首页 / 专利库 / 银行与财务事项 / 安全文件 / 一种基于大数据的电网多维感知与安全评估系统及方法

一种基于大数据电网多维感知与安全评估系统及方法

阅读:48发布:2023-12-04

专利汇可以提供一种基于大数据电网多维感知与安全评估系统及方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于 大数据 的 电网 多维 感知 与安全评估系统及方法,系统包括电网大数据存储平台、电网大数据安全特征提取平台、电网安全运行 知识库 分析平台和结果展示平台五部分。系统采用Hadoop文件分布式管理体系,对EMS采集大数据实现快速存储和查询;在此 基础 上,利用特征提取平台提取电网安全主特征、辅助特征和数值特征,对电网大数据实施 降维 ;提取的安全特征进入电网安全运行知识库,在库中与相关安全规则比对,最终得出当前电网的安全状况评估。与一般方法相比,本发明有益的效果为:设计了一种适用于大数据的评估系统,对电网大数据进行合理的降维,实现对电网的安全状况全面、合理的评估。,下面是一种基于大数据电网多维感知与安全评估系统及方法专利的具体信息内容。

1.一种基于大数据电网多维感知与安全评估系统,其特征在于:包括电网大数据存储平台、电网安全特征提取平台、电网安全运行知识库分析平台和结果展示平台5个平台;
所述电网大数据存储平台与智能电网PMU测量模相连,用于存储电网实时大数据;
所述电网安全特征提取平台与电网大数据存储平台相连,采用主特征、辅助特征和数值特征相结合的方法全面提取当前电网的运行特征,实现数据降维
所述电网安全运行知识库分析平台通过获取所述电网安全特征提取平台提取的当前电网运行特征,将当前电网的运行特征与不断更新知识规则进行比对,最终给出表征当前电网的安全状态的相关参数,对电网安全特征进行进一步的总结归纳,建立完备的电网安全运行知识库,评估当前电网的运行状态;
所述结果展示平台用于将当前电网运行状态评估结果展示给调度人员。
2.根据权利要求1所述的基于大数据的电网多维感知与安全评估系统,其特征在于:所述大数据存储平台是以Hadoop分布式文件管理系统为基础构架,快速接收并存储分布式的WAMS实时数据,并将其与发电及负荷数据、设备参数数据和历史数据传给MapReduce管理模块以备调用。
3.一种基于大数据的电网多维感知与安全评估方法,其特征在于,包括以下步骤:
步骤1:WAMS采集当前电网的实时数据信息,并将其分布式的存储到电网大数据存储平台中;
步骤2:电网大数据存储平台将WAMS电网实时数据、设备参数数据、发电及负荷数据和历史数据纳入Hadoop分布式文件管理体系中,利用MapReduce技术实现对电网大数据的存储和管理;
步骤3:电网安全特征提取平台以电网大数据存储平台的海量数据为基础,结合当前电系统的拓扑结构、运行状态和历史数据确定关键断面,采用主特征、辅助特征和数值特征相结合的方法全面提取当前电网的运行特征,实现数据降维;
步骤4:电网安全运行知识库分析平台对电网安全特征做进一步的分析、挖掘和归纳,得到可以指导电网智能化和精细化运行的电网安全运行知识规则,并将其存储到电网安全运行知识库中;
步骤5:电网安全运行知识库分析平台将当前电网的运行特征与不断更新知识规则进行比对,最终给出表征当前电网的安全状态的相关参数,对电网安全特征进行进一步的总结归纳,建立完备的电网安全运行知识库,评估当前电网的运行状态;并将结果传送至结果展示平台。
