首页 / 专利库 / 天文学 / 深空网 / 基于行星借力的水星交会脉冲轨道优化设计方法

基于行星借星交会脉冲轨道优化设计方法

阅读:504发布:2020-05-12

专利汇可以提供基于行星借星交会脉冲轨道优化设计方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于行星借 力 的 水 星交会脉冲轨道优化设计方法,包括如下步骤:建立平面内椭圆型的地球、金星和水星解析星历模型与 相位 自由轨道模型,设定探测器从地球出发后,通过对金星进行2次借力到达水星;在一定的范围内离散化发射相位和发射速度形成一系列网格点,以每个网格点为初始条件计算地球到水星的交会轨道,绘制水星交会速度等高线图;利用水星交会速度等高线图,选取最优发射相位和发射速度,利用行星解析星历模型,计算得到地球到水星的交会轨道。本发明基于行星相位自由轨道模型提出的一种网格化优化方法,显著地降低了水星交会脉冲轨道优化设计难度。,下面是基于行星借星交会脉冲轨道优化设计方法专利的具体信息内容。

1.一种基于行星借星交会脉冲轨道优化设计方法,其特征在于,包括如下步骤:
步骤1、建立平面内椭圆型的地球、金星和水星解析星历模型与相位自由轨道模型,设定探测器从地球出发后,通过对金星进行2次借力到达水星;
步骤2、在一定的范围内离散化发射相位和发射速度形成一系列网格点,以每个网格点为初始条件计算地球到水星的交会轨道,绘制水星交会速度等高线图;
步骤3、利用水星交会速度等高线图,选取最优发射相位和发射速度,然后利用步骤1中的行星解析星历模型,计算得到地球到水星的交会轨道。
2.根据权利要求1所述的基于行星借力的水星交会脉冲轨道优化设计方法,其特征在于:步骤1具体包括:
步骤101:以某一历元时刻的轨道根数为基准,设定地球、金星和水星的轨道倾为零,建立平面内椭圆型的行星星解析星历模型;
步骤102:在该星历模型的基础上,假设任意时刻行星可在其轨道上任意点出现,构建以行星平近点角为独立变量的行星相位自由轨道模型;
步骤103:设定借力序列为地球-金星-金星-水星,其中第1次金星借力采用1:1共振飞越,第2次金星借力按照最低允许高度300km飞越。
3.根据权利要求1所述的基于行星借力的水星交会脉冲轨道优化设计方法,其特征在于:步骤2具体包括:
步骤201:假定发射速度与地球速度相反,在一定的范围内对发射相位和发射速度进行离散化,得到一系列网格点;
步骤202:以每个网格点为初始条件,利用行星相位自由轨道模型和探测器与行星轨道相交算法计算地球到金星的转移轨道,实现对金星的1:1共振借力;利用行星共振借力轨道算法计算和行星借力模型,计算金星到金星的转移轨道以及金星到水星的转移轨道,获得水星交会速度;
步骤203:完成所有网格点对应的转移轨道计算,绘制水星交会速度等高线图。
4.根据权利要求1所述的基于行星借力的水星交会脉冲轨道优化设计方法,其特征在于:步骤3具体包括:
步骤301:根据水星交会速度等高线图,选取最小交会速度对应的最优发射相位和发射速度,得到发射相位、借力天体相位以及水星交会相位的最优相对相位;进一步利用行星星解析星历模型计算,计算给定发射年份的具体发射时刻、发射位置和发射速度;
步骤302:设定地球到金星转移轨道的深空机动位于第1个近日点,以深空机动的脉冲速度为优化目标,利用多圈兰伯特算法优化计算转移圈数,计算地球到金星的转移轨道;紧接着利用行星共振借力算法,计算金星到进行的共振借力转移轨道;
步骤303:设定第2次金星借力的飞越高度为300km,计算该次借力后探测器的日心轨道;以深空机动的脉冲速度为优化目标,对深空机动位置的真近点角和转移圈数进行优化计算得到金星到水星的转移轨道。

