序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 一种复合滤波补偿光谱调制装置 CN201210425016.8 2012-10-30 CN102961160B 2016-01-06 赵维; 杨胜宇; 舒航; 唐晓; 曹大泉; 王哲; 魏存峰; 王燕芳; 孙翠丽; 阙介民; 史戎坚; 魏龙
发明公开了一种复合滤波补偿光谱调制装置。所述装置包括由具有K层特征吸收边材料制作而成的高密度滤波优化片,低密度滤波补偿片,滤片连接装置及外部支撑支架,其中所述滤片连接装置将所述高密度滤波优化片和所述低密度滤波补偿片连接在一起形成复合光谱调制器,且所述低密度滤波补偿片位于靠近X射线光源的一侧;所述外部支撑支架将所述复合光谱调制器支撑设置在X射线光源与待检测乳房之间的特定位置,且所述外部支撑支架固定在支撑板上。通过该装置能够针对DBCT系统在保证重建图像质量的前提下,降低病人接受的剂量,同时显著提高系统对乳腺疾病的诊断成功率,并提供更适合乳腺成像的光谱分布。
22 甲烷化催化剂 CN201880054255.2 2018-08-22 CN110997134A 2020-04-10 富田惇喜; 松泽雅人; 篠仓明日香; 杉冈晶子
发明进一步改良在上负载有铂的氧化催化剂,提供一种催化剂即使在暴露于高温下之后也能够维持甲烷氧化活性的新型氧化催化剂。制得一种甲烷氧化催化剂,其是在氧化锡载体上负载有铂氧化物的甲烷氧化催化剂,在铂原子的L3边X射线吸收近边结构(XANES)光谱中,在11555~11570eV的范围内得到的吸收峰的强度是使用标准铂箔测得的相同吸收峰强度的1.4倍以上。
23 微波联合助剂脱硫过程含硫组分的分离与检测方法 CN201410226688.5 2014-05-26 CN103995070B 2016-02-17 陶秀祥; 曾维晨; 许宁; 蒋松; 屈进州; 唐龙飞; 杨彦成; 梁珂艳; 蒋莉; 亢旭
一种微波联合助剂脱硫过程的含硫组分分离与检测的方法,属于煤中含硫组分分离与检测的方法。(1)、待测煤样与不同浓度、不同种类的助剂通过加药口置于三口烧瓶中,将药剂与煤样搅拌均匀并密封,三口烧瓶1放入谐振腔中;(2)、通过圆底烧瓶通气口通入气体,实现不同气氛条件下含硫组分的反应,控制谐振腔的频率、功率、时间及反应温度;(3)、谐振腔辐照后,煤中逸出无法直接测定的含硫气体,通过集气袋的收集实现了用气相色谱-火焰光度检测仪对含硫气体种类、总量的测定;(4)、通过离子色谱对滤液和洗液的分析,准确地得到了液体中硫的形态及其含量;(5)、通过X射线吸收近边结构、X射线光电子能谱分析对辐照后烘干煤样的分析,准确地得到脱硫后煤中硫形态及含量。
24 微波联合助剂脱硫过程含硫组分的分离与检测方法 CN201410226688.5 2014-05-26 CN103995070A 2014-08-20 陶秀祥; 曾维晨; 许宁; 蒋松; 屈进州; 唐龙飞; 杨彦成; 梁珂艳; 蒋莉; 亢旭
一种微波联合助剂脱硫过程的含硫组分分离与检测的方法,属于煤中含硫组分分离与检测的方法。(1)、待测煤样与不同浓度、不同种类的助剂通过加药口置于三口烧瓶中,将药剂与煤样搅拌均匀并密封,三口烧瓶1放入谐振腔中;(2)、通过圆底烧瓶通气口通入气体,实现不同气氛条件下含硫组分的反应,控制谐振腔的频率、功率、时间及反应温度;(3)、谐振腔辐照后,煤中逸出无法直接测定的含硫气体,通过集气袋的收集实现了用气相色谱-火焰光度检测仪对含硫气体种类、总量的测定;(4)、通过离子色谱对滤液和洗液的分析,准确地得到了液体中硫的形态及其含量;(5)、通过X射线吸收近边结构、X射线光电子能谱分析对辐照后烘干煤样的分析,准确地得到脱硫后煤中硫形态及含量。
25 原位分离土壤微团聚体中活性组分表征其微观结构的方法 CN201910476008.8 2019-06-03 CN110208298B 2022-02-01 杨建军; 刘瑾
发明公开了本发明提供一种利用同步辐射扫描透射显微术和数理统计方法联用实现原位分离土壤微团聚体中活性组分和表征其微观结构的方法,包括如下步骤:将干土壤研磨成粉末;制备成悬浊液风干;利用同步辐射扫描透射技术采集的K边和的L边的X射线近边吸收结构谱和堆栈图像;将各元素的堆栈图像进行图像和能量矫正后进行组合,然后利用叠合的多元谱图进行多元素主成分和聚类分析,获取代表碳、铁和铝硅不同元素组成、含量和结构的聚类图谱,实现原位分离土壤团聚体中分别以碳为主的有机质组分、以铁为主的铁化物组分以及以铝硅为主的粘土矿物组分以及这些典型活性组分的微结构特征。
26 原位分离土壤微团聚体中活性组分表征其微观结构的方法 CN201910476008.8 2019-06-03 CN110208298A 2019-09-06 杨建军; 刘瑾
发明公开了本发明提供一种利用同步辐射扫描透射显微术和数理统计方法联用实现原位分离土壤微团聚体中活性组分和表征其微观结构的方法,包括如下步骤:将干土壤研磨成粉末;制备成悬浊液风干;利用同步辐射扫描透射技术采集的K边和的L边的X射线近边吸收结构谱和堆栈图像;将各元素的堆栈图像进行图像和能量矫正后进行组合,然后利用叠合的多元谱图进行多元素主成分和聚类分析,获取代表碳、铁和铝硅不同元素组成、含量和结构的聚类图谱,实现原位分离土壤团聚体中分别以碳为主的有机质组分、以铁为主的铁化物组分以及以铝硅为主的粘土矿物组分以及这些典型活性组分的微结构特征。
27 乳腺肿瘤组织的XANES诊断方法 CN200810093372.8 2008-04-15 CN101256158A 2008-09-03 刘成林