4.根据权利要求3所述的基于大数据的电网多维感知与安全评估方法,其特征在于,步骤3的具体实现包括以下子步骤:
步骤3.1:以图论为基础,结合潮流方向选取的一组当前系统中安全裕度小于20%的一簇输电支路共同构成关键断面;
步骤3.2:在关键断面上提取电力系统在线安全的主特征P0(jk):
其中:ln=(lj,,l2,…lk),表征关键断面j到k上所有输电线路集合;
步骤3.3:选取与主特征P0(jk)最相关的电网特征量:发电机出力、节点电压、潮流数据作为辅助特征Δan;
步骤3.4:利用电网大数据确定各个辅助特征对主特征的影响力大小bn;
步骤3.5:最终提取的电网运行特征由主特征、辅助特征和数值特征共同构成:
5.根据权利要求3或4所述的基于大数据的电网多维感知与安全评估系统,其特征在于:所述辅助特征选择方法,包括以下两种:(1)依属性分布的特征选择方法;(2)依属性样本的特征选择方法。
6.根据权利要求3所述的基于大数据的电网多维感知与安全评估系统,其特征在于:步骤4中所述电网安全运行知识库分析平台对电网安全特征做进一步的分析、挖掘和归纳,归纳方法包括以下4种:(1)基于实时数据,断面/主特征与当前电网实际安全状况的比较分析;(2)基于历史数据,断面/主特征时间周期的规律分析;(3)基于历史数据,断面/主特征趋势分析;(4)基于历史数据,断面/主特征与非电气量的相关性分析。
7.根据权利要求3所述的基于大数据的电网多维感知与安全评估系统,其特征在于:步骤4中所述电网安全运行知识规则Fjk,来自于不断修正的电网安全运行知识库,是电力系统安全运行知识的数据部分;
其中:Pmax(jk)表征关键断面jk的极限传输容量,由电网安全运行知识库结合相关知识规则、电网相关规律综合给出;P(jk)表征当前电网的运行特征;Fjk表征当前jk断面的安全度,数值越小,安全度越低。
8.根据权利要求3所述的基于大数据的电网多维感知与安全评估系统,其特征在于:步骤5中所述建立完备的电网安全运行知识库,是根据最新的潮流状态和拓扑结构对原有知识库进行更新;这一过程包括电网安全运行知识的添加、删除、分裂及合并过程,根据对知识库不同层次结构的影响,分为知识库层次更新、知识库类别更新和知识库整体拓扑更新。
9.根据权利要求3所述的基于大数据的电网多维感知与安全评估系统,其特征在于:步骤5中所述将当前电网的运行特征与不断更新知识规则进行比对,若符合电网安全运行知识库中的安全规则,则系统安全,将当前电网状态更新到电网安全运行知识库中;若不符合电网安全运行知识库中的安全规则,则通过结果展示平台向调度人员发出预警信息。
10.根据权利要求3、4、6、7、8或9所述的基于大数据的电网多维感知与安全评估系统,其特征在于:步骤5中所述电网安全运行知识库,采用分层创建和聚类存储的方式存储数据,其具体实现过程如下:
步骤5.1:以WAMS获得的电网在线运行状态为基础,利用电网安全运行规则发现电网安全运行知识,进过一段时间积累后,形成海量的不同电网运行状态对应的电网安全运行知识,将这些知识作为初始电网安全运行知识库;
步骤5.2:依据电网主特征选择的不同,将初始电网安全运行知识库分成不同的层次,每一层次下的电网安全运行知识具有相同的主特征,即具有相同的电网关键断面,进而实现电网安全运行知识的分层存储;
步骤5.3:最后再通过电网运行状态的聚类模型,将同一层次的知识聚类形成不同的运行状态类别,每一类别得到的电网运行状态接近,故电网安全运行知识也相似,最终实现电网安全运行知识的聚类存储。

