3.根据权利要求2所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白存在于至少产生所述Cry2Ab蛋白的细菌或转基因植物中,所述豆天蛾害虫通过摄食所述细菌或转基因植物的组织至少与所述Cry2Ab蛋白接触,接触后所述豆天蛾害虫生长受到抑制和/或导致死亡,以实现对豆天蛾危害植物的控制。
4.根据权利要求3所述的控制豆天蛾害虫的方法,其特征在于,所述转基因植物可以处于任意生育期。
5.根据权利要求3所述的控制豆天蛾害虫的方法,其特征在于,所述转基因植物的组织为叶片、茎秆、果实、雄穗、雌穗、花药。
6.根据权利要求3所述的控制豆天蛾害虫的方法,其特征在于,所述对豆天蛾危害植物的控制不因种植地点和/或种植时间的改变而改变。
7.根据权利要求3至6任一项所述的控制豆天蛾害虫的方法,其特征在于,所述植物为大豆、绿豆、豇豆和刺槐。
8.根据权利要求7所述的控制豆天蛾害虫的方法,其特征在于,所述接触步骤之前的步骤为种植含有编码所述Cry2Ab蛋白的多核苷酸的植物。
9.根据权利要求8所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白的基酸序列具有SEQ ID NO:1所示的氨基酸序列。
10.根据权利要求9所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白的核苷酸序列具有SEQ ID NO:2所示的核苷酸序列。
11.根据权利要求10所述的控制豆天蛾害虫的方法,其特征在于,所述植物还包括至少一种不同于编码所述Cry2Ab蛋白的核苷酸的第二种核苷酸。
12.根据权利要求11所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过化物酶。
13.根据权利要求12所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry1Ac蛋白或Cry1A.105蛋白。
14.根据权利要求13所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸序列具有SEQ ID NO:4或SEQ ID NO:6所示的核苷酸序列。
15.根据权利要求11所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
16.根据权利要求9所述的控制豆天蛾害虫的方法,其特征在于,所述植物还包括至少一种不同于编码所述Cry2Ab蛋白的核苷酸的第二种核苷酸。
17.根据权利要求16所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过氧化物酶。
18.根据权利要求17所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry1Ac蛋白或Cry1A.105蛋白。
19.根据权利要求18所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸序列具有SEQ ID NO:4或SEQ ID NO:6所示的核苷酸序列。
20.根据权利要求16所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
21.根据权利要求8所述的控制豆天蛾害虫的方法,其特征在于,所述植物还包括至少一种不同于编码所述Cry2Ab蛋白的核苷酸的第二种核苷酸。
22.根据权利要求21所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过氧化物酶。
23.根据权利要求22所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry1Ac蛋白或Cry1A.105蛋白。
24.根据权利要求23所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸序列具有SEQ ID NO:4或SEQ ID NO:6所示的核苷酸序列。
25.根据权利要求21所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
26.根据权利要求7所述的控制豆天蛾害虫的方法,其特征在于,所述植物还包括至少一种不同于编码所述Cry2Ab蛋白的核苷酸的第二种核苷酸。
27.根据权利要求26所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过氧化物酶。
28.根据权利要求27所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry1Ac蛋白或Cry1A.105蛋白。
29.根据权利要求28所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸序列具有SEQ ID NO:4或SEQ ID NO:6所示的核苷酸序列。
30.根据权利要求26所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
31.根据权利要求3至6任一项所述的控制豆天蛾害虫的方法,其特征在于,所述植物还包括至少一种不同于编码所述Cry2Ab蛋白的核苷酸的第二种核苷酸。
32.根据权利要求31所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过氧化物酶。
33.根据权利要求32所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry1Ac蛋白或Cry1A.105蛋白。
34.根据权利要求33所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸序列具有SEQ ID NO:4或SEQ ID NO:6所示的核苷酸序列。
35.根据权利要求31所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
36.根据权利要求7所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白的氨基酸序列具有SEQ ID NO:1所示的氨基酸序列。
37.根据权利要求36所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白的核苷酸序列具有SEQ ID NO:2所示的核苷酸序列。
38.根据权利要求37所述的控制豆天蛾害虫的方法,其特征在于,所述植物还包括至少一种不同于编码所述Cry2Ab蛋白的核苷酸的第二种核苷酸。
39.根据权利要求38所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过氧化物酶。
40.根据权利要求39所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry1Ac蛋白或Cry1A.105蛋白。
41.根据权利要求40所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸序列具有SEQ ID NO:4或SEQ ID NO:6所示的核苷酸序列。
42.根据权利要求38所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
43.根据权利要求3至6任一项所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白的氨基酸序列具有SEQ ID NO:1所示的氨基酸序列。
44.根据权利要求43所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白的核苷酸序列具有SEQ ID NO:2所示的核苷酸序列。
45.根据权利要求44所述的控制豆天蛾害虫的方法,其特征在于,所述植物还包括至少一种不同于编码所述Cry2Ab蛋白的核苷酸的第二种核苷酸。
46.根据权利要求45所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过氧化物酶。
47.根据权利要求46所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry1Ac蛋白或Cry1A.105蛋白。