说明书全文

基于行星借星交会脉冲轨道优化设计方法

技术领域

[0001] 本发明涉及深空探测轨道技术领域,尤其涉及基于行星借力的水星交会脉冲轨道优化设计方法。

背景技术

[0002] 行星借力是一种行星际转移设计常用的轨道技术,可有效地降低燃料预算,在深空探测领域中具有重要的应用价值。水星探测包括飞越探测、环绕探测以及着陆探测等方式,都要求探测器与水星的交会速度必须足够小以满足任务设计要求。然而,在太阳引力的作用下,探测器飞向水星的脉冲轨道转移是一个加速运动的过程,必须对探测器进行制动以保证交会速度满足设计要求。行星借力是有效解决水星交会轨道设计的有效技术,但是由于水星靠近太阳,轨道周期短且呈现明显的椭圆形状,因此其交会轨道带有多次借力、多圈转移的特征,这给水星交会脉冲轨道的优化设计带来了技术挑战。现有技术多数依赖于基于群智能算法的数值优化方法进行水星交会脉冲轨道设计,采用实数型、离散型和二进制型等混合整数型变量建立优化模型,对优化算法提出很高的性能要求。然而此类技术的优化过程基本上是“摸黑”搜索最优轨道,缺乏对水星交会轨道机理的认识和利用,因而存在计算量大、收敛困难等缺点。

发明内容

[0003] 本发明的目的是针对水星交会脉冲轨道优化设计,提出一种由发射相位和发射速度描述的网格化设计方法,解决发射相位、借力天体相位以及水星交会相位的相对相位优化问题,为水星交会脉冲轨道的快速优化设计与分析提供有益的参考。
[0004] 根据本发明提供的一种基于行星借力的水星交会脉冲轨道优化设计方法,包括如下步骤:
[0005] 步骤1、建立平面内椭圆型的地球、金星和水星解析星历模型与相位自由轨道模型,设定探测器从地球出发后,通过对金星进行2次借力到达水星;
[0006] 步骤2、在一定的范围内离散化发射相位和发射速度形成一系列网格点,以每个网格点为初始条件计算地球到水星的交会轨道,绘制水星交会速度等高线图;
[0007] 步骤3、利用水星交会速度等高线图,选取最优发射相位和发射速度,然后利用步骤1中的行星解析星历模型,计算得到地球到水星的交会轨道。
[0008] 优选地,步骤1具体包括:
[0009] 步骤101:以某一历元时刻的轨道根数为基准,设定地球、金星和水星的轨道倾为零,建立平面内椭圆型的行星星解析星历模型;
[0010] 步骤102:在该星历模型的基础上,假设任意时刻行星可在其轨道上任意点出现,构建以行星平近点角为独立变量的行星相位自由轨道模型;
[0011] 步骤103:设定借力序列为地球-金星-金星-水星,其中第1次金星借力采用1:1共振飞越,第2次金星借力按照最低允许高度300km飞越。
[0012] 优选地,步骤2具体包括:
[0013] 步骤201:假定发射速度与地球速度相反,在一定的范围内对发射相位和发射速度进行离散化,得到一系列网格点;
[0014] 步骤202:以每个网格点为初始条件,利用行星相位自由轨道模型和探测器与行星轨道相交算法计算地球到金星的转移轨道,实现对金星的1:1共振借力;利用行星共振借力轨道算法计算和行星借力模型,计算金星到金星的转移轨道以及金星到水星的转移轨道,获得水星交会速度;
[0015] 步骤203:完成所有网格点对应的转移轨道计算,绘制水星交会速度等高线图。
[0016] 优选地,步骤3具体包括:
[0017] 步骤301:根据水星交会速度等高线图,选取最小交会速度对应的最优发射相位和发射速度,得到发射相位、借力天体相位以及水星交会相位的最优相对相位;进一步利用行星星解析星历模型计算,计算给定发射年份的具体发射时刻、发射位置和发射速度。
[0018] 步骤302:设定地球到金星转移轨道的深空机动位于第1个近日点,以深空机动的脉冲速度为优化目标,利用多圈兰伯特算法优化计算转移圈数,计算地球到金星的转移轨道;紧接着利用行星共振借力算法,计算金星到进行的共振借力转移轨道。
[0019] 步骤303:设定第2次金星借力的飞越高度为300km,计算该次借力后探测器的日心轨道;以深空机动的脉冲速度为优化目标,对深空机动位置的真近点角和转移圈数进行优化计算得到金星到水星的转移轨道。
[0020] 与现有技术相比,本发明具有如下有益效果:
[0021] 本发明中的方法基于行星相位自由轨道模型,提出一种网格化优化方法,有效解决了发射速度、发射相位、金星借力相位以及水星交会相位等主要参数的快速优化设计,显著地降低了水星交会脉冲轨道优化设计难度。附图说明
[0022] 图1为本发明实施例基于行星借力的水星交会脉冲轨道优化设计方法的流程图
[0023] 图2为本发明实施例中基于行星相位自由轨道模型的水星交会轨道算例。
[0024] 图3为本发明实施例中水星交会速度等高线图。
[0025] 图4为本发明实施例中水星交会速度等高线图的最优值附近的放大图。
[0026] 图5为本发明实施例中2026发射窗口的水星交会轨道。