说明书全文

一种基于大数据电网多维感知与安全评估系统及方法

技术领域

[0001] 本发明属于电系统安全评估技术领域,尤其涉及一种基于大数据的电力设备安全评估与预警系统及方法。

背景技术

[0002] 随着电力系统信息化的不断进步,大量的智能变电站投入使用、基于PMU的广域测量技术(WAMS)的迅速发展,智能电网电力系统的状态测量向高采样率、大范围、快速连续记录和海量存储的方向发展。由于电力系统覆盖范围广,运行状态复杂多变,动态过程快,电力系统数据具有数据量大,数据类型复杂,数据发布范围广、数据采集传输速度快等典型的大数据特征,已经远远超出传统电网监测系统的检测范畴。智能电网的发展使电网已经进入大数据处理时代。
[0003] 电力系统是由发电、输电、配电和用电等多层次网络组成的电能生产与供给系统,其功能是将多种一次能源转换为电能分配输送到各电力用户。电力系统具有处理能量大,覆盖地域广、覆盖元件多、动态过程复杂、强非线性等特点,是最复杂的人造系统之一,确保电力系统的合理运行和安全稳定本身就是一个高维度非线性问题。传统的方法是利用离线的电网安全分析工具制定安全规则,将电网约束到安全规则规定的安全空间中,对电网多变的运行方式适应性很差。在智能电网大数据的背景下,随着电网规模不断的扩大以及以电为代表的大规模间歇性新能源的大量接入,使电网运行方式的时变性和复杂性日益增强,大电网安全运行的特征和规律越来越难以把握,极大的增加了电网规则制定的难度和电力系统运行的风险。
[0004] 因此,随着电网运行产生的量测数据的不断增长,传统离线计算指导调度安全运行的方法已经不能满足智能电网全面、实时的安全预警要求。如何在大数据的背景下全面感知电网状态,并对大电网的安全运行进行分析研究,建立一套服务于大电网安全分析的安全预警系统是一个亟待解决的问题。

