聚合物组合物、应用该组合物的方法及该组合物在路轨道结构中的用途

申请号 CN201180031789.1 申请日 2011-06-01 公开(公告)号 CN103003336A 公开(公告)日 2013-03-27
申请人 艾迪兰珊德拉有限公司; 发明人 格瑞特·马里努斯·凡·德·厚文; 彼得·约斯特·克科文; 斯蒂法努斯·雅各布斯·玛丽亚·科特里斯;
摘要 一种 聚合物 组合物,包括:a)组分1,包括 硅 烷封端的预聚物;以及b)组分2,包括 水 ;以及c)组分3,包括硅烷醇缩合催化剂。所述组合物在应用前 包装 为至少两种单独的包装物,其中,包装物不同时包含组分1、组分2和组分3所有三种组分。在所述组合物中,水相对于所述组合物中存在的每100重量份预聚物以0.01~10重量份的量存在,并且所述包装物中的每一种的表观 粘度 根据ISO 2555在23℃下至多为95Pa.s(布氏粘度(A/6/10))。所述组合物可合适地应用于 铁 路轨道结构用以减缓铁轨的噪音和震动。
权利要求

1.一种聚合物组合物,包括:
a)组分1,包括烷封端的预聚物;以及
b)组分2,包括;以及
c)组分3,包括硅烷醇缩合催化剂,
所述组合物在应用前包装为至少两种单独的包装物,其中,包装物不同时包含组分1、组分2和组分3所有三种组分,
在所述组合物中,水相对于所述组合物中存在的每100重量份预聚物以0.01~10重量份的量存在,并且
其中,所述包装物中的每一种的表观粘度根据ISO 2555在23℃下至多为95Pa.s(布氏粘度(A/6/10))。
2.根据权利要求1所述的组合物,所述组合物包括:
a)组分A,包括所述硅烷封端的预聚物;以及
b)组分B,包括水和/或所述硅烷醇缩合催化剂,
其中,如果组分B包含选自水和硅烷醇缩合催化剂中的一种成分,组分A则包括至少另一种成分,并且其中组分A和组分B在应用前被单独包装。
3.根据权利要求2所述的组合物,其中,组分A包括硅烷封端的预聚物和水,并且组分B包括所述硅烷醇缩合催化剂和硅烷封端的预聚物,其中,组分A和组分B在应用前被单独包装。
4.根据前述权利要求中任一项所述的组合物,其中,所述预聚物包括硅烷封端的聚醚预聚物。
5.根据前述权利要求中任一项所述的组合物,其中,所述包装物中的每一种的粘度根据ISO 2555在23℃下在0.02Pa.s(布氏粘度(A/1/100))至50Pa.s(布氏粘度(A/6/20))范围内。
6.根据前述权利要求中任一项所述的组合物,其中,所述组合物中水的量相对于每
100重量份预聚物在0.1~10重量份的范围内。
7.根据前述权利要求中任一项所述的组合物,其中,所述硅烷醇缩合催化剂是羧酸,或羧酸锡和铋化合物的组合。
8.根据前述权利要求中任一项所述的组合物,其中,所述包装物的一种或多种包括微球体。
9.根据前述权利要求中任一项或多项所述的组合物,其中,所述包装物的一种或多种包括软木颗粒和/或橡胶细粒。
10.根据前述权利要求中任一项所述的组合物,其中,所述包装物的一种或多种包含密
3
度大于1kg/dm 的填料。
11.根据前述权利要求中任一项所述的组合物,其中,所述包装物混合后的所述组合物
3
密度在0.5~2.5kg/dm 的范围内。
12.一种应用聚合物组合物的方法,所述方法包括下列步骤:
i)混合聚合物组合物以得到未固化的混合物,所述聚合物组合物包括:
a)组分1,包括硅烷封端的预聚物;以及
b)组分2,包括水;以及
c)组分3,包括硅烷醇缩合催化剂,
所述组合物包装为至少两种单独的包装物,其中,包装物不同时包含组分1、组分2和组分3所有三种组分,
在所述组合物中,水相对于所述组合物中存在的每100重量份预聚物以0.01~10重量份的量存在,并且
其中,所述包装物中的每一种的表观粘度根据ISO 2555在23℃下至多为95Pa.s(布氏粘度(A/6/10));
ii)将所述未固化的混合物的层应用到至少一个基底上;以及
iii)使所述未固化的混合物的层固化。
13.根据权利要求12所述的方法,其中,将所述未固化的混合物应用为厚度至少为5mm的层。
14.一种根据权利要求1~11中任一项所述的聚合物组合物在路轨道结构中的用途,尤其在铁路轨道结构中固定铁轨的用途。
15.一种通过权利要求12所述的方法得到的铁路轨道结构。

说明书全文

聚合物组合物、应用该组合物的方法及该组合物在路轨

道结构中的用途

技术领域

[0001] 本发明涉及一种聚合物组合物、应用该组合物的方法及该组合物在铁路轨道(railway track)结构中的用途。具体地,本发明涉及其中已经包括烷封端的预聚物的聚合物组合物。

背景技术

[0002] 人们知道铁路轨道结构能嵌入到聚合物组合物中以减缓震动和噪音。这种组合物已经描述在例如DE4036124中。该文件描述了一种用于铁轨(rail)交通系统的噪音降低器件,该噪音降低器件包括并入铅或等效的隔音材料并被压入轨底的顶部与轨头的底部及侧面之间的腔内的聚酯轮廓主体(profilebody)。在这些应用中的聚氨酯组分可包含多种填料。在DE4004208中,描述了一种系统,其中,铁轨凹槽填充有预塑棒形状的组分。该预塑棒已经由包含废弃橡