序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 任意椭圆偏振射电波起偏检偏和偏振度测量的装置技术 CN202110527215.9 2021-05-11 CN113823157A 2021-12-21 赵诗华; 贾帅岭; 王浩淳
发明的名称为任意椭圆偏振射电波起偏检偏和偏振度测量的装置技术,主要应用于实验教学领域,具体而言是大学物理实验、微波实验和中学物理演示实验。在现有的实验教学中,光学实验通常是以可见光作为光源进行实验,以射电波作为光源的实验很少。且由于波片是成品,因此可见光很难实现任意偏振度的椭圆偏振,并且没有测量偏振度的实验。本装置创新地用射电波为光源,自制的栅网作为起偏器和检偏器,然后改变两光源位置再通过偏振光在半波振子处叠加实现任意椭圆偏振,并且通过旋转半波振子天线进行偏振度的测量。本装置及方法能够很好的运用到今后大学物理的相关实验之中。
2 타원편광기술을이용한디바이스제조방법 KR1019940029023 1994-11-07 KR1019950015627A 1995-06-17 나딘블레요; 데일에드워드이보촌; 쳉-청리
디바이스 제조에 있어서 공정을 제어하는 타원 평광법이 개시되어 있다. 타원 평광 신호가 이용되어 제조 공정동안 디바이스에 관한 정보를 제공한다. 이 정보는 상기 공정을 양호하게 제어하기 위하여 이용된다. 특정 파장의 타원 편광신호가 선택된다. 이 신호는 타원 편광 신호가 기판으로부터 반사되기 전에 이 타원 평광 신호가 통과할 기판상의 막의 조성 및 두께에 기초하여 선택된다. 적절한 파장이 결정되면, 타원 편광 신호가 이용되어 기판상의 막 두께를 감시하고 상기 기판상의 막을 적층과 제거의 제어를 제원하여, 디바이스 제조에 있어서 다른 공정 제어 기능을 수행한다. 타원 편광법이 이용되어 가로세로비가 0.3 이상인 패턴화된 마스크 하부의 기판 표면상의 토포그라피 상부에 있거나 마스크 하부와 토포그라피 상부 양면에 있는 막의 적층 제거를 제어한다.
3 Spatial averaging technique for ellipsometry and reflectometry US09658812 2000-09-11 US06281027B1 2001-08-28 Lanhua Wei; Hanyou Chu; Jon Opsal
This invention relates to ellipsometry and reflectometry optical metrology tools that are used to evaluate semiconductor wafers and is directed to reducing errors associated with material surrounding a desired measurement area or pad, either by minimizing the uncertainties in positioning the measurement beam or by taking into account the effects of the surrounding material in analyzing the measured data. One aspect the present invention utilizes a technique where initially one purposefully aims to place the optical spot of the measurement beam a few microns away from the center of the target pad. Then a series of measurements are made with each measurement separated by a small stage jog as the optical spot is scanned over the measurement pad. Provided the surrounding material is the same on both sides of the pad, one finds that the data invariably has either a cup or inverted “U” shape or an inverted cup or “U” shape when viewed as a function of position. The minimum or maximum of the curve is then used to identify the center of the pad. Another aspect the present invention makes use of a novel method of data analysis that allows for the correction of the effects of the surrounding material in analyzing the data. In essence, the data collected at the center of the pad is treated as being created by a superposition of light coming from the pad material itself and light coming from the surrounding material. The influence of the two materials is weighted by the proportion of the light that reflects off the pad as compared with the light that reflects off of the surrounding material. Given knowledge of both the dimensions of the pad and the size and profile of the beam spot, the resulting signal may be mathematically modeled according to the present invention to account for both the contribution of the light reflected from the pad and the light reflected from the surrounding material.