48.根据权利要求47所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸序列具有SEQ ID NO:4或SEQ ID NO:6所示的核苷酸序列。
49.根据权利要求45所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
50.根据权利要求1至2任一项所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白的氨基酸序列具有SEQ ID NO:1所示的氨基酸序列。
51.根据权利要求50所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白的核苷酸序列具有SEQ ID NO:2所示的核苷酸序列。
52.根据权利要求3至6任一项所述的控制豆天蛾害虫的方法,其特征在于,所述接触步骤之前的步骤为种植含有编码所述Cry2Ab蛋白的多核苷酸的植物。
53.根据权利要求52所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白的氨基酸序列具有SEQ ID NO:1所示的氨基酸序列。
54.根据权利要求53所述的控制豆天蛾害虫的方法,其特征在于,所述Cry2Ab蛋白的核苷酸序列具有SEQ ID NO:2所示的核苷酸序列。
55.根据权利要求54所述的控制豆天蛾害虫的方法,其特征在于,所述植物还包括至少一种不同于编码所述Cry2Ab蛋白的核苷酸的第二种核苷酸。
56.根据权利要求55所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过氧化物酶。
57.根据权利要求56所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸编码Cry1Ac蛋白或Cry1A.105蛋白。
58.根据权利要求57所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸序列具有SEQ ID NO:4或SEQ ID NO:6所示的核苷酸序列。
59.根据权利要求55所述的控制豆天蛾害虫的方法,其特征在于,所述第二种核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
60.一种Cry2Ab蛋白质控制豆天蛾害虫的用途。
61.一种产生控制豆天蛾害虫的植物的方法,其特征在于,包括向所述植物的基因组中引入编码Cry2Ab蛋白的多核苷酸序列。
62.一种产生控制豆天蛾害虫的植物繁殖体的方法,其特征在于,包括将由权利要求61所述方法获得的第一植株与第二植株杂交,和/或取下由权利要求61所述方法获得的植株上具有繁殖能的组织进行培养,从而产生含有编码Cry2Ab蛋白的多核苷酸序列的植物繁殖体。
63.一种培养控制豆天蛾害虫的植物的方法,其特征在于,包括:
种植至少一个植物繁殖体,所述植物繁殖体的基因组中包括编码Cry2Ab蛋白的多核苷酸序列;
使所述植物繁殖体长成植株;
使所述植株在人工接种豆天蛾害虫和/或豆天蛾害虫自然发生危害的条件下生长,收获与其他不具有编码Cry2Ab蛋白的多核苷酸序列的植株相比具有减弱的植物损伤和/或具有增加的植物产量的植株。

说明书全文

杀虫蛋白的用途

技术领域

[0001] 本发明涉及一种杀虫蛋白的用途,特别是涉及一种Cry2Ab蛋白质通过在植物中表达来控制豆天蛾为害植物的用途。

背景技术

[0002] 豆天蛾Clanis bilineata(walker),其幼虫俗称豆虫、豆丹、豆蝉,属于鳞翅目天蛾科纹天蛾亚科豆天蛾属,主要分布与我国黄淮流域和长江流域及华南地区,在我国大豆的主产区是主要的大豆害虫之一。豆天蛾是爆发性害虫,其为害特点为:幼虫暴食叶片,轻者叶片被咬成孔洞、缺刻,重者豆株成光杆,进残留叶柄,且不能结荚,严重影响产量。
[0003] 栽培大豆(Glycine max(L.)Merri),是一种全球种植的作为植物油和植物蛋白主要来源的重要经济作物,是中国重要的粮食作物。豆天蛾是危害大豆的主要害虫,每年因豆天蛾会造成不同程度的粮食损失,轻者减产1-2成,重者减产3-4成。为了防治豆天蛾,人们通常采用的主要方法有农业防治、化学防治、物理防治和生物防治。
[0004] 农业防治是把整个农田生态系统多因素的综合协调管理,调控作物、害虫、环境因素、创造一个有利于作物生长而不利于豆天蛾发生的农田生态环境。如选用成熟晚、秆硬、皮厚、抗涝性强的品种,可以减轻豆天蛾的为害;或者及时秋耕、冬灌,降低越冬基数;或者轮作,尽量避免连作豆科植物,以减轻为害。因农业防治大多为预防性措施,应用有一定的局限性,不能作为应急措施,在豆天蛾爆发时就显得无能为。化学防治即农药防治,是利用化学杀虫剂来杀灭害虫,是豆天蛾综合治理的重要组成部分,它具有快速、方便、简便和高经济效益的特点,特别是豆天蛾大发生的情况下,是必不可少的应急措施。目前化学防治方法主要是药液喷雾和药粉喷洒,在豆天蛾幼虫1-3龄期间有较好的防治效果,随着虫体越大,抗药性越强,药剂防治效果越差,将很难达到防治的目的。同时化学防治也有其局限性,如使用不当往往会导致农作物发生药害、害虫产生抗药性,以及杀伤天敌、污染环境,使农田生态系统遭到破坏和农药残留对人、畜的安全构成威胁等不良后果。
[0005] 物理防治主要根据害虫对环境条件中各种物理因素的反应,利用各种物理因素如光、电、色、温湿度等以及机械设备进行诱杀、辐射不育等方法来防治害虫。目前应用最广泛的是频振式杀虫灯诱杀,它利用害虫成虫的趋光性,近距离用光,远距离用波,引诱害虫靠近,对豆天蛾成虫的防治具有一定的效果;但是频振式杀虫灯需要每天及时清理高压电网上的污垢,否则会影响杀虫效果;并且在雷雨天不能开灯,在操作上还有电击伤人的危险;此外安装灯的一次性投入较大。
[0006] 生物防治是利用某些有益生物或生物代谢产物来控制害虫种群数量,以达到降低或消灭害虫的目的,如用杀螟杆菌或青虫菌防治豆天蛾。其特点是对人、畜安全,对环境污染少,对某些害虫可达到长期控制的目的;但是效果常不稳定,并且不论豆天蛾发生轻重均需同样投资进行。
[0007] 为了解决农业防治、化学防治、物理防治和生物防治在实际应用中的局限性,科学家们经过研究发现将编码杀虫蛋白的抗虫基因转入植物中,可获得一些抗虫转基因植物以防治植物虫害。Cry2Ab杀虫蛋白是众多杀虫蛋白中的一种,是由苏云金芽孢杆菌产生的不溶性伴孢结晶蛋白。Cry2Ab蛋白被昆虫摄入进入中肠,毒蛋白原毒素被溶解在昆虫中肠的性pH环境下。蛋白N-和C-末端被碱性蛋白酶消化,将原毒素转变成活性片段;活性片段和昆虫中肠上皮细胞膜上表面上受体结合,插入肠膜,导致细胞膜出现穿孔病征,破坏细胞膜内外的渗透压变化及pH平衡等,扰乱昆虫的消化过程,最终导致其死亡。
[0008] 已证明转Cry2Ab基因的植株可以抵抗玉米螟、粟灰螟等鳞翅目(Lepidoptera)害虫的侵害,然而,至今尚无关于通过产生表达Cry2Ab蛋白的转基因植株来控制豆天蛾对植物为害的报道。

发明内容

[0009] 本发明的目的是提供一种杀虫蛋白的用途,首次提供了通过产生表达Cry2Ab蛋白的转基因植株来控制豆天蛾对植物危害的方法,且有效克服现有技术农业防治、化学防治和物理防治等技术缺陷
[0010] 为实现上述目的,本发明提供了一种控制豆天蛾害虫的方法,包括将豆天蛾害虫至少与Cry2Ab蛋白接触
[0011] 进一步地,所述Cry2Ab蛋白存在于至少产生所述Cry2Ab蛋白的宿主细胞中,所述豆天蛾害虫通过摄食所述宿主细胞至少与所述Cry2Ab蛋白接触。
[0012] 更进一步地,所述Cry2Ab蛋白存在于至少产生所述Cry2Ab蛋白的细菌或转基因植物中,所述豆天蛾害虫通过摄食所述细菌或转基因植物的组织至少与所述Cry2Ab蛋白接触,接触后所述豆天蛾害虫生长受到抑制和/或导致死亡,以实现对豆天蛾危害植物的控制。
[0013] 所述转基因植物可以处于任意生育期。
[0014] 所述转基因植物的组织为叶片、茎秆、果实、雄穗、雌穗、花药。
[0015] 所述对豆天蛾危害植物的控制不因种植地点和/或种植时间的改变而改变。
[0016] 所述植物为大豆、绿豆、豇豆和刺槐。
[0017] 所述接触步骤之前的步骤为种植含有编码所述Cry2Ab蛋白的多核苷酸的植物。