发明涉及乳腺肿瘤组织中微量元素的X射线吸收近边结构的检测方法,属于微量元素化学环境检测技术领域。本发明是利用同步辐射装置的XAFS实验站记录正常的、良性的和癌变的乳腺组织中的微量元素Ca、Fe、Cu、Zn等生物组织中的微量元素的K边XAFS谱,并对其近边结构(X-ray Absorption Near-edge Structure,XANES)进行了分析,根据不同组织中微量元素化学环境的差异提供一种乳腺肿瘤组织的诊断方法,检测结果准确性高。由于采用上述诊断方法,本发明所具有的优点和积极效果是:检测结果准确性高,数据处理的精确度好,对乳腺肿瘤诊断和肿瘤发生、发展和预后处理的机制研究具有更加明显的指导意义,可以达到对症治疗的目的。
28 X-RAY ABSORPTION MEASUREMENT SYSTEM PCT/US2015018553 2015-03-03 WO2015187219A8 2017-01-05 LEWIS SYLVIA JIA YUN; YUN WENBING; KIRZ JANOS; LYON ALAN FRANCIS
This disclosure presents systems for x-ray absorption fine structure (XAFS) measurements that have x-ray flux and flux density several orders of magnitude greater than existing compact systems; for applications of x-ray absorption near-edge spectroscopy (XANES) or extended x-ray fine absorption structure (EXFAS) spectroscopy. The higher brightness is achieved using designs for x-ray targets that comprise aligned microstructures of x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment with higher electron density and/or higher energy electrons, leading to greater x-ray brightness and high flux. The high brightness x-ray source is coupled to an x-ray reflecting optical system to collimate the x-rays, and a monochromator, which selects the exposure energy. Absorption spectra of samples using the high flux monochromatic x-rays can be made using standard detection techniques.
29 X-RAY ABSORPTION MEASUREMENT SYSTEM PCT/US2015/018553 2015-03-03 WO2015187219A1 2015-12-10 LEWIS, Sylvia, Jia, Yun; YUN, Wenbing; KIRZ, Janos

This disclosure presents systems for x-ray absorption fine structure (XAFS) measurements that have x-ray flux and flux density several orders of magnitude greater than existing compact systems; for applications of x-ray absorption near-edge spectroscopy (XANES) or extended x-ray fine absorption structure (EXFAS) spectroscopy. The higher brightness is achieved using designs for x-ray targets that comprise aligned microstructures of x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment with higher electron density and/or higher energy electrons, leading to greater x-ray brightness and high flux. The high brightness x-ray source is coupled to an x-ray reflecting optical system to collimate the x-rays, and a monochromator, which selects the exposure energy. Absorption spectra of samples using the high flux monochromatic x-rays can be made using standard detection techniques.

