合成塔

申请号 CN87210291 申请日 1987-07-15 公开(公告)号 CN2032190U 公开(公告)日 1989-02-08
申请人 凯洛格总公司; 发明人 斯蒂芬·A·诺埃;
摘要 一种具有两个换热器的立式冷壁三层催化剂床 氨 合成塔,其中下部换热器轴向配置在上环形催化剂床内。来自换热器的已加热 合成气 在中催化剂床内开始转化。
权利要求

1、立式合成塔特征是:
a)一个第一圆筒形耐压壳体(1),并具有与之相连的第一外顶盖(2)和第一外底盖(3);
b)一个第二耐压壳体(4),其直径小于第一耐压壳体(1)的直径,从第一外顶盖(2)的中心孔垂直延伸,第二圆筒形耐压壳体(4)具有其中带有气体出口(6)的第二外顶盖(5);
c)在第一耐压壳体(1)内设置第一圆筒形内壳体(7),从而构成第一壳体环隙(8),该内壳体具有与之相连的内顶盖(9)和内底盖(10);
d)在圆筒形内壳体(7)内设置与之相连的第一横挡板(11);
e)下部换热器(13)具有环形列管(14)和内壳层(15)、外壳层(16),该换热器(13)配置在第一圆筒形内壳体(7)内,并且垂直向上支承在第一横挡板(11)的中心孔上;
f)在第二圆筒形耐压壳体(4)内配置上部管式换热器(18);
g)在第二圆筒形耐压壳体(4)内配置第二圆筒形内壳体(19),从而构成第二壳体环隙(20),第二内壳体从内顶盖(9)的中心孔垂直延伸;
h)第一轴向管(22)从上部管式换热器(18)向下悬挂,基本上达到圆筒形内壳体(7)的全长;
i)第二轴向管(23)包围第一轴向管(22)的纵向部分,从下部换热器(13)的内壳层(15)向下垂挂;
j)第三轴向管(24)围绕第二轴向管(23)的纵向部分,从下部管壳体式换热器(13)向下垂挂;
k)上环形催化剂床(25)被合成塔的圆筒形内壳体(7)和下部换热器(13)的外壳层(16)径向限定;
l)邻近上催化剂床(25)的下方配置中环形催化剂床(26),并且被合成塔的圆筒形内壳体(7)和第三轴向管(24)径向限定;
m)下环形催化剂床(27)被合成塔的圆筒形内壳体(7)和第一轴向管(22)径向限定;
n)使气体流过第一壳体环隙(8)和第二壳体环隙(20)、上部管式换热器(18)的管间、下部换热器(13)的管程、中环形催化剂床(26)以及下部管壳式换热器(13)壳程的装置。
2、根据权利要求1的合成塔,进一步的特征是气体从下部换热器(13)的壳程流过上环形催化剂床(25)、下环形催化剂床(27)的平行流装置;来自上、下环形催化剂床气体的合并排气管(28),以及已合并气体经由第一轴向管、上部管式换热器(18)的管程和气体出口的装置(16)。

说明书全文

发明涉及由氢气和氮气经放热催化合成的立式合成塔。氨合成方法是人所共知的,一般在压约70-325巴左右,温度约340℃-525℃左右条件下进行。

现代的大型氨厂普遍采用单合成塔。在每天生产1000吨的工厂,催化剂体积定为约40-90米    左右,装在直径约2-4米左右,长或高约10-35米左右的合成塔内,塔内的催化剂床可布置气体横流、径向流或轴流。轴流合成塔是相当普通的,而且通常采用双层结构的冷却壁,它提供了使贴近耐压外壳体的冷却气体通过的壳体环隙通道。本发明的合成塔是冷壁轴流合成塔。