[0018] 优选地,所述Cry2Ab蛋白的基酸序列具有SEQ ID NO:1所示的氨基酸序列。所述Cry2Ab蛋白的核苷酸序列具有SEQ ID NO:2所示的核苷酸序列。
[0019] 在上述技术方案的基础上,所述植物还可以包括至少一种不同于编码所述Cry2Ab蛋白的核苷酸的第二种核苷酸。
[0020] 进一步地,所述第二种核苷酸编码Cry类杀虫蛋白质、Vip类杀虫蛋白质、蛋白酶抑制剂、凝集素、α-淀粉酶或过化物酶。
[0021] 优选地,所述第二种核苷酸编码Cry1A、Cry1Fa或Vip3Aa蛋白。
[0022] 进一步地,所述Cry1A蛋白的氨基酸序列具有SEQ ID NO:3或SEQ ID NO:5所示的氨基酸序列。
[0023] 更进一步地,所述第二种核苷酸具有SEQ ID NO:4或SEQ ID NO:6所示的核苷酸序列。
[0024] 可选择地,所述第二种核苷酸为抑制目标昆虫害虫中重要基因的dsRNA。
[0025] 为实现上述目的,本发明还提供了一种Cry2Ab蛋白质控制豆天蛾害虫的用途。
[0026] 为实现上述目的,本发明还提供了一种产生控制豆天蛾害虫的植物的方法,包括向所述植物的基因组中引入编码Cry2Ab蛋白的多核苷酸序列。
[0027] 为实现上述目的,本发明还提供了一种产生控制豆天蛾害虫的植物繁殖体的方法,包括将由所述方法获得的第一植株与第二植株杂交,和/或取下由所述方法获得的植株上具有繁殖能力的组织进行培养,从而产生含有编码Cry2Ab蛋白的多核苷酸序列的植物繁殖体。
[0028] 为实现上述目的,本发明还提供了一种培养控制豆天蛾害虫的植物的方法,包括:
[0029] 种植至少一个植物繁殖体,所述植物繁殖体的基因组中包括编码Cry2Ab蛋白的多核苷酸序列;
[0030] 使所述植物繁殖体长成植株;
[0031] 使所述植株在人工接种豆天蛾害虫和/或豆天蛾害虫自然发生危害的条件下生长,收获与其他不具有编码Cry2Ab蛋白的多核苷酸序列的植株相比具有减弱的植物损伤和/或具有增加的植物产量的植株。
[0032] 本发明中所述的“植物繁殖体”包括但不限于植物有性繁殖体和植物无性繁殖体。所述植物有性繁殖体包括但不限于植物种子;所述植物无性繁殖体是指植物体的营养器官或某种特殊组织,其可以在离体条件下产生新植株;所述营养器官或某种特殊组织包括但不限于根、茎和叶,例如:以根为无性繁殖体的植物包括草莓和甘薯等;以茎为无性繁殖体的植物包括甘蔗铃薯(茎)等;以叶为无性繁殖体的植物包括芦荟和秋海棠等。
[0033] 本发明中所述的“接触”是指触碰、停留和/或摄食,具体为昆虫和/或害虫触碰、停留和/或摄食植物、植物器官、植物组织或植物细胞,所述植物、植物器官、植物组织或植物细胞既可以是其体内表达杀虫蛋白,还可以是所述植物、植物器官、植物组织或植物细胞的表面具有杀虫蛋白和/或具有产生杀虫蛋白的微生物
[0034] 本发明所述的“控制”和/或“防治”是指豆天蛾害虫至少与Cry2Ab蛋白接触,接触后豆天蛾害虫生长受到抑制和/或导致死亡。进一步地,豆天蛾害虫通过摄食植物组织至少与Cry2Ab蛋白接触,接触后全部或部分豆天蛾害虫生长受到抑制和/或导致死亡。抑制是指亚致死,即尚未致死但能引起生长发育、行为、生理、生化和组织等方面的某种效应,如生长发育缓慢和/或停止。同时,植物在形态上应是正常的,且可在常规方法下培养以用于产物的消耗和/或生成。此外,含有编码Cry2Ab蛋白的多核苷酸序列的控制豆天蛾害虫的植物和/或植物种子,在人工接种豆天蛾害虫和/或豆天蛾害虫自然发生危害的条件下,与非转基因的野生型植株相比具有减弱的植物损伤,具体表现包括但不限于改善的叶片抗性、和/或提高的籽粒重量、和/或增产等。Cry2Ab蛋白对豆天蛾的“控制”和/或“防治”作用是可以独立存在的,具体地,转基因植物(含有编码Cry2Ab蛋白的多核苷酸序列)的任何组织同时和/或不同步地,存在和/或产生,Cry2Ab蛋白和/或可控制豆天蛾害虫的另一种物质,则所述另一种物质的存在Cry2Ab不能导致所述“控制”和/或“防治”作用完全和/或部分由所述另一种物质实现,而与Cry2Ab蛋白无关。通常情况下,在大田,豆天蛾害虫摄食植物组织的过程短暂且很难用肉眼观察到,因此,在人工接种豆天蛾害虫和/或豆天蛾害虫自然发生危害的条件下,如转基因植物(含有编码Cry2Ab蛋白的多核苷酸序列)的任何组织存在死亡的豆天蛾害虫、和/或在其上停留生长受到抑制的豆天蛾害虫、和/或与非转基因的野生型植株相比具有减弱的植物损伤,即为实现了本发明的方法和/或用途,即通过豆天蛾害虫至少与Cry2Ab蛋白接触以实现控制豆天蛾害虫的方法和/或用途。
[0035] 在本发明中,Cry2Ab蛋白在一种转基因植物中的表达可以伴随着一个或多个Cry类杀虫蛋白质和/或Vip类杀虫蛋白质的表达。这种超过一种的杀虫毒素在同一株转基因植物中共同表达可以通过遗传工程使植物包含并表达所需的基因来实现。另外,一种植物(第1亲本)可以通过遗传工程操作表达Cry2Ab蛋白质,第二种植物(第2亲本)可以通过遗传工程操作表达Cry类杀虫蛋白质和/或Vip类杀虫蛋白质。通过第1亲本和第2亲本杂交获得表达引入第1亲本和第2亲本的所有基因的后代植物。
[0036] RNA干扰(RNA interference,RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。因此在本发明中可以使用RNAi技术特异性剔除或关闭目标昆虫害虫中特定基因的表达,特别是与目标昆虫害虫生长发育的相关的基因。
[0037] 豆天蛾的成虫体长40-46mm,翅展100-120mm。体和翅黄褐色,头胸部暗紫色。前翅狭长,有6条浓色的波状横纹。后翅小,暗褐色,翅基外缘有一黄褐色带状纹。卵呈球形,直径2-3mm,初产的卵黄白色,孵化前变成褐色,老熟。幼虫体长约90mm,黄绿色。头部有一黄绿色突起,胸足4对,尾足1对。尾部有一黄绿色尾。蛹体长40-45mm,宽15mm,纺锤形,红褐色,腹部口气明显突出,呈钓状弯曲。
[0038] 豆天蛾,一年发生一代(河北、山东、江苏、安徽)至两代(湖北、江西),以老熟幼虫在土中9-12cm深处越冬,多潜伏在豆田内或豆科植物附近的头粪堆边、田埂等向阳处,翌年春暖幼虫上升土表作土室化蛹。6月下旬始见成虫,成虫昼伏夜出,白天隐藏在忍冬或生长茂密的农作物及杂草丛中。傍晚开始活动,飞翔力强,迁移性大,能在几十米高空急飞,夜间交尾,交尾后3h即能产卵,一般1片叶上产1粒卵,卵期7天左右,每蛾产产卵320-380粒。8月为幼虫盛期,幼虫共5龄,初孵化幼虫有背光性,白天潜伏叶背,夜间取食,阴天整日为害。1-2龄为害顶部咬食叶缘成缺刻,一般不迁移。3-4龄食量大增,也可转株为害。5龄幼虫是暴食阶段,约占幼虫期食量的90%。9月幼虫入土越冬。
[0039] 在分类系统上,一般主要根据成虫翅的脉序、连方式和触角的类型等形态特征,将鳞翅目分为亚目、总科、科等。天蛾科是鳞翅目的一科,下辖200多个属,约1450个品种,中国已知约150种。本科昆虫通称天蛾,大部分天蛾科昆虫体型较大,前翅大而狭长,翅顶角尖,触角粗厚,复眼大,喙发达,如烟草天蛾和豆天蛾。尽管烟草天蛾(Manduca sexta)与豆天蛾(Clanis bilineata)同属于鳞翅目天蛾科,除了在分类标准上存在相似性,在其它形态结构上则存在极大差异;就好比植物中的草莓与苹果一样(同属于蔷薇目蔷薇科),它们都有花两性,辐射对称,花瓣5片等特征,但是其果实以及植株形态却是千差万别。豆天蛾不管是从幼虫形态还是成虫形态上来看,都具有其独特的特征。例如豆天蛾胸部背侧中央有1条黑褐色纵线,前翅为较单纯的褐色,翅膀末端有1个小型的三角形黑褐色斑;而同属于天蛾科的烟草天蛾头及胸部有较细的暗褐色背线,腹部背面各节后缘有棕黑色横纹,前翅狭长,前缘近中央有较大的半圆形褐绿色斑;后翅暗褐色,基部上方有超色斑。所以外表上的小小差异,其实体现出的是个体繁殖以及群体繁衍上的根本区别。同属天蛾科的昆虫不仅在形态特征上存在较大差异,同时在取食习性上,也存在差异。例如豆天蛾主要分布于我国黄淮流域和长江流域及华南地区,主要危害大豆、绿豆、豇豆、刺槐、洋槐、藤萝及葛属、黎豆属等植物,而同为天蛾科的烟草天蛾则主要生活在美洲,主要以茄科植物的叶子和茎为食。取食习性的不同,暗示着体内消化系统所产生的酶和受体蛋白不同。而消化道中产生的酶是Bt基因起作用的关键点,只有能够与特异性Bt蛋白结合的酶或受体蛋白,才有可能使得某个Bt基因对该害虫具有抗虫效果。越来越多的研究表明,同目不同科、甚至同科不同种的昆虫对同种Bt蛋白的敏感性表现不同。例如Cry2Ab蛋白对夜蛾科的铃虫Helicoverpa armigera Hubner具有高毒力,而对同属夜蛾科的甜菜夜蛾Spodoptera exigua Hiibner却没有杀虫活性。Cry2Ac蛋白表现出对棉铃虫Helicoverpa armigera Hubner和粉纹夜蛾cabbage looper具有高毒力,但是对甜菜夜蛾Spodoptera exigua Hiibner仅表现出抑制作用。上述案例充分说明了Bt蛋白与昆虫体内酶和受体的相互作用方式是复杂且难以预料的;同时还表明同一种昆虫(甜菜夜蛾)对不同的Bt蛋白(Cry2Ab和Cry2Ac)的反应也是不同的。这是因为对于来自苏云金芽孢杆菌内毒素的命名依据为氨基酸序列的相似性,而与其杀虫活性无关,即某一Bt蛋白(如Cry2Ac)对某一昆虫(如甜菜夜蛾)具有杀虫活性,对于同属一大类的其它蛋白(如Cry2Ab)对该昆虫的活性不具有必然性启示。