30 X-RAY TECHNIQUES USING STRUCTURED ILLUMINATION US15173711 2016-06-05 US20160320320A1 2016-11-03 Wenbing Yun; Sylvia Jia Yun Lewis; Janos Kirz
This invention discloses a method and apparatus for x-ray techniques using structured x-ray illumination for examining material properties of an object. In particular, an object with one or more regions of interest (ROIs) having a particular shape, size, and pattern may be illuminated with an x-ray beam whose cross sectional beam profile corresponds to the shape, size and pattern of the ROIs, so that the x-rays of the beam primarily interact only with the ROIs. This allows a greater x-ray flux to be used, enhancing the signal from the ROI itself, while reducing unwanted signals from regions not in the ROI, improving signal-to-noise ratios and/or measurement throughputThis may be used with a number of x-ray measurement techniques, including x-ray fluorescence (XRF), x-ray diffraction (XRD), small angle x-ray scattering (SAXS), x-ray absorption fine-structure spectroscopy (XAFS), x-ray near edge absorption spectroscopy, and x-ray emission spectroscopy.
31 CATALYST FOR ELECTROCHEMICAL APPLICATIONS PCT/EP2010057313 2010-05-27 WO2010139596A3 2011-02-24 SCHWAB EKKEHARD; BRAEUNINGER SIGMAR; PANCHENKO ALEXANDER; QUERNER CLAUDIA; UENSAL OEMER; VOGT MARKUS; HE QINGGANG; RAMASWAMY NASGAPPAN; MUKERJEE SANJEEV
The invention relates to a catalyst for electro-chemical applications comprising an alloy of platinum and a transition metal, wherein the transition metal has an absorption edge similar to the absorption edge of the transition metal in oxidic state, measured with x-ray absorption near-edge spectroscopy (XANES) wherein the measurements are performed in concentrated H3PO4 electrolyte. The invention further relates to a process for an oxygen reduction reaction using the catalyst as electrocatalyst.
32 蛍光体および発光装置 PCT/JP2014/000558 2014-02-04 WO2014167762A1 2014-10-16 奥山 浩二郎; 白石 誠吾

 蛍光体は、一般式xAO・yEuO・yEuO3/2・MgO・zSiOで表され、この一般式において、AはCa、SrおよびBaから選ばれる少なくとも一種であり、xは2.80≦x≦3.00を満たし、y+yは0.01≦y+y≦0.20を満たし、zは1.90≦z≦2.10を満たし、全Eu元素のうちの2価Eu元素の割合を2価Eu率と定義すると、X線光電子分光法によって測定される蛍光体粒子の2価Eu率が50モル%以下であり、X線吸収端近傍構造解析法によって測定される蛍光体粒子の2価Eu率が97モル%以上である。また、発光装置は、当該蛍光体を含む蛍光体層を有する。

33 X-ray exposure method, x-ray exposure apparatus, fine structure and semiconductor device US10140066 2002-05-08 US20030099324A1 2003-05-29 Kenji Itoga; Toyoki Kitayama
Provided are an X-ray exposure method and an X-ray exposure apparatus capable of using exposure X-rays of short wavelengths advantageous for formation of a fine pattern by suppressing a fogging effect due to secondary electrons from a substrate enhanced in company with use of the exposure X-rays of short wavelengths; and a fine structure and a semiconductor device using the same. An X-ray exposure method includes the steps of: forming, by coating, a resist film on a substrate made of a material having an absorption-edge in and near an illumination wavelength range; and illuminating said resist film with X-rays in a wavelength range including said absorption-edge wavelength through an X-ray mask, wherein exposure is performed providing means for reducing X-ray intensity in the wavelength range of an absorption spectrum to which the absorption-edge of the material of the substrate belongs in an optical path leading to the substrate.
34 HIGH BRIGHTNESS X-RAY ABSORPTION SPECTROSCOPY SYSTEM US14636994 2015-03-03 US20150357069A1 2015-12-10 Wenbing Yun; Sylvia Jia Yun Lewis; Janos Kirz
This disclosure presents systems for x-ray absorption fine structure (XAFS) measurements that have x-ray flux and flux density several orders of magnitude greater than existing compact systems. These are useful for laboratory or field applications of x-ray absorption near-edge spectroscopy (XANES) or extended x-ray fine absorption structure (EXFAS) spectroscopy.The higher brightness is achieved by using designs for x-ray targets that comprise a number of aligned microstructures of x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment with higher electron density and/or higher energy electrons, leading to greater x-ray brightness and high flux.The high brightness x-ray source is then coupled to an x-ray reflecting optical system to collimate the x-rays, and a monochromator, which selects the exposure energy. Absorption spectra of samples using the high flux monochromatic x-rays can be made using standard detection techniques.
35 High brightness X-ray absorption spectroscopy system US14636994 2015-03-03 US09448190B2 2016-09-20 Wenbing Yun; Sylvia Jia Yun Lewis; Janos Kirz
This disclosure presents systems for x-ray absorption fine structure (XAFS) measurements that have x-ray flux and flux density several orders of magnitude greater than existing compact systems. These are useful for laboratory or field applications of x-ray absorption near-edge spectroscopy (XANES) or extended x-ray fine absorption structure (EXFAS) spectroscopy. The higher brightness is achieved by using designs for x-ray targets that comprise a number of aligned microstructures of x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment with higher electron density and/or higher energy electrons, leading to greater x-ray brightness and high flux. The high brightness x-ray source is then coupled to an x-ray reflecting optical system to collimate the x-rays, and a monochromator, which selects the exposure energy. Absorption spectra of samples using the high flux monochromatic x-rays can be made using standard detection techniques.