发明内容

[0005] 为了解决以上问题,本发明提出一种基于大数据的多维电网感知与安全评估系统及方法,用于大数据背景下电力系统的状态监测、安全分析与实时预警。
[0006] 本发明的系统所采用的技术方案是:一种基于大数据的电网多维感知与安全评估系统,其特征在于:包括电网大数据存储平台、电网安全特征提取平台、电网安全运行知识库分析平台和结果展示平台5个平台;
[0007] 所述电网大数据存储平台与智能电网PMU测量模相连,用于存储电网实时大数据;
[0008] 所述电网安全特征提取平台与电网大数据存储平台相连,采用主特征、辅助特征和数值特征相结合的方法全面提取当前电网的运行特征,实现数据降维
[0009] 所述电网安全运行知识库分析平台通过获取所述电网安全特征提取平台提取的当前电网运行特征,将当前电网的运行特征与不断更新知识规则进行比对,最终给出表征当前电网的安全状态的相关参数,对电网安全特征进行进一步的总结归纳,建立完备的电网安全运行知识库,评估当前电网的运行状态;
[0010] 所述结果展示平台用于将当前电网运行状态评估结果展示给调度人员。
[0011] 作为优选,所述大数据存储平台是以Hadoop分布式文件管理系统为基础构架,快速接收并存储分布式的WAMS实时数据,并将其与发电及负荷数据、设备参数数据和历史数据传给MapReduce管理模块以备调用。
[0012] 本发明的方法所采用的技术方案是:一种基于大数据的电网多维感知与安全评估方法,其特征在于,包括以下步骤:
[0013] 步骤1:WAMS采集当前电网的实时数据信息,并将其分布式的存储到电网大数据存储平台中;
[0014] 步骤2:电网大数据存储平台将WAMS电网实时数据、设备参数数据、发电及负荷数据和历史数据纳入Hadoop分布式文件管理体系中,利用MapReduce技术实现对电网大数据的存储和管理;
[0015] 步骤3:电网安全特征提取平台以电网大数据存储平台的海量数据为基础,结合当前电力系统的拓扑结构、运行状态和历史数据确定关键断面,采用主特征、辅助特征和数值特征相结合的方法全面提取当前电网的运行特征,实现数据降维;
[0016] 步骤4:电网安全运行知识库分析平台对电网安全特征做进一步的分析、挖掘和归纳,得到可以指导电网智能化和精细化运行的电网安全运行知识规则,并将其存储到电网安全运行知识库中;
[0017] 步骤5:电网安全运行知识库分析平台将当前电网的运行特征与不断更新知识规则进行比对,最终给出表征当前电网的安全状态的相关参数,对电网安全特征进行进一步的总结归纳,建立完备的电网安全运行知识库,评估当前电网的运行状态;并将结果传送至结果展示平台。
[0018] 作为优选,步骤3的具体实现包括以下子步骤:
[0019] 步骤3.1:以图论为基础,结合潮流方向选取的一组当前系统中安全裕度小于20%的一簇输电支路共同构成关键断面;
[0020] 步骤3.2:在关键断面上提取电力系统在线安全的主特征P0(jk):
[0021]
[0022] 其中:ln=(lj,,l2,...lk),表征关键断面j到k上所有输电线路集合;
[0023] 步骤3.3:选取与主特征P0(jk)最相关的电网特征量:发电机出力、节点电压、潮流数据作为辅助特征参量Δan;
[0024] 步骤3.4:利用电网大数据确定各个辅助特征对主特征的影响力大小bn;
[0025] 步骤3.5:最终提取的电网运行特征由主特征、辅助特征和数值特征共同构成:
[0026]
[0027] 作为优选,所述辅助特征选择方法,包括以下两种:(1)依属性分布的特征选择方法;(2)依属性样本的特征选择方法。
[0028] 作为优选,步骤4中所述电网安全运行知识库分析平台对电网安全特征做进一步的分析、挖掘和归纳,归纳方法包括以下4种:(1)基于实时数据,断面/主特征与当前电网实际安全状况的比较分析;(2)基于历史数据,断面/主特征时间周期的规律分析;(3)基于历史数据,断面/主特征趋势分析;(4)基于历史数据,断面/主特征与非电气量的相关性分析。
[0029] 作为优选,步骤4中所述电网安全运行知识规则Fjk,来自于不断修正的电网安全运行知识库,是电力系统安全运行知识的数据部分;
[0030]
[0031] 其中:Pmax(jk)表征关键断面jk的极限传输容量,由电网安全运行知识库结合相关知识规则、电网相关规律综合给出;P(jk)表征当前电网的运行特征;Fjk表征当前jk断面的安全度,数值越小,安全度越低。
[0032] 作为优选,步骤5中所述建立完备的电网安全运行知识库,是根据最新的潮流状态和拓扑结构对原有知识库进行更新;这一过程包括电网安全运行知识的添加、删除、分裂及合并过程,根据对知识库不同层次结构的影响,分为知识库层次更新、知识库类别更新和知识库整体拓扑更新。
[0033] 作为优选,步骤5中所述将当前电网的运行特征与不断更新知识规则进行比对,若符合电网安全运行知识库中的安全规则,则系统安全,将当前电网状态更新到电网安全运行知识库中;若不符合电网安全运行知识库中的安全规则,则通过结果展示平台向调度人员发出预警信息。
[0034] 作为优选,步骤5中所述电网安全运行知识库,采用分层创建和聚类存储的方式存储数据,其具体实现过程如下:
[0035] 步骤5.1:以WAMS获得的电网在线运行状态为基础,利用电网安全运行规则发现电网安全运行知识,进过一段时间积累后,形成海量的不同电网运行状态对应的电网安全运行知识,将这些知识作为初始电网安全运行知识库;
[0036] 步骤5.2:依据电网主特征选择的不同,将初始电网安全运行知识库分成不同的层次,每一层次下的电网安全运行知识具有相同的主特征,即具有相同的电网关键断面,进而实现电网安全运行知识的分层存储;
[0037] 步骤5.3:最后再通过电网运行状态的聚类模型,将同一层次的知识聚类形成不同的运行状态类别,每一类别得到的电网运行状态接近,故电网安全运行知识也相似,最终实现电网安全运行知识的聚类存储。
[0038] 本发明的系统采用Hadoop文件分布式管理体系,对EMS采集大数据实现快速存储和查询;在此基础上,利用特征提取平台提取电网安全主特征、辅助特征和数值特征,对电网大数据实施降维;提取的安全特征进入电网安全运行知识库,在库中与相关安全规则比对,最终得出当前电网的安全状况评估。与一般方法相比,本发明有益的效果为:设计了一种适用于大数据的评估系统,对电网大数据进行合理的降维,实现对电网的安全状况全面、合理的评估。附图说明
[0039] 图1为本发明实施例的系统图;
[0040] 图2为本发明实施例的系统中电网大数据存储平台的组成框图
[0041] 图3为本发明实施例的系统中电网安全运行知识库分析平台的组成框图;
[0042] 图4为本发明实施例的方法流程图
[0043] 图5为本发明实施例的方法中当前电网的运行特征提取流程图。