[0040] 与此同时,在苏云金芽孢杆菌的研究界,有一个普遍的认识,认为Cry2毒素对昆虫的作用方式是独特的,其与Cry1A型内毒素不仅在氨基酸序列上没有显著的同源性,并且还表现出不同的结合和孔形成特性,因此在已知Cry2毒素与Cry1A型内毒素组合使用以控制/防治Cry1A内毒素的靶标害虫时,无法确定Cry2毒素对所述靶标害虫是否具有控制/防治作用。
[0041] 本发明中所述的植物、植物组织或植物细胞的基因组,是指植物、植物组织或植物细胞内的任何遗传物质,且包括细胞核和质体和线粒体基因组。
[0042] 本发明中所述的多核苷酸和/或核苷酸形成完整“基因”,在所需宿主细胞中编码蛋白质或多肽。本领域技术人员很容易认识到,可以将本发明的多核苷酸和/或核苷酸置于目的宿主中的调控序列控制下。
[0043] 本领域技术人员所熟知的,DNA典型的以双链形式存在。在这种排列中,一条链与另一条链互补,反之亦然。由于DNA在植物中复制产生了DNA的其它互补链。这样,本发明包括对序列表中示例的多核苷酸及其互补链的使用。本领域常使用的“编码链”指与反义链结合的链。为了在体内表达蛋白质,典型将DNA的一条链转录为一条mRNA的互补链,它作为模板翻译出蛋白质。mRNA实际上是从DNA的“反义”链转录的。“有义”或“编码”链有一系列密码子(密码子是三个核苷酸,一次读三个可以产生特定氨基酸),其可作为开放阅读框(ORF)阅读来形成目的蛋白质或肽。本发明还包括与示例的DNA有相当功能的RNA。
[0044] 本发明中核酸分子或其片段在严格条件下与本发明Cry2Ab基因杂交。任何常规的核酸杂交或扩增方法都可以用于鉴定本发明Cry2Ab基因的存在。核酸分子或其片段在一定情况下能够与其他核酸分子进行特异性杂交。本发明中,如果两个核酸分子能形成反平行的双链核酸结构,就可以说这两个核酸分子彼此间能够进行特异性杂交。如果两个核酸分子显示出完全的互补性,则称其中一个核酸分子是另一个核酸分子的“互补物”。本发明中,当一个核酸分子的每一个核苷酸都与另一个核酸分子的对应核苷酸互补时,则称这两个核酸分子显示出“完全互补性”。如果两个核酸分子能够以足够的稳定性相互杂交从而使它们在至少常规的“低度严格”条件下退火且彼此结合,则称这两个核酸分子为“最低程度互补”。类似地,如果两个核酸分子能够以足够的稳定性相互杂交从而使它们在常规的“高度严格”条件下退火且彼此结合,则称这两个核酸分子具有“互补性”。从完全互补性中偏离是可以允许的,只要这种偏离不完全阻止两个分子形成双链结构。为了使一个核酸分子能够作为引物或探针,仅需保证其在序列上具有充分的互补性,以使得在所采用的特定溶剂和盐浓度下能形成稳定的双链结构。
[0045] 本发明中,基本同源的序列是一段核酸分子,该核酸分子在高度严格条件下能够和相匹配的另一段核酸分子的互补链发生特异性杂交。促进DNA杂交的适合的严格条件,例如,大约在45℃条件下用6.0×氯化钠/柠檬酸钠(SSC)处理,然后在50℃条件下用2.0×SSC洗涤,这些条件对本领域技术人员是公知的。例如,在洗涤步骤中的盐浓度可以选自低度严格条件的约2.0×SSC、50℃到高度严格条件的约0.2×SSC、50℃。此外,洗涤步骤中的温度条件可以从低度严格条件的室温约22℃,升高到高度严格条件的约65℃。温度条件和盐浓度可以都发生改变,也可以其中一个保持不变而另一个变量发生改变。优选地,本发明所述严格条件可为在6×SSC、0.5%SDS溶液中,在65℃下与SEQ ID NO:2发生特异性杂交,然后用2×SSC、0.1%SDS和1×SSC、0.1%SDS各洗膜1次。
[0046] 因此,具有抗虫活性并在严格条件下与本发明SEQ ID NO:2杂交的序列包括在本发明中。这些序列与本发明序列至少大约40%-50%同源,大约60%、65%或70%同源,甚至至少大约75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列同源性。
[0047] 本发明中所述的基因和蛋白质不但包括特定的示例序列,还包括保存了所述特定示例的蛋白质的杀虫活性特征的部分和/片段(包括与全长蛋白质相比在内和/或末端缺失)、变体、突变体、取代物(有替代氨基酸的蛋白质)、嵌合体和融合蛋白。所述“变体”或“变异”是指编码同一蛋白或编码有杀虫活性的等价蛋白的核苷酸序列。所述“等价蛋白”是指与权利要求的蛋白具有相同或基本相同的抗豆天蛾害虫的生物活性的蛋白。
[0048] 本发明中所述的DNA分子或蛋白序列的“片段”或“截短”是指涉及的原始DNA或蛋白序列(核苷酸或氨基酸)的一部分或其人工改造形式(例如适合植物表达的序列),前述序列的长度可存在变化,但长度足以确保(编码)蛋白质为昆虫毒素。
[0049] 使用标准技术可以修饰基因和容易的构建基因变异体。例如,本领域熟知制造点突变的技术。又例如美国专利号5605793描述了在随机断裂后使用DNA重装配产生其它分子多样性的方法。可以使用商业化核酸内切酶制造全长基因的片段,并且可以按照标准程序使用核酸外切酶。例如,可以使用酶诸如Bal31或定点诱变从这些基因的末端系统地切除核苷酸。还可以使用多种限制性内切酶获取编码活性片段的基因。可以使用蛋白酶直接获得这些毒素的活性片段。
[0050] 本发明可以从Bt分离物和/或DNA文库衍生出等价蛋白和/或编码这些等价蛋白的基因。有多种方法获取本发明的杀虫蛋白。例如,可以使用本发明公开和要求保护的杀虫蛋白的抗体从蛋白质混合物鉴定和分离其它蛋白。特别地,抗体可能是由蛋白最恒定和与其它Bt蛋白最不同的蛋白部分引起的。然后可以通过免疫沉淀、酶联免疫吸附测定(ELISA)或western印迹方法使用这些抗体专一地鉴定有特征活性的等价蛋白。可使用本领域标准程序容易的制备本发明中公开的蛋白或等价蛋白或这类蛋白的片段的抗体。然后可以从微生物中获得编码这些蛋白的基因。
[0051] 由于遗传密码子的丰余性,多种不同的DNA序列可以编码相同的氨基酸序列。产生这些编码相同或基本相同的蛋白的可替代DNA序列正在本领域技术人员的技术水平内。这些不同的DNA序列包括在本发明的范围内。所述“基本上相同的”序列是指有氨基酸取代、缺失、添加或插入但实质上不影响杀虫活性的序列,亦包括保留杀虫活性的片段。
[0052] 本发明中氨基酸序列的取代、缺失或添加是本领域的常规技术,优选这种氨基酸变化为:小的特性改变,即不显著影响蛋白的折叠和/或活性的保守氨基酸取代;小的缺失,通常约1-30个氨基酸的缺失;小的氨基或羧基端延伸,例如氨基端延伸一个甲硫氨酸残基;小的连接肽,例如约20-25个残基长。
[0053] 保守取代的实例是在下列氨基酸组内发生的取代:碱性氨基酸(如精氨酸、赖氨酸和组氨酸)、酸性氨基酸(如谷氨酸和天冬氨酸)、极性氨基酸(如谷氨酰胺、天冬酰胺)、疏水性氨基酸(如亮氨酸、异亮氨酸和缬氨酸)、芳香氨基酸(如苯丙氨酸、色氨酸和酪氨酸),以及小分子氨基酸(如甘氨酸、丙氨酸、丝氨酸、苏氨酸和甲硫氨酸)。通常不改变特定活性的那些氨基酸取代在本领域内是众所周知的,并且已由,例如,N.Neurath和R.L.Hill在1979年纽约学术出版社(AcademicPress)出版的《Protein》中进行了描述。最常见的互换有Ala/Ser,Val/Ile,Asp/Glu,Thu/Ser,Ala/Thr,Ser/Asn,Ala/Val,Ser/Gly,Tyr/Phe,Ala/Pro,Lys/Arg,Asp/Asn,Leu/Ile,Leu/Val,Ala/Glu和Asp/Gly,以及它们相反的互换。