4 Spatial averaging technique for ellipsometry and reflectometry US09871220 2001-05-31 US06577384B2 2003-06-10 Lanhua Wei; Hanyou Chu; Jon Opsal
This invention relates to optical metrology tools that are used to evaluate small measurement areas on a semiconductor wafer, where the measurement area is surrounded by a material different from the measurement area. In one embodiment, a probe beam is scanned over the measurement area and the surrounding material as data is taken at multiple locations. A processor determines the characteristics of the measurement area by identifying an extremum value of the measurements which represents the center of the measurement area. In another embodiment, the processor determines the characteristics of the sample using a combination of light measured from within and without the measurement area. The measured data is treated as a combination of light from both regions and mathematically modeled to account for both the contribution of the light reflected from the measurement area and the light reflected from the surrounding material.
5 Spatial averaging technique for ellipsometry and reflectometry US09871220 2001-05-31 US20020012123A1 2002-01-31 Lanhua Wei; Hanyou Chu; Jon Opsal
This invention relates to ellipsometry and reflectometry optical metrology tools that are used to evaluate semiconductor wafers and is directed to reducing errors associated with material surrounding a desired measurement area or pad, either by minimizing the uncertainties in positioning the measurement beam or by taking into account the effects of the surrounding material in analyzing the measured data. One aspect the present invention utilizes a technique where initially one purposefully aims to place the optical spot of the measurement beam a few microns away from the center of the target pad. Then a series of measurements are made with each measurement separated by a small stage jog as the optical spot is scanned over the measurement pad. Provided the surrounding material is the same on both sides of the pad, one finds that the data invariably has either a cup or inverted nullUnull shape or an inverted cup or nullUnull shape when viewed as a function of position. The minimum or maximum of the curve is then used to identify the center of the pad. Another aspect the present invention makes use of a novel method of data analysis that allows for the correction of the effects of the surrounding material in analyzing the data. In essence, the data collected at the center of the pad is treated as being created by a superposition of light coming from the pad material itself and light coming from the surrounding material. The influence of the two materials is weighted by the proportion of the light that reflects off the pad as compared with the light that reflects off of the surrounding material. Given knowledge of both the dimensions of the pad and the size and profile of the beam spot, the resulting signal may be mathematically modeled according to the present invention to account for both the contribution of the light reflected from the pad and the light reflected from the surrounding material.
6 Spatial averaging technique for ellipsometry and reflectometry US10400369 2003-03-27 US06856385B2 2005-02-15 Lanhua Wei; Hanyou Chu; Jon Opsal
This invention relates to optical metrology tools that are used to evaluate small measurement areas on a semiconductor wafer, where the measurement area is surrounded by a material different from the measurement area. In one embodiment, a probe beam is scanned over the measurement area and the surrounding material as data is taken at multiple locations. A processor determines the characteristics of the measurement area by identifying an extremum value of the measurements which represents the center of the measurement area. In another embodiment, the processor determines the characteristics of the sample using a combination of light measured from within and without the measurement area. The measured data is treated as a combination of light from both regions and mathematically modeled to account for both the contribution of the light reflected from the measurement area and the light reflected from the surrounding material.