36 X-ray exposure method, x-ray exposure apparatus, fine structure and semiconductor device US10140066 2002-05-08 US06735275B2 2004-05-11 Kenji Itoga; Toyoki Kitayama
An X-ray exposure method and an X-ray exposure apparatus using exposure X-rays having short wavelengths for formation of a fine pattern in X-ray lithography and suppressing fogging due to secondary electrons from a substrate bearing a resin film. The X-ray exposure method includes forming, by coating, a resist film on a substrate made of a material having an absorption-edge in or near an illumination wavelength range; and illuminating the resist film with X-rays having a wavelength range, including the absorption-edge wavelength, through an X-ray mask. The X-ray intensity is reduced in the wavelength range of an absorption spectrum including the absorption-edge of the material of the substrate in an optical path leading to the substrate.
37 負極活性物質、負極、鋰離子二次電池、負極活性物質的製造方法、及鋰離子二次電池的製造方法 TW106129300 2017-08-29 TW201820689A 2018-06-01 廣瀨貴一; HIROSE, TAKAKAZU; 酒井玲子; SAKAI, REIKO
本發明是一種負極活性物質,其包含負極活性物質粒子,該負極活性物質的特徵在於:前述負極活性物質粒子含有由SiOx表示的矽化合物,其中,0.5≦x≦1.6;並且,在由前述負極活性物質粒子的X射線吸收近邊緣結構測定所獲得的X射線吸收近邊緣結構波譜中,於539~541eV的範圍內具有峰。藉此,提供一種負極活性物質,其當作為二次電池的負極活性物質來使用時,可增加電池容量,並可提升循環特性。
38 Hydrogen storage material and its manufacturing method JP2006164848 2006-06-14 JP2007330877A 2007-12-27 FUJII HIRONOBU; ICHIKAWA TAKAYUKI; HANADA NOBUKO; KUBOKAWA TOYOYUKI
<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material with quick hydrogen occlusion velocity at the proximity of room temperature and to provide its manufacturing method. <P>SOLUTION: The hydrogen storage material is complexified and nano-structurized by conducting the mechanical milling treatment with a predetermined proportion of magnesium hydride and niobium oxide. The difference of the energy value of the main peak in the differential spectrum having the X-ray absorption end structural spectrum of niobium K absorption edge in the niobium oxide differentiated and the energy value of a first peak in the differential spectrum having the X-ray absorption end structural spectrum of niobium K absorption edge in the metal niobium which is the niobium standard material differentiated is from 9.6 eV or more to 15.4 eV or less. <P>COPYRIGHT: (C)2008,JPO&INPIT
39 Nonaqueous secondary battery JP27801497 1997-09-26 JPH11102703A 1999-04-13 NAKAI IZUMI; SHIRAISHI YOHEI; NISHIKAWA FUMISHIGE; TSUBATA TOSHIO; HIMEDA TAKAHIRO; KONISHI TOKUZO
PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery which is superior in high- temperature characteristic. SOLUTION: In a secondary battery using lithium or a material capable of absorbing/releasing lithium in a negative electrode, having a nonaqueous electrolyte, and a positive electrode, a positive active material is a lithium manganese oxide having spinel structure, in which in an X-ray absorption spectrum measured by an X-ray absorption fine structure (XAFS) analysis method, peak, intensity in the vicinity of 2.5 Å in a radius vector structure function obtained by Fourier transform of a wide region X-ray absorption fine structure spectrum (EXAFS) of MnK absorption edge is 17.5 or less, when 90% of lithium capable of theoretically being discharged is discharged.
40 X-ray aligner JP2003416135 2003-12-15 JP2005175346A 2005-06-30 AMAMIYA MITSUAKI
PROBLEM TO BE SOLVED: To provide an X-ray aligner which can increase a resolution and an exposure tolerance. SOLUTION: In proximity X-ray exposure, a main element forming an absorber has an atomic number of 22 to 29. In the proximity X-ray exposure, a main element forming the absorber has no absorption edge in a wavelength range where the peak intensity of an X ray spectrum absorbed in a resist is 80% or higher. Further, in the proximity X-ray exposure, a main element forming the absorber has no absorption edge in a wavelength range of 0.45 to 0.7 nm. In the proximity X-ray exposure, a main element forming a filter forms the absorber. COPYRIGHT: (C)2005,JPO&NCIPI
QQ群二维码
意见反馈