[0054] 对于本领域的技术人员而言显而易见地,这种取代可以在对分子功能起重要作用的区域之外发生,而且仍产生活性多肽。对于由本发明的多肽,其活性必需的并因此选择不被取代的氨基酸残基,可以根据本领域已知的方法,如定点诱变或丙氨酸扫描诱变进行鉴定(如参见,Cunningham和Wells,1989,Science244:1081-1085)。后一技术是在分子中每一个带正电荷的残基处引入突变,检测所得突变分子的抗虫活性,从而确定对该分子活性而言重要的氨基酸残基。底物-酶相互作用位点也可以通过其三维结构的分析来测定,这种三维结构可由核磁共振分析、结晶学或光亲和标记等技术测定(参见,如deVos等,1992,Science255:306-312;Smith等,1992,J.Mol.Biol224:899-904;Wlodaver等,1992,FEBSLetters309:59-64)。
[0055] 在本发明中,Cry2Ab蛋白包括但不限于SEQ ID NO:1,与序列SEQ ID NO:1所示的氨基酸序列具有一定同源性的氨基酸序列也包括在本发明中。这些序列与本发明序列类似性/相同性典型的大于78%,优选的大于85%,更优选的大于90%,甚至更优选的大于95%,并且可以大于99%。也可以根据更特定的相同性和/或类似性范围定义本发明的优选的多核苷酸和蛋白质。例如与本发明示例的序列有78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的相同性和/或类似性。
[0056] 在本发明中,产生所述Cry2Ab蛋白的转基因植物包括但不限于MON89034转基因玉米事件和/或包含MON89034转基因玉米事件的植物材料(如在CN101495635A所描述的)、MON87751转基因大豆事件和/或包含MON87751转基因大豆事件的植物材料(如在CN105531376A所描述的)、或者MON15985转基因棉花事件和/或包含MON15985转基因棉花事件的植物材料(如在CN101413028B所描述的),其均可以实现本发明的方法和/或用途,即通过豆天蛾害虫至少与Cry2Ab蛋白接触以实现控制豆天蛾害虫的方法和/或用途。本领域技术人员所理解的,使上述转基因事件中的Cry2Ab蛋白在不同植物中表达亦能实现本发明的方法和/或用途。更具体地,所述Cry2Ab蛋白存在于至少产生所述Cry2Ab蛋白的转基因植物中,所述豆天蛾害虫通过摄食所述转基因植物的组织至少与所述Cry2Ab蛋白接触,接触后所述豆天蛾害虫生长受到抑制和/或导致死亡,以实现对豆天蛾危害植物的控制。
[0057] 本发明中所述调控序列包括但不限于启动子、转运肽、终止子、增强子、前导序列、内含子以及其它可操作地连接到所述Cry2Ab蛋白的调节序列。
[0058] 所述启动子为植物中可表达的启动子,所述的“植物中可表达的启动子”是指确保与其连接的编码序列在植物细胞内进行表达的启动子。植物中可表达的启动子可为组成型启动子。指导植物内组成型表达的启动子的示例包括但不限于,来源于花椰菜花叶病毒的35S启动子、拟南芥Ubi10启动子、玉米Ubi启动子、水稻GOS2基因的启动子等。备选地,植物中可表达的启动子可为组织特异的启动子,即该启动子在植物的一些组织内如在绿色组织中指导编码序列的表达水平高于植物的其他组织(可通过常规RNA试验进行测定),如PEP羧化酶启动子。备选地,植物中可表达的启动子可为创伤诱导启动子。创伤诱导启动子或指导创伤诱导的表达模式的启动子是指当植物经受机械或由昆虫啃食引起的创伤时,启动子调控下的编码序列的表达较正常生长条件下有显著提高。创伤诱导启动子的示例包括但不限于,马铃薯和西红柿的蛋白酶抑制基因(pinⅠ和pinⅡ)和玉米蛋白酶抑制基因(MPI)的启动子。
[0059] 所述转运肽(又称分泌信号序列或导向序列)是指导转基因产物到特定的细胞器或细胞区室,对受体蛋白质来说,所述转运肽可以是异源的,例如,利用编码叶绿体转运肽序列靶向叶绿体,或者利用‘KDEL’保留序列靶向内质网,或者利用大麦植物凝集素基因的CTPP靶向液泡。
[0060] 所述前导序列包含但不限于,小RNA病毒前导序列,如EMCV前导序列(脑心肌炎病毒5’非编码区);马铃薯Y病毒组前导序列,如MDMV(玉米矮缩花叶病毒)前导序列;人类免疫球蛋白质重链结合蛋白质(BiP);苜蓿花叶病毒的外壳蛋白质mRNA的不翻译前导序列(AMV RNA4);烟草花叶病毒(TMV)前导序列。
[0061] 所述增强子包含但不限于,花椰菜花叶病毒(CaMV)增强子、玄参花叶病毒(FMV)增强子、康乃馨化环病毒(CERV)增强子、木薯脉花叶病毒(CsVMV)增强子、紫茉莉花叶病毒(MMV)增强子、夜香树黄化曲叶病毒(CmYLCV)增强子、木尔坦棉花曲叶病毒(CLCuMV)、鸭跖草黄斑驳病毒(CoYMV)和花生褪绿线条花叶病毒(PCLSV)增强子。
[0062] 对于单子叶植物应用而言,所述内含子包含但不限于,玉米hsp70内含子、玉米泛素内含子、Adh内含子1、蔗糖合酶内含子或水稻Act1内含子。对于双子叶植物应用而言,所述内含子包含但不限于,CAT-1内含子、pKANNIBAL内含子、PIV2内含子和“超级泛素”内含子。
[0063] 所述终止子可以为在植物中起作用的适合多聚腺苷酸化信号序列,包括但不限于,来源于农杆菌(Agrobacterium tumefaciens)胭脂碱合成酶(NOS)基因的多聚腺苷酸化信号序列、来源于蛋白酶抑制剂Ⅱ(pinⅡ)基因的多聚腺苷酸化信号序列、来源于豌豆ssRUBISCO E9基因的多聚腺苷酸化信号序列和来源于α-微管蛋白(α-tubulin)基因的多聚腺苷酸化信号序列。
[0064] 本发明中所述“有效连接”表示核酸序列的联结,所述联结使得一条序列可提供对相连序列来说需要的功能。在本发明中所述“有效连接”可以为将启动子与感兴趣的序列相连,使得该感兴趣的序列的转录受到该启动子控制和调控。当感兴趣的序列编码蛋白并且想要获得该蛋白的表达时“有效连接”表示:启动子与所述序列相连,相连的方式使得得到的转录物高效翻译。如果启动子与编码序列的连接是转录物融合并且想要实现编码的蛋白的表达时,制造这样的连接,使得得到的转录物中第一翻译起始密码子是编码序列的起始密码子。备选地,如果启动子与编码序列的连接是翻译融合并且想要实现编码的蛋白的表达时,制造这样的连接,使得5’非翻译序列中含有的第一翻译起始密码子与启动子相连结,并且连接方式使得得到的翻译产物与编码想要的蛋白的翻译开放读码框的关系是符合读码框的。可以“有效连接”的核酸序列包括但不限于:提供基因表达功能的序列(即基因表达元件,例如启动子、5’非翻译区域、内含子、蛋白编码区域、3’非翻译区域、聚腺苷化位点和/或转录终止子)、提供DNA转移和/或整合功能的序列(即T-DNA边界序列、位点特异性重组酶识别位点、整合酶识别位点)、提供选择性功能的序列(即抗生素抗性标记物、生物合成基因)、提供可计分标记物功能的序列、体外或体内协助序列操作的序列(即多接头序列、位点特异性重组序列)和提供复制功能的序列(即细菌的复制起点、自主复制序列、着丝粒序列)。
[0065] 本发明中所述的“杀虫”或“抗虫”是指对农作物害虫是有毒的,从而实现“控制”和/或“防治”农作物害虫。优选地,所述“杀虫”或“抗虫”是指杀死农作物害虫。更具体地,目标昆虫是豆天蛾害虫。
[0066] 本发明中Cry2Ab蛋白对豆天蛾害虫具有毒性。本发明中的植物,特别是大豆,在其基因组中含有外源DNA,所述外源DNA包含编码Cry2Ab蛋白的核苷酸序列,豆天蛾害虫通过摄食植物组织与该蛋白接触,接触后豆天蛾害虫生长受到抑制和/或导致死亡。抑制是指致死或亚致死。同时,植物在形态上应是正常的,且可在常规方法下培养以用于产物的消耗和/或生成。此外,该植物可基本消除对化学或生物杀虫剂的需要(所述化学或生物杀虫剂为针对Cry2Ab蛋白所靶向的豆天蛾害虫的杀虫剂)。
[0067] 植物材料中杀虫晶体蛋白(ICP)的表达水平可通过本领域内所描述的多种方法进行检测,例如通过应用特异引物对组织内产生的编码杀虫蛋白质的mRNA进行定量,或直接特异性检测产生的杀虫蛋白质的量。
[0068] 可以应用不同的试验测定植物中ICP的杀虫效果。本发明中目标昆虫主要为豆天蛾。
[0069] 本发明中,所述Cry2Ab蛋白可以具有序列表中SEQ ID NO:1所示的氨基酸序列。除了包含Cry2Ab蛋白的编码区外,也可包含其他元件,例如编码选择性标记的蛋白质。