7 一种进行数据传输的方法和装置 PCT/CN2014/088881 2014-10-20 WO2015058655A1 2015-04-30 刘晓颖; 郝沁汾; 刘耀达

一种进行数据传输的方法和装置,属于芯片光互连技术领域。所述方法包括:获取椭圆偏振光;对所述椭圆偏振光进行偏振分束,得到组成所述椭圆偏振光的振动方向相互垂直的第一线偏振光和第二线偏振光;分别将所述第一线偏振光和第二线偏振光作为载波进行数据传输。可以提高光通信平台中可提供的载波数量。

8 一种进行数据传输的方法和装置 CN201310495575.0 2013-10-21 CN104579464B 2017-08-04 刘晓颖; 郝沁汾; 刘耀达
发明公开了一种进行数据传输的方法和装置,属于芯片光互连技术领域。所述方法包括:获取椭圆偏振光;对所述椭圆偏振光进行偏振分束,得到组成所述椭圆偏振光的振动方向相互垂直的第一线偏振光和第二线偏振光;分别将所述第一线偏振光和第二线偏振光作为载波进行数据传输。采用本发明,可以提高光通信平台中可提供的载波数量。
9 一种进行数据传输的方法和装置 CN201310495575.0 2013-10-21 CN104579464A 2015-04-29 刘晓颖; 郝沁汾; 刘耀达
发明公开了一种进行数据传输的方法和装置,属于芯片光互连技术领域。所述方法包括:获取椭圆偏振光;对所述椭圆偏振光进行偏振分束,得到组成所述椭圆偏振光的振动方向相互垂直的第一线偏振光和第二线偏振光;分别将所述第一线偏振光和第二线偏振光作为载波进行数据传输。采用本发明,可以提高光通信平台中可提供的载波数量。
10 偏振装置及显示设备 CN202211654577.5 2022-12-22 CN116107110A 2023-05-12 张庆训; 章波; 王建; 赵文卿; 陈东
申请公开一种偏振装置及显示设备,属于偏振控制技术领域。偏振装置包括偏振片、液晶层、相位差膜层以及电压调节件,偏振片、液晶层和相位差膜层依次叠置,光线经偏振片输出第一线偏振光,第一线偏振光经液晶层输出椭圆偏振光,椭圆偏振光经相位差膜层输出第二线偏振光;电压调节件与液晶层电连接,电压调节件用于控制液晶层的电压,以通过电压改变椭圆偏振光的偏振状态,进而改变第二线偏振光的方向。显示设备包括上述的偏振装置。如此,液晶层、相位差膜层以及电压调节件占用的空间比机械结构占用的空间小,偏振装置体积较小,有利于集成至显示设备中。
11 基于液晶偏振光栅的分光器 CN202110408329.1 2021-04-16 CN112987324A 2021-06-18 曹际龙; 段丽峰; 李晓春
发明涉及光学技术领域,公开一种基于液晶偏振光栅的分光器,以便捷地将光束分成两束平行于入射方向的出射光束。本发明分光器包括:第一偏振光栅,用于将入射的非偏振光、线性偏振光或椭圆偏振光分成第一束左旋圆偏振光和第二束右旋圆偏振光;第二偏振光栅,用于将第一束左旋圆偏振光偏转成出射的第三束右旋圆偏振光,并将第二束右旋圆偏振光偏转成出射的第四束左旋圆偏振光;在第一偏振光栅与第二偏振光栅之间为空腔;其中,第一偏振光栅和第二偏振光栅具有相同的衍射偏转性能,第一偏振光栅与第二偏振光栅在分光器中平行排列且内部液晶分子的排布方向一致,以使得第三束右旋圆偏振光和第四束左旋圆偏振光平行于第一偏振光栅的入射光。
12 利用全穆勒矩阵椭圆偏振仪进行光学测量的方法 PCT/CN2014/084683 2014-08-19 WO2015078202A1 2015-06-04 刘涛; 崔高增; 李国光; 熊伟; 温朗枫