具体实施方式

[0044] 下面将结合本发明实例中的附图,对本发明实例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有实施例,都属于本发明保护的范围。
[0045] 请见图1,本发明提供的一种基于大数据的电网多维感知与安全评估系统,包括电网大数据存储平台、电网安全特征提取平台、电网安全运行知识库分析平台和结果展示平台5个平台;电网大数据存储平台与智能电网PMU测量模块相连,用于存储电网实时大数据;电网安全特征提取平台与电网大数据存储平台相连,采用主特征、辅助特征和数值特征相结合的方法全面提取当前电网的运行特征,实现数据降维;电网安全运行知识库分析平台通过获取电网安全特征提取平台提取的当前电网运行特征,将当前电网的运行特征与不断更新知识规则进行比对,最终给出表征当前电网的安全状态的相关参数,对电网安全特征进行进一步的总结归纳,建立完备的电网安全运行知识库,评估当前电网的运行状态;结果展示平台用于将当前电网运行状态评估结果展示给调度人员。
[0046] 请见图2,为本发明中电网大数据存储平台的组成框图。电网大数据存储平台以Hadoop分布式文件管理系统为基础构架,快速接收并存储分布式的WAMS实时数据,并将其与发电及负荷数据、设备参数数据和历史数据等传给MapReduce管理模块以备调用。平台最终实现电网大数据的分布式存储和快速查询功能。
[0047] 请见图3,为本发明中网安全运行知识库分析平台的组成框图:平台主要由安全分析模块和知识库两部分组成。安全分析模块负责对电网安全特征做进一步的分析、挖掘和归纳,得到可以指导电网智能化和精细化运行的电网安全运行知识,并将其存储/更新到电网安全知识库中。电网安全运行知识库采用分层创建和聚类存储的方式存储电网安全知识,负责为安全分析模块提供知识规则支持。
[0048] 请见图4,本发明提供的一种基于大数据的电网多维感知与安全评估方法,包括以下步骤:
[0049] 步骤1:WAMS采集当前电网的实时数据信息,并将其分布式的存储到电网大数据存储平台中;
[0050] 步骤2:电网大数据存储平台将WAMS电网实时数据、设备参数数据、发电及负荷数据和历史数据纳入Hadoop分布式文件管理体系中,利用MapReduce技术实现对电网大数据的存储和管理;
[0051] 步骤3:电网安全特征提取平台以电网大数据存储平台的海量数据为基础,结合当前电力系统的拓扑结构、运行状态和历史数据确定关键断面,采用主特征、辅助特征和数值特征相结合的方法全面提取当前电网的运行特征,实现数据降维;
[0052] 请见图5,本实施例的当前电网的运行特征的提取,包括以下子步骤:
[0053] 步骤3.1:以图论为基础,结合潮流方向选取的一组当前系统中安全裕度小于20%的一簇输电支路共同构成关键断面;
[0054] 步骤3.2:在关键断面上提取电力系统在线安全的主特征P0(jk):
[0055]
[0056] 其中:ln=(lj,,l2,...lk),表征关键断面j到k上所有输电线路集合;
[0057] 步骤3.3:选取与主特征P0(jk)最相关的电网特征量:发电机出力、节点电压、潮流数据作为辅助特征Δan;
[0058] 辅助特征选择方法,包括以下两种:
[0059] (1)依属性分布的特征选择方法;
[0060] 1.依据输入属性的维度(S维),将其分为M分,形成M个属性维度为S/M的输入属性子集A1,A2...AM;
[0061] 2.对每一个子集做特征选择,形成N个特征属性子集A′1,A′2...A′M;
[0062] 3.将每一个子集特征选择后的结果进行合并形成A′=A′1∪A′2∪...∪A′M,对A′再做一次特征选择即可得到最终的选择结果。
[0063] (2)依属性样本的特征选择方法;
[0064] 1.依据输入属性的样本数量(S维),将其分为M分,形成M个样本数量为S/M的输入属性子集A1,A2...AM;
[0065] 2.对每一个子集做特征选择,形成N个特征属性子集A′1,A′2...A′M;
[0066] 3.将每一个子集特征选择后的结果分析与归纳,得出最终结果。
[0067] 以上两种方法均可以降低辅助安全特征数据的维度,其中方法(2)所述的属性样本的特征选择方法,与电网大数据中心中的存储方式相同,不需要进行数据格式的转换,运用方便,故优先考虑。但当处理特征属性子集A′1,A′2...A′M互相矛盾时,应采用方法(1)。