由于反应平衡的考虑和催化剂过热与损坏的可能性,所以在单层催化剂床中装有全部催化剂并不适宜。为此,通常做法是把催化剂置于多层床中以提供床层间冷却或床层内冷却,按常规,这种冷却是由床层间注入冷却合成气与部分已转化气体直接热交换而达到的(即一个直接冷却合成塔或直接气体冷却与床层间管壳式换热器的某种组合)。侧重于直接冷却的合成塔结构,由于根据引入的冷却气体积,所用的管壳式换热器的体积较小、数量较少,所以费用也必然低于组合结构。然而这些结构的工厂,必须负担压缩合成气的高昂费用,因为并不是全部合成气能与合成塔内的全部催化剂相接触,因此,较多的气体必需经循环才能得到一定量的氨产品。

从上所述可理解到氨合成塔是复杂的大型设备,需要更高的效率和不太昂贵的设计。

本发明提供一种具有两个换热器的立式冷壁三层床合成塔。在合成塔的圆筒形内壳体中垂直排列着三层轴流催化剂床。气体顺序地流过壳体环隙、上部第一管式换热器的管间、下部第二换热器的管程,然后通过第一催化剂床,实际上,该催化剂床处于合成塔的中部即中催化剂床。离开第一催化剂床的气体流过下部第二换热器的壳程,虽然上部和下部催化剂可使来自下部换热器的气体串流,但是我推荐把气流分成通过上、下两层催化剂床的平行分流,然后,已转化气体合并后在上部第一换热器管程中冷却,并且由此从合成塔排出。

本发明的合成塔在催化剂床层间或催化剂床层内不采用外部冷却气,即是一个满流合成塔,其中第二换热器壳程分别与上、下两层催化剂床的进口部分不相通,于是,来自上、下两层催化剂床的全部转化气体开始通过第一催化剂床即中催化剂床。

这些催化剂床各自被圆筒形内壳体的相应部位径向界定。第一横向流体挡板或隔板安装在上催化剂床和中催化剂床之间,以防止它们之间的直接气体流通。同样地,第二横向流体挡板或隔板安装在中催化剂床和下催化剂床之间,以防止它们之间的直接气体流通。轴向导管或其它流通装置被安装在催化剂床中,根据上述气流行程确定气流路线。

氨合成塔是昂贵的高压设备,其费用随着为必要的催化剂体积和间接换热器所要求的内部容积而增加。我发现在紧凑的立式合成塔结构中可容纳两个换热器,而不致严重影响催化剂容量,可在上催化剂床内设置其中一个换热器,并且把中催化剂床用作第一操作床,即进入的已加热合成气开始通过中催化剂床被冷却,然后,最好平行流过上、下两层催化剂床。这种配置容许上、下两层催化剂床的催化剂体积较大,在第一即中催化剂床的催化剂体积较小。

由于进入第一催化剂床的反应合成气是只含有少量其它气体的氢气和氮气,因此合成反应比较快,并且转化应该限制在避免催化剂因温度 过高造成的损耗。来自第一即中催化剂床的部分已转化气体在第二换热器中冷却,该已冷却的部分转化气体被平行引入上催化剂床和下催化剂床。这种已冷却气体含有氨气和减少了的氢气和氮气,该减少了的氢气和氮气导致在下游平行催化剂床的合成反应较慢,以及较高的氨浓度平衡,于是,由于转化成氨量的增加,上、下催化剂床减少了其所产生的过热所造成的损害,因此可以比中催化剂床容纳更多的催化剂。为了最有效地利用本发明的合成塔,上、下两层催化剂床的催化剂体积基本上相等,中催化剂床的催化剂体积是上催化剂床或下催化剂床中催化剂体积的35%-65%。

图1是本发明的一个实施例,包括最佳的气体平行的分流通过上催化剂床和下催化剂床。

图2是换热器和上催化剂床最佳结构布置的详图。

图3是取自图1的A-A处所示合成塔的剖面。

参看图1,立式合成塔包含在第一圆筒形耐压壳体1内,它与第一外顶盖2和第一外底盖3相连。具有第二外顶盖5的第二圆筒形耐压壳体4,用法兰连接到第一外顶盖的中心孔处,并由此垂直延长,该顶盖5带有贯穿此盖的气体出口管6。第二耐压壳体的直径小于第一耐压壳体的直径,一般小于其直径的一半。在第一耐压壳体内设置与其平行的第一圆筒形内壳体7,由此构成第一壳体环隙8,它与设置在外底盖3的气体进口相通,内顶盖9和内底盖10连接在内壳体上。