一种利用全穆勒矩阵椭圆偏振仪进行光学测量的方法,属于光学测量技术领域。该光学测量方法搭建全穆勒矩阵椭圆偏振仪的实验光路,对全穆勒矩阵椭圆偏振仪进行全部回归校准,将待测样品置于样品台上,得到待测样品的实验傅里叶系数,根据待测样品的实验傅里叶系数,得到待测样品的信息。由于该全穆勒矩阵椭圆偏振仪的校准方法不仅操作过程简单,而且充分利用了全穆勒矩阵椭圆偏振仪同次测量数据,引入的误差相对较小,校准得到的参数更加准确,进而,对待测样品进行测量时,测量结果更加准确。因此,该光学测量方法的过程得到简化。

13 一种液晶显示屏及显示设备 CN201210546701.6 2012-12-14 CN103018962A 2013-04-03 秦广奎
发明实施例提供一种液晶显示屏及显示设备,涉及液晶显示技术,在液晶两侧各设置一个光学补偿膜,通过第一光学补偿膜,将光线非垂直射入第一偏光层得到的偏振光,补偿成振动方向与光线沿90度方位射入第一偏光层得到的偏振光振动方向相同的椭圆偏振光,并借助液晶的相位延迟作用,将第一椭圆偏振光转化为振动方向相同,旋转方向相反的第二椭圆偏振光,通过第二光学补偿膜将第二椭圆偏振光补偿成能够被第二偏光层完全吸收的偏振光,实现对E模式液晶显示屏和O模式液晶显示屏以及E模式和O模式混合的多畴模式的液晶显示屏漏光现象的补偿。
14 一种液晶显示屏及显示设备 CN201210546701.6 2012-12-14 CN103018962B 2015-04-01 秦广奎
发明实施例提供一种液晶显示屏及显示设备,涉及液晶显示技术,在液晶两侧各设置一个光学补偿膜,通过第一光学补偿膜,将光线非垂直射入第一偏光层得到的偏振光,补偿成振动方向与光线沿90度方位射入第一偏光层得到的偏振光振动方向相同的椭圆偏振光,并借助液晶的相位延迟作用,将第一椭圆偏振光转化为振动方向相同,旋转方向相反的第二椭圆偏振光,通过第二光学补偿膜将第二椭圆偏振光补偿成能够被第二偏光层完全吸收的偏振光,实现对E模式液晶显示屏和O模式液晶显示屏以及E模式和O模式混合的多畴模式的液晶显示屏漏光现象的补偿。
15 一种基于频率上转换技术的偏振控制器及其工作方法 CN201811407326.0 2018-11-23 CN109375448B 2020-11-20 马建辉; 胡慧琴; 陈昱; 许广建; 潘海峰; 陈修亮; 武愕
发明公开了一种基于频率上转换技术的偏振控制器及其工作方法,采用浦单元产生功率可调的泵浦激光并通过线偏振单元将其调节为线偏振光,信号源发出的信号光通过圆偏振单元将其调节为圆偏振光;然后将所述线偏振光与所述圆偏振光入射到频率上转换单元产生上转换光,并通过控制所述泵浦激光的功率以控制进行频率上转换的所述线偏振光的功率;最后将所述频率上转换单元的出射光束进行相位补偿并过滤得到椭圆偏振信号光。本发明的优点是:通过控制泵浦激光的功率可实现将入射的圆偏振光调节为任意椭圆离心率的椭圆偏振光,并在最大转换功率下输出线偏振光,且在偏振调节控制过程中入射信号光与输出的信号光共线传播,不会改变传播方向。
16 一种基于频率上转换技术的偏振控制器及其工作方法 CN201811407326.0 2018-11-23 CN109375448A 2019-02-22 马建辉; 胡慧琴; 陈昱; 许广建; 潘海峰; 陈修亮; 武愕
发明公开了一种基于频率上转换技术的偏振控制器及其工作方法,采用浦单元产生功率可调的泵浦激光并通过线偏振单元将其调节为线偏振光,信号源发出的信号光通过圆偏振单元将其调节为圆偏振光;然后将所述线偏振光与所述圆偏振光入射到频率上转换单元产生上转换光,并通过控制所述泵浦激光的功率以控制进行频率上转换的所述线偏振光的功率;最后将所述频率上转换单元的出射光束进行相位补偿并过滤得到椭圆偏振信号光。本发明的优点是:通过控制泵浦激光的功率可实现将入射的圆偏振光调节为任意椭圆离心率的椭圆偏振光,并在最大转换功率下输出线偏振光,且在偏振调节控制过程中入射信号光与输出的信号光共线传播,不会改变传播方向。