[0070] 此外,包含编码本发明Cry2Ab蛋白的核苷酸序列的表达盒在植物中还可以与至少一种编码除草剂抗性基因的蛋白质一起表达,所述除草剂抗性基因包括但不限于,草铵膦抗性基因(如bar基因、pat基因)、苯敌草抗性基因(如pmph基因)、草甘膦抗性基因(如EPSPS基因)、溴苯腈(bromoxynil)抗性基因、磺酰脲抗性基因、对除草剂茅草枯的抗性基因、对氨腈的抗性基因或谷氨酰胺合成酶抑制剂(如PPT)的抗性基因,从而获得既具有高杀虫活性、又具有除草剂抗性的转基因植物。
[0071] 本发明中,将外源DNA导入植物,如将编码所述Cry2Ab蛋白的基因或表达盒或重组载体导入植物细胞,常规的转化方法包括但不限于,农杆菌介导的转化、微量发射轰击、直接将DNA摄入原生质体、电穿孔或晶须介导的DNA导入。
[0072] 本发明提供了一种控制害虫的方法,具有以下优点:
[0073] 1、内因防治。现有技术主要是通过外部作用即外因来控制豆天蛾害虫的危害,如农业防治、化学防治、物理防治和生物防治;而本发明是通过植物体内产生能够抑制豆天蛾生长的Cry2Ab蛋白来控制豆天蛾害虫的,即通过内因来防治。
[0074] 2、无污染、无残留。现有技术使用的化学防治方法虽然对控制豆天蛾害虫的危害起到了一定作用,但同时也对人、畜和农田生态系统带来了污染、破坏和残留;使用本发明控制豆天蛾害虫的方法,可以消除上述不良后果。
[0075] 3、全生育期防治。现有技术使用的控制豆天蛾害虫的方法都是阶段性的,而本发明是对植物进行全生育期的保护,转基因植物(Cry2Ab蛋白)从发芽、生长,一直到开花、结果,都可以抵抗豆天蛾的侵害。
[0076] 4、全植株防治。现有技术使用的控制豆天蛾害虫的方法大多是局部性的,如叶面喷施;而本发明是对整个植株进行保护,如转基因植物(Cry2Ab蛋白)的根、叶片、茎秆、果实、雄穗、雌穗、花药等都是可以抵抗豆天蛾侵害的。
[0077] 5、效果稳定。现有技术使用的频振式杀虫灯不仅需要每天及时清理高压电网的污垢,而且在雷雨天不能使用;本发明是使所述Cry2Ab蛋白在植物体内进行表达,有效地克服了频振式杀虫灯的效果受外界因素影响的缺陷,且本发明转基因植物(Cry2Ab蛋白)的防治效果在不同地点、不同时间、不同遗传背景也都是稳定一致的。
[0078] 6、简单、方便、经济。现有技术使用的频振式杀虫灯的一次性投入较大,且操作不当还有电击伤人的危险;本发明只需种植能够表达Cry2Ab蛋白的转基因植物即可,而不需要采用其它措施,从而节省了大量人力、物力和财力。
[0079] 7、效果彻底。现有技术使用的控制豆天蛾害虫的方法,其效果是不彻底的,只起到减轻作用;而本发明转基因植物(Cry2Ab蛋白)对豆天蛾初孵幼虫的防治效果几乎为百分之百,极个别存活幼虫也基本上停止发育,3天后幼虫基本仍处于初孵状态,都是明显的发育不良,且已停止发育,在田间自然环境中无法存活,而转基因植物大体上只受到轻微损伤。
[0080] 下面通过附图实施例,对本发明的技术方案做进一步的详细描述。

附图说明

[0081] 图1为本发明控制害虫的方法的含有Cry2Ab核苷酸序列的重组克隆载体DBN01-T构建流程图
[0082] 图2为本发明控制害虫的方法的含有Cry2Ab核苷酸序列的重组表达载体DBN100033建流程图;
[0083] 图3为本发明控制害虫的方法的转基因大豆植株接种豆天蛾的抗虫效果图。

具体实施方式

[0084] 下面通过具体实施例进一步说明本发明杀虫蛋白的用途的技术方案。
[0085] 第一实施例、基因的获得和合成
[0086] 1、获得核苷酸序列
[0087] Cry2Ab杀虫蛋白质的氨基酸序列(634个氨基酸),如序列表中SEQ ID NO:1所示;编码相应于所述Cry2Ab杀虫蛋白质的氨基酸序列的Cry2Ab核苷酸序列(1905个核苷酸),如序列表中SEQ ID NO:2所示。
[0088] Cry1Ac杀虫蛋白质的氨基酸序列(1178个氨基酸),如序列表中SEQ ID NO:3所示;编码相应于所述Cry1Ac杀虫蛋白质的氨基酸序列的Cry1Ac核苷酸序列(3537个核苷酸),如序列表中SEQ ID NO:4所示。
[0089] Cry1A.105杀虫蛋白质的氨基酸序列(1177个氨基酸),如序列表中SEQ ID NO:5所示;编码相应于所述Cry1A.105杀虫蛋白质的氨基酸序列的Cry1A.105核苷酸序列(3534个核苷酸),如序列表中SEQ ID NO:6所示。
[0090] 2、合成上述核苷酸序列
[0091] 合成所述Cry2Ab核苷酸序列(如序列表中SEQ ID NO:2所示)、所述Cry1Ac核苷酸序列(如序列表中SEQ ID NO:4所示)和所述Cry1A.105核苷酸序列(如序列表中SEQ ID NO:6所示);合成的所述Cry2Ab核苷酸序列(SEQ ID NO:2)的5’端还连接有Nco I酶切位点,所述Cry2Ab核苷酸序列(SEQ ID NO:2)的3’端还连接有Spe I酶切位点;合成的所述Cry1Ac核苷酸序列(SEQ ID NO:4)的5’端还连接有Sac I酶切位点,所述Cry1Ac核苷酸序列(SEQ ID NO:4)的3’端还连接有Kas I酶切位点;合成的所述Cry1A.105核苷酸序列(SEQ ID NO:6)的
5’端还连接有Nco I酶切位点,所述Cry1A.105核苷酸序列(SEQ ID NO:6)的3’端还连接有Hind III酶切位点。
[0092] 第二实施例、重组表达载体的构建及重组表达载体转化农杆菌
[0093] 1、构建含有Cry2Ab基因的重组克隆载体
[0094] 将合成的Cry2Ab核苷酸序列连入克隆载体pGEM-T(Promega,Madison,USA,CAT:A3600)上,操作步骤按Promega公司产品pGEM-T载体说明书进行,得到重组克隆载体DBN01-T,其构建流程如图1所示(其中,Amp表示氨苄青霉素抗性基因;f1表示噬菌体f1的复制起点;LacZ为LacZ起始密码子;SP6为SP6RNA聚合酶启动子;T7为T7RNA聚合酶启动子;Cry2Ab为Cry2Ab核苷酸序列(SEQ ID NO:2);MCS为多克隆位点)。
[0095] 然后将重组克隆载体DBN01-T用热激方法转化大肠杆菌T1感受态细胞(Transgen,Beijing,China,CAT:CD501),其热激条件为:50μL大肠杆菌T1感受态细胞、10μL质粒DNA(重组克隆载体DBN01-T),42℃水浴30s;37℃振荡培养1h(100rpm转速下摇床摇动),在表面涂有IPTG(异丙基硫代-β-D-半乳糖苷)和X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)的氨苄青霉素(100mg/L)的LB平板(胰蛋白胨10g/L、酵母提取物5g/L、NaCl 10g/L、琼脂15g/L,用NaOH调pH至7.5)上生长过夜。挑取白色菌落,在LB液体培养基(胰蛋白胨10g/L、酵母提取物5g/L、NaCl 10g/L、氨苄青霉素100mg/L,用NaOH调pH至7.5)中于温度37℃条件下培养过夜。
碱法提取其质粒:将菌液在12000rpm转速下离心1min,去上清液,沉淀菌体用100μL预冷的溶液I(25mM Tris-HCl、10mM EDTA(乙二胺四乙酸)、50mM葡萄糖,pH8.0)悬浮;加入200μL新配制的溶液II(0.2M NaOH、1%SDS(十二烷基硫酸钠)),将管子颠倒4次,混合,置冰上3-
5min;加入150μL冰冷的溶液III(3M醋酸、5M醋酸),立即充分混匀,冰上放置5-10min;于温度4℃、转速12000rpm条件下离心5min,在上清液中加入2倍体积无水乙醇,混匀后室温放置5min;于温度4℃、转速12000rpm条件下离心5min,弃上清液,沉淀用浓度(V/V)为70%的乙醇洗涤后晾干;加入30μL含RNase(20μg/ml)的TE(10mM Tris-HCl、1mM EDTA,pH8.0)溶解沉淀;于温度37℃下水浴30min,消化RNA;于温度-20℃保存备用。
[0096] 提取的质粒经NcoI I和Spe I酶切鉴定后,对阳性克隆进行测序验证,结果表明重组克隆载体DBN01-T中插入的所述Cry2Ab核苷酸序列为序列表中SEQ ID NO:2所示的核苷酸序列,即Cry2Ab核苷酸序列正确插入。