第一横挡板11和第二横挡板12安装在圆筒形内壳体内,并且在该处密封。这些挡板使催化剂床彼此隔离,并且构成碟形底。

如上所述,本发明的合成塔包含两个间接换热器,都垂直设置在合成塔的轴线上,加热进入的合成气。下部换热器13具有环形列管14、环形管板、内壳层15和外壳层16。为表示清楚起见,图中只示出一圈管子,但是,一般采用几圈通用管子型式。下部换热器配置在第一圆筒形内壳 体7的上部内,并且垂直向上,为安装换热器,最好由中心开孔的第一横挡板11支承。在图1中,换热器由其底部板边缘处的第一横挡板支承并与其密封,它可以安装得稍高些或稍低些。在后一种情况下,换热器的外壳层16与横挡板密封。换热器也可由其它装置支承,如圆筒形通道构件17,特别是外通道构件。然而,按照叙述足以推断主要是由第一横挡板支承,在此情况下,外通道构件时装有膨胀节(未示出)。

内通道构件17的顶端装有法兰,用来支承上部管式换热器18,在其上管板和下管板带有管帽,上部管式换热器18最好完全配置在合成塔顶部第二圆筒形耐压壳体4内。换热器的上管帽放出已冷却的转化气体,通过装有膨胀节(未示出)的气体出口6。选择排列若干壳层,也可用作上部换热器,将进入的合成气从第一壳体环隙8传送到换热器管子外部的冷壳程即管间。我推荐以这样的方式在第二耐压壳体4内安装第二圆筒形内壳体19,即第二内壳体从内顶盖9的中心孔21向上垂直延伸,由此构成把气体传送到换热器顶部的第二壳体环隙20。

内通道构件17又支承向下悬挂的第一轴向管22,该管子基本上达到圆筒形内壳体的全长,一直延伸到接近内底盖10上面的位置

第二轴向管23围绕第一轴向管22的纵向部分,并从下部换热器13的内壳层15向下垂挂至与第二横挡板12连接。从第二轴向管垂挂点以下内壳层15的下部未端处提供了气流通道。

第三轴向管24围绕第二轴向管的纵向部分,并从下部换热器13环形列管内的位置向下垂挂,最好从环形底管板的内缘向下垂挂。第三轴向管延伸到接近第二横挡板12上面。

合成塔的催化剂床是环形轴向向下的,可任选支承催化剂床的筛网,用第一圆筒形内壳体7限定催化剂床的外径,用下部换热器外壳层16限定上环形催化剂床25的内径,用第三轴向管24限定中环形催化剂床26的内径,用第一轴向管22限定下环形催化剂床27的内径。

至少有一根排气管28垂挂于第一横挡板11,穿过中催化剂床和下催化剂床,延伸至接近内底盖10上面的位置,使来自上、下催化剂床的平行气流在向上流过第一轴向管之前混合,然后向上气流在向上流过第一轴向管、上部换热器18管程、最后流出气体出口6。

上述结构使反应合成气流过壳体环隙8和20,进入上部换热器18的冷壳程和下部换热器13的冷管程。一般将1-20体积%的反应合成气体由辅加的气体入口装置(未示出)通过一个或两个热交换器,使进入第一催化剂床即中环形催化剂床26的合成气的温度得到精确的控制。

离开中催化剂床26的全部气体,在第二轴向管23和第三轴向管24构成的环形管中向上流动,通过下部换热器13的热壳程,在换热器出口处分成大致相等的两部分,其中一部分向下流过上催化剂床25和排气管28,流到下催化剂床和内底盖10之间的充气室。另一部分向下流过由下部换热器内壳层15和第一轴向管22构成的环隙、由第二轴向管23和第一轴向管22构成的环隙,以及下环形催化剂床27,流到底部充气室。然后如上所述,合并这两部分气体。

QQ群二维码
意见反馈