17 显示面板及透明显示装置 CN201310294348.1 2013-07-12 CN103353682B 2016-09-28 马新利; 王强涛; 方正; 王海燕; 田允允
发明涉及显示技术领域,具体涉及一种显示面板及透明显示装置。本发明所提供的透明显示装置,通过偏振光源为显示面板提供椭圆偏振光或者圆偏振光,并将液晶层等效形成四分之一液晶波片,这样椭圆偏振光或者圆偏振光可以在通过液晶层等效形成的四分之一液晶波片后,形成线偏振光,从而不能透过彩膜基板上的上偏振片,当液晶层加电后,椭圆偏振光或者圆偏振光可以部分透过彩膜基板上的上偏振片从而实现画面显示效果;而自然光则可以通过彩膜基板上的上偏振片透过显示面板实现透明效果;本发明中的透明显示装置由于无需在阵列基板侧设置偏振片,从而提升了显示面板的透过率,大大改善了透明显示装置的透明效果,进而达到提升用户体验的效果。
18 显示面板及透明显示装置 CN201310294348.1 2013-07-12 CN103353682A 2013-10-16 马新利; 王强涛; 方正; 王海燕; 田允允
发明涉及显示技术领域,具体涉及一种显示面板及透明显示装置。本发明所提供的透明显示装置,通过偏振光源为显示面板提供椭圆偏振光或者圆偏振光,并将液晶层等效形成四分之一液晶波片,这样椭圆偏振光或者圆偏振光可以在通过液晶层等效形成的四分之一液晶波片后,形成线偏振光,从而不能透过彩膜基板上的上偏振片,当液晶层加电后,椭圆偏振光或者圆偏振光可以部分透过彩膜基板上的上偏振片从而实现画面显示效果;而自然光则可以通过彩膜基板上的上偏振片透过显示面板实现透明效果;本发明中的透明显示装置由于无需在阵列基板侧设置偏振片,从而提升了显示面板的透过率,大大改善了透明显示装置的透明效果,进而达到提升用户体验的效果。
19 一种利用全穆勒矩阵椭圆偏振仪进行光学测量的方法 CN201310611422.8 2013-11-26 CN104677834A 2015-06-03 刘涛; 崔高增; 李国光; 熊伟; 温朗枫
发明公开了一种利用全穆勒矩阵椭圆偏振仪进行光学测量的方法,属于光学测量技术领域。该光学测量方法搭建全穆勒矩阵椭圆偏振仪的实验光路,对全穆勒矩阵椭圆偏振仪进行全部回归校准,将待测样品置于样品台上,得到待测样品的实验傅里叶系数,根据待测样品的实验傅里叶系数,得到待测样品的信息。由于该全穆勒矩阵椭圆偏振仪的校准方法不仅操作过程简单,而且充分利用了全穆勒矩阵椭圆偏振仪同次测量数据,引入的误差相对较小,校准得到的参数更加准确,进而,对待测样品进行测量时,测量结果更加准确。因此,该光学测量方法的过程得到简化。
20 一种生成椭圆偏振矢量光场的装置 CN201510191949.9 2015-04-21 CN104777625A 2015-07-15 顾兵; 许丹凤; 芮光浩; 潘洋; 崔一平
发明公开了一种生成偏振矢量光场的装置及方法,包括光束准直扩束系统,特殊形状矢量光场生成系统和探测系统。该方法在利用空间光调制器生成矢量光场的基础上,通过调节两束相干光的振幅,从而对生成的矢量光场的偏振态进行调控,得到椭圆偏振矢量光场。通过改变两个衰减片的衰减幅度,分别可以生成线偏振矢量光场、椭圆偏振矢量光场和圆偏振涡旋光场。本发明设计相比于其他常用的生成矢量光场的方法,提出了生成一种椭圆偏振矢量光场的方法,椭圆偏振矢量光场在偏振态的空间结构的调控,焦场的构造,瑞利粒子所受光的操控等方面有着重要的研究意义,是偏振调控问题中的重要组成部分。同时,本发明具有光路简单,技术成熟,稳定性强等优点。
QQ群二维码
意见反馈