[0097] 按照上述构建重组克隆载体DBN01-T的方法,将合成的所述Cry1Ac核苷酸序列连入克隆载体pGEM-T上,得到重组克隆载体DBN02-T,其中,Cry1Ac为Cry1Ac核苷酸序列(SEQ ID NO:3)。酶切和测序验证重组克隆载体DBN02-T中所述Cry1Ac核苷酸序列正确插入。
[0098] 按照上述构建重组克隆载体DBN01-T的方法,将合成的所述Cry1A.105核苷酸序列连入克隆载体pGEM-T上,得到重组克隆载体DBN03-T,其中,Cry1A.105为Cry1A.105核苷酸序列(SEQ ID NO:6)。酶切和测序验证重组克隆载体DBN03-T中所述Cry1A.105核苷酸序列正确插入。
[0099] 2、构建含有Cry2Ab基因的重组表达载体
[0100] 用限制性内切酶Nco I和Spe I分别酶切重组克隆载体DBN01-T和表达载体DBNBC-01(载体骨架:pCAMBIA2301(CAMBIA机构可以提供)),将切下的Cry2Ab核苷酸序列片段插到表达载体DBNBC-01的Nco I和Spe I位点之间,利用常规的酶切方法构建载体是本领域技术人员所熟知的,构建成重组表达载体DBN100033,其构建流程如图2所示(Kan:卡那霉素基因;RB:右边界;prAtUbi10:拟南芥泛素(Ubiquitin)基因启动子(SEQ ID NO:7);Cry2Ab:
Cry2Ab核苷酸序列(SEQ ID NO:2);tNos:胭脂碱合成酶基因的终止子(SEQ ID NO:8);PAT:
草丁膦乙酰转移酶基因(SEQ ID NO:9);LB:左边界)。
[0101] 将重组表达载体DBN100033用热激方法转化大肠杆菌T1感受态细胞,其热激条件为:50μL大肠杆菌T1感受态细胞、10μL质粒DNA(重组表达载体DBN100033),42℃水浴30s;37℃振荡培养1h(100rpm转速下摇床摇动);然后在含50mg/L卡那霉素(Kanamycin)的LB固体平板(胰蛋白胨10g/L、酵母提取物5g/L、NaCl 10g/L、琼脂15g/L,用NaOH调pH至7.5)上于温度37℃条件下培养12h,挑取白色菌落,在LB液体培养基(胰蛋白胨10g/L、酵母提取物5g/L、NaCl 10g/L、卡那霉素50mg/L,用NaOH调pH至7.5)中于温度37℃条件下培养过夜。碱法提取其质粒。将提取的质粒用限制性内切酶NcoI和Spe I酶切后鉴定,并将阳性克隆进行测序鉴定,结果表明重组表达载体DBN100033在Nco I和Spe I位点间的核苷酸序列为序列表中SEQ ID NO:2所示核苷酸序列,即Cry2Ab核苷酸序列。
[0102] 按照上述构建重组表达载体DBN100033的方法,将Nco I和Spe I、Sac I和Kas I分别酶切重组克隆载体DBN01-T和DBN02-T切下的所述Cry2Ab核苷酸序列和Cry1Ac核苷酸序列插入表达载体DBNBC-01,得到重组表达载体DBN100075。酶切和测序验证重组表达载体DBN100075中的核苷酸序列含有为序列表中SEQ ID NO:2和SEQ ID NO:4所示核苷酸序列,即Cry2Ab核苷酸序列和Cry1Ac核苷酸序列,所述Cry2Ab核苷酸序列和所述Cry1Ac核苷酸序列可以连接所述prUbi启动子和tNos终止子。
[0103] 按照上述构建重组表达载体DBN100033的方法,将Nco I和Spe I、Nco I和Hind III分别酶切重组克隆载体DBN01-T和DBN03-T切下的所述Cry2Ab核苷酸序列和Cry1A.105核苷酸序列插入表达载体DBNBC-01,得到重组表达载体DBN100076。酶切和测序验证重组表达载体DBN100076中的核苷酸序列含有为序列表中SEQ ID NO:2和SEQ ID NO:6所示核苷酸序列,即Cry2Ab核苷酸序列和Cry1A.105核苷酸序列,所述Cry2Ab核苷酸序列和所述Cry1A.105核苷酸序列可以连接所述prAtUbi10启动子和tNos终止子。
[0104] 3、重组表达载体转化农杆菌
[0105] 对己经构建正确的重组表达载体DBN100033、DBN100075和DBN100076用液氮法转化到农杆菌LBA4404(Invitrgen,Chicago,USA,CAT:18313-015)中,其转化条件为:100μL农杆菌LBA4404、3μL质粒DNA(重组表达载体);置于液氮中10min,37℃温水浴10min;将转化后的农杆菌LBA4404接种于LB试管中于温度28℃、转速为200rpm条件下培养2h,涂于含50mg/L的利福平(Rifampicin)和100mg/L的卡那霉素的LB平板上直至长出阳性单克隆,挑取单克隆培养并提取其质粒,用限制性内切酶对重组表达载体DBN100033、DBN100075和DBN100076酶切后进行酶切验证,结果表明重组表达载体DBN100033、DBN100075和DBN100076结构完全正确。
[0106] 第三实施例、转基因植株的获得
[0107] 1、获得转基因大豆植株
[0108] 按照常规采用的农杆菌侵染法,将无菌培养的大豆品种中黄13的子叶节组织与第二实施例中3所述的农杆菌共培养,以将第二实施例中2构建的重组表达载体DBN100033、DBN100075和DBN100076的T-DNA(包括拟南芥泛素基因的启动子序列prAtUbi10、Cry2Ab核苷酸序列、Cry1Ac核苷酸序列、Cry1A.105核苷酸序列、PAT基因和tNos终止子序列)转入到大豆染色体组中,获得了转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株和转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株,同时以野生型大豆植株作为对照。
[0109] 对于农杆菌介导的大豆转化,简要地,将成熟的大豆种子在大豆萌发培养基(B5盐3.1g/L、B5维他命、蔗糖20g/L、琼脂8g/L,pH5.6)中进行萌发,将种子接种于萌发培养基上,按以下条件培养:温度25±1℃;光周期(光/暗)为16/8h。萌发4-6天后取鲜绿的子叶节处膨大的大豆无菌苗,在子叶节下3-4mm处切去下胚轴,纵向切开子叶,去顶芽、侧芽和种子根。
用解剖刀的刀背在子叶节处进行创伤,用农杆菌悬浮液接触创伤过的子叶节组织,其中农杆菌能够将Cry2Ab基因传递至创伤过的子叶节组织(步骤1:侵染步骤)在此步骤中,子叶节组织优选地浸入农杆菌悬浮液(OD660=0.5-0.8,侵染培养基(MS盐2.15g/L、B5维他命、蔗糖
20g/L、葡萄糖10g/L、乙酰丁香(AS)40mg/L、2-吗啉乙磺酸(MES)4g/L、玉米素(ZT)2mg/L,pH5.3)中以启动接种。子叶节组织与农杆菌共培养一段时期(3天)(步骤2:共培养步骤)。优选地,子叶节组织在侵染步骤后在固体培养基(MS盐4.3g/L、B5维他命、蔗糖20g/L、葡萄糖
10g/L、MES 4g/L、ZT 2mg/L、琼脂8g/L,pH5.6)上培养。在此共培养阶段后,可以有一个选择性的“恢复”步骤。在“恢复”步骤中,恢复培养基(B5盐3.1g/L、B5维他命、MES 1g/L、蔗糖
30g/L、ZT 2mg/L、琼脂8g/L、头孢霉素150mg/L、谷氨酸100mg/L、天冬氨酸100mg/L,pH5.6)中至少存在一种己知抑制农杆菌生长的抗生素(头孢霉素),不添加植物转化体的选择剂(步骤3:恢复步骤)。优选地,子叶节再生的组织块在有抗生素但没有选择剂的固体培养基上培养,以消除农杆菌并为侵染细胞提供恢复期。接着,子叶节再生的组织块在含选择剂(草丁膦)的培养基上培养并选择生长着的转化愈伤组织(步骤4:选择步骤)。优选地,子叶节再生的组织块在有选择剂的筛选固体培养基(B5盐3.1g/L、B5维他命、MES 1g/L、蔗糖
30g/L、6-苄基腺嘌呤(6-BAP)1mg/L、琼脂8g/L、头孢霉素150mg/L、谷氨酸100mg/L、天冬氨酸100mg/L、草丁膦6mg/L,pH5.6)上培养,导致转化的细胞选择性生长。然后,转化的细胞再生成植物(步骤5:再生步骤),优选地,在含选择剂的培养基上生长的子叶节再生的组织块在固体培养基(B5分化培养基和B5生根培养基)上培养以再生植物。