[0068] 步骤3.4:利用电网大数据确定各个辅助特征对主特征的影响力大小bn;
[0069] 步骤3.5:最终提取的电网运行特征由主特征、辅助特征和数值特征共同构成:
[0070]
[0071] 步骤4:电网安全运行知识库分析平台对电网安全特征做进一步的分析、挖掘和归纳,得到可以指导电网智能化和精细化运行的电网安全运行知识规则,并将其存储到电网安全运行知识库中;
[0072] 其中电网安全运行知识库分析平台对电网安全特征做进一步的分析、挖掘和归纳,归纳方法包括以下4种:
[0073] (1)基于实时数据,断面(主特征)与当前电网实际安全状况的比较分析。由于实时性差,此方法主要用于初始安全运行知识库的建立和后期安全运行知识库的微调:断面主特征由电网安全运行知识分析平台给出;当前电网实际安全状况由仿真给出。若两者之间的差别小于阈值(ΔFjk<0.005),说明当前知识规则可信,将其存储;若两者之间的差别大于阈值,说明当前知识规则不合理,将其修正后再加入知识库中。
[0074] (2)基于历史数据,断面(主特征)时间周期的规律分析。在一天中,有些断面始终作为关键断面出现,需要电网运行人员重点关注;有些断面会随着时间的变化出现与消失,需要关注其演变规律。一天中发电、负荷随时间的变化,使得网络潮流分布发生变化,从而导致关键断面发生转移、出现与消失,这一规律为日周期规律。电网安全运行知识分析平台对此规律进行总结,并将其作为时间知识规则存储,指导以后电网安全运行。
[0075] (3)基于历史数据,断面(主特征)趋势分析。在一般情况下,潮流越重,关键断面越多,说明电网安全平越低。一段时间内关键断面数量大大增加,说明电网安全水平大大降低。电网安全运行知识分析平台对此规律进行总结,并将其作为辅助知识规则存储,指导以后电网安全运行。
[0076] (4)基于历史数据,断面(主特征)与非电气量的相关性分析。除了与时间的相关性分析外,还应探究关键断面(主特征)与温度风力、日照强度、湿度条件、气象条件等非电气量的知识关系,更准确的指导电网安全运行。
[0077] 安全运行知识规则Fjk,来自于不断修正的电网安全运行知识库,是电力系统安全运行知识的数据部分;
[0078]
[0079] 其中:Pmax(jk)表征关键断面jk的极限传输容量,由电网安全运行知识库结合相关知识规则、电网相关规律综合给出;P(jk)表征当前电网的运行特征;Fjk表征当前jk断面的安全度,数值越小,安全度越低。
[0080] 步骤5:电网安全运行知识库分析平台将当前电网的运行特征与不断更新知识规则进行比对,最终给出表征当前电网的安全状态的相关参数,对电网安全特征进行进一步的总结归纳,建立完备的电网安全运行知识库,评估当前电网的运行状态;并将结果传送至结果展示平台。
[0081] 其中建立完备的电网安全运行知识库,是根据最新的潮流状态和拓扑结构对原有知识库进行更新;这一过程包括电网安全运行知识的添加、删除、分裂及合并过程,根据对知识库不同层次结构的影响,分为知识库层次更新、知识库类别更新和知识库整体拓扑更新。
[0082] 将当前电网的运行特征与不断更新知识规则进行比对,若符合电网安全运行知识库中的安全规则,则系统安全,将当前电网状态更新到电网安全运行知识库中;若不符合电网安全运行知识库中的安全规则,则通过结果展示平台向调度人员发出预警信息。
[0083] 本实施例的电网安全运行知识库,采用分层创建和聚类存储的方式存储数据,其具体实现过程如下:
[0084] 步骤5.1:以WAMS获得的电网在线运行状态为基础,利用电网安全运行规则发现电网安全运行知识,进过一段时间积累后,形成海量的不同电网运行状态对应的电网安全运行知识,将这些知识作为初始电网安全运行知识库;
[0085] 步骤5.2:依据电网主特征选择的不同,将初始电网安全运行知识库分成不同的层次,每一层次下的电网安全运行知识具有相同的主特征,即具有相同的电网关键断面,进而实现电网安全运行知识的分层存储;
[0086] 步骤5.3:最后再通过电网运行状态的聚类模型,将同一层次的知识聚类形成不同的运行状态类别,每一类别得到的电网运行状态接近,故电网安全运行知识也相似,最终实现电网安全运行知识的聚类存储。
[0087] 本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