具体实施方式

[0027] 下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应该指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
[0028] 如图1所示,本发明实施例提供了一种基于行星借力的水星交会脉冲轨道优化设计方法,包括如下步骤:
[0029] 步骤1、建立平面内椭圆型的地球、金星和水星解析星历模型与相位自由轨道模型;设定探测器从地球出发后,通过对金星进行2次借力到达水星。具体的:
[0030] 步骤101:以某一历元时刻的轨道根数为基准,设定地球、金星和水星的轨道倾角为零,建立平面内椭圆型的行星星解析星历模型;
[0031] 步骤102:在该星历模型的基础上,假设任意时刻行星可在其轨道上任意点出现,构建以行星平近点角为独立变量的行星相位自由轨道模型;
[0032] 步骤103:设定借力序列为地球-金星-金星-水星,其中第1次金星借力采用1:1共振飞越,第2次金星借力按照最低允许高度300km飞越。
[0033] 步骤2、在一定的范围内离散化发射相位和发射速度形成一系列网格点;以每个网格点为初始条件计算地球到水星的交会轨道,绘制水星交会速度等高线图。具体的:
[0034] 步骤201:假定发射速度与地球速度相反,在一定的范围内对发射相位和发射速度进行离散化,得到一系列网格点;
[0035] 步骤202:以每个网格点为初始条件,利用行星相位自由轨道模型和探测器与行星轨道相交算法计算地球到金星的转移轨道,实现对金星的1:1共振借力。利用行星共振借力轨道算法计算和行星借力模型,计算金星到金星的转移轨道以及金星到水星的转移轨道,获得水星交会速度;
[0036] 步骤203:完成所有网格点对应的转移轨道计算,绘制水星交会速度等高线图。
[0037] 步骤3、利用水星交会速度等高线图,选取最优发射相位和发射速度,然后利用步骤1中的行星解析星历模型,计算得到地球到水星的交会轨道。具体的:
[0038] 步骤301:根据水星交会速度等高线图,选取最小交会速度对应的最优发射相位和发射速度,得到发射相位、借力天体相位以及水星交会相位的最优相对相位。进一步利用行星星解析星历模型计算,计算给定发射年份的具体发射时刻、发射位置和发射速度。
[0039] 步骤302:设定地球到金星转移轨道的深空机动位于第1个近日点,以深空机动的脉冲速度为优化目标,利用多圈兰伯特算法优化计算转移圈数,计算地球到金星的转移轨道。紧接着利用行星共振借力算法,计算金星到进行的共振借力转移轨道。
[0040] 步骤303:设定第2次金星借力的飞越高度为300km,计算该次借力后探测器的日心轨道。以深空机动的脉冲速度为优化目标,对深空机动位置的真近点角和转移圈数进行优化计算得到金星到水星的转移轨道。
[0041] 以下为基于行星借力的水星交会脉冲轨道优化设计方法的数值仿真验证。
[0042] 以2026年发射的水星交会转移轨道为设计对象,利用本发明中的方法进行优化设计。基于行星相位自由轨道模型,图2给出了探测器从地球出发,经过两次金星借力与水星交会整个过程的转移轨道算例。图3给出了水星交会速度等高线图。图4为水星交会速度等高线图最优值附近的放大图,图中:DSM表示深空机动;TOF表示飞行时间;Δvlaunch表示发射速度;Mlaunch表示发射相位;v∞,mercury表示水星交会速度。可以看出,通过两次金星借力,可将水星交会速度最低降至5.33km/s。为了使运载发射能力尽可能小,同时保证一定的交会速度,在图3中选取发射速度为4.2km/s,发射相位为197.8deg,进而可以确定2026年发射窗口的具体发射时刻、发射速度、金星借力相位和水星交会相位。图5给出了2026发射窗口的水星交会轨道。表1和表2给出了该轨道的关键时间点和深空机动计算结果。可以看出,从地球出发到水星交会的转移时间为3.17年,脉冲速度增量为0.41km/s。
[0043] 表1 2026发射窗口的水星交会轨道关键时间点
[0044]
[0045]
[0046] 表2 2026发射窗口的水星交会轨道深空机动
[0047]
[0048] 以2026年发射的水星交会轨道为设计对象,利用本发明中的方法进行优化设计,数值计算结果显示了该方法的有效性。
[0049] 以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形修改,这并不影响本发明的实质内容。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