[0110] 筛选得到的抗性组织块转移到所述B5分化培养基(B5盐3.1g/L、B5维他命、MES 1g/L、蔗糖30g/L、ZT 1mg/L、琼脂8g/L、头孢霉素150mg/L、谷氨酸50mg/L、天冬氨酸50mg/L、赤霉素1mg/L、生长素1mg/L、草丁膦6mg/L,pH5.6)上,25℃下培养分化。分化出来的小苗转移到所述B5生根培养基(B5盐3.1g/L、B5维他命、MES 1g/L、蔗糖30g/L、琼脂8g/L、头孢霉素
150mg/L、吲哚-3-丁酸(IBA)1mg/L),在生根培养上,25℃下培养至约10cm高,移至温室培养至结实。在温室中,每天于26℃下培养16h,再于20℃下培养8h。
[0111] 第四实施例、用TaqMan验证转基因植株
[0112] 分别取转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株和转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株的叶片各约100mg作为样品,用Qiagen的DNeasy Plant Maxi Kit提取其基因组DNA,通过Taqman探针荧光定量PCR方法检测PAT基因的拷贝数以确定Cry2Ab基因、Cry1Ac基因和Cry1A.105基因的拷贝数。同时以野生型大豆植株作为对照,按照上述方法进行检测分析。实验设3次重复,取平均值。
[0113] 检测PAT基因拷贝数的具体方法如下:
[0114] 步骤11、分别取转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株、转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株和野生型大豆植株的叶片各100mg,分别在研钵中用液氮研成匀浆,每个样品取3个重复;
[0115] 步骤12、使用Qiagen的DNeasy Plant Mini Kit提取上述样品的基因组DNA,具体方法参考其产品说明书;
[0116] 步骤13、用NanoDrop 2000(Thermo Scientific)测定上述样品的基因组DNA浓度;
[0117] 步骤14、调整上述样品的基因组DNA浓度至同一浓度值,所述浓度值的范围为80-100ng/μL;
[0118] 步骤15、采用Taqman探针荧光定量PCR方法鉴定样品的拷贝数,以经过鉴定已知拷贝数的样品作为标准品,以野生型大豆植株的样品作为对照,每个样品3个重复,取其平均值;荧光定量PCR引物和探针序列分别是:
[0119] 以下引物和探针用来检测PAT核苷酸序列:
[0120] 引物1:GAGGGTGTTGTGGCTGGTATTG如序列表中SEQ ID NO:10所示;
[0121] 引物2:TCTCAACTGTCCAATCGTAAGCG如序列表中SEQ ID NO:11所示;
[0122] 探针1:CTTACGCTGGGCCCTGGAAGGCTAG如序列表中SEQ ID NO:12所示;
[0123] PCR反应体系为:
[0124]
[0125] 所述50×引物/探针混合物包含1mM浓度的每种引物各45μL,100μM浓度的探针50μL和860μL 1×TE缓冲液,并且在4℃,贮藏在琥珀试管中。
[0126] PCR反应条件为:
[0127]
[0128] 利用SDS2.3软件(Applied Biosystems)分析数据。
[0129] 实验结果表明,Cry2Ab核苷酸序列、Cry2Ab-Cry1Ac核苷酸序列和Cry2Ab-Cry1A.105核苷酸序列己整合到所检测的大豆植株的染色体组中,而且转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株和转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株均获得了单拷贝的转基因大豆植株。
[0130] 第五实施例、转基因大豆植株的抗虫效果检测
[0131] 将转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株、转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株、野生型大豆植株和经Taqman鉴定为非转基因的大豆植株对豆天蛾进行抗虫效果检测。
[0132] 分别取转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株和转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株、野生型大豆植株和经Taqman鉴定为非转基因的大豆植株(三叶期)的新鲜叶片,用无菌水冲洗干净并用纱布将叶片上的水吸干,同时剪成约2cm×2cm的正方形,取1片剪后的正方形叶片放入圆形塑料培养皿底部的保湿滤纸上,所述滤纸用蒸馏水润湿,每个培养皿中放5头豆天蛾(初孵幼虫)后加盖,在温度25-28℃、相对湿度70%-80%、光周期(光/暗)16:8的条件下放置3天后,根据豆天蛾幼虫发育进度、死亡率和叶片损伤率三项指标,获得抗性总分(满分300分):抗性总分=100×死亡率+[100×死亡率+90×(初孵虫数/接虫总数)+60×(初孵-阴性对照虫数/接虫总数)+10×(阴性对照虫数/接虫总数)]+100×(1-叶片损伤率)。转入Cry2Ab核苷酸序列的共3个转化事件株系(S1、S2和S3),转入Cry2Ab-Cry1Ac核苷酸序列的共3个转化事件株系(S4、S5、S6),转入Cry2Ab-Cry1A.105核苷酸序列的共3个转化事件株系(S7、S8、S9),经Taqman鉴定为非转基因的(NGM)共1个株系,野生型的(CK)共1个株系;从每个株系选3株进行测试,每株重复
6次。结果如表1和图3所示。
[0133] 表1、转基因大豆植株接种豆天蛾的抗虫实验结果
[0134]
[0135] 表1的结果表明:转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株和转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株对豆天蛾具有较好的杀虫效果,豆天蛾的平均死亡率在55%以上,其抗性总分基本上均在260分以上;而经Taqman鉴定为非转基因的大豆植株和野生型大豆植株对豆天蛾均无致死或抑制作用,抗性总分一般在50左右。
[0136] 图3的结果表明:与野生型大豆植株相比,转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株和转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株可以造成豆天蛾初孵幼虫的大量死亡,且对少量存活幼虫发育进度造成明显的抑制,生长发育迟缓,同时表现出很弱的生命力,在自然环境下一般无法存活;且转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株和转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株大体上只受到轻微损伤,其叶片损伤率均在5%以下。
[0137] 由此证明转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株和转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株显示出高抗豆天蛾的活性,这种活性足以对豆天蛾的生长产生不良效应从而使其在田间得以控制。
[0138] 上述实验结果还表明:转入Cry2Ab核苷酸序列的大豆植株、转入Cry2Ab-Cry1Ac核苷酸序列的大豆植株和转入Cry2Ab-Cry1A.105核苷酸序列的大豆植株对豆天蛾的控制/防治显然是因为植物本身可产生Cry2Ab蛋白,所以,本领域技术人员熟知的,根据Cry2Ab蛋白对豆天蛾的毒杀作用,本发明中转入Cry2Ab蛋白的植株还可以产生至少一种不同于Cry2Ab蛋白的第二种杀虫蛋白质,如Vip类蛋白或Cry类蛋白。
[0139] 综上所述,本发明杀虫蛋白的用途通过植物体内产生能够杀死豆天蛾的Cry2Ab蛋白来控制豆天蛾害虫;与现有技术使用的农业防治方法、化学防治方法、物理防治方法和生物防治方法相比,本发明对植物进行全生育期、全植株的保护以防治豆天蛾害虫的侵害,且无污染、无残留,效果稳定、彻底,简单、方便、经济。
[0140] 最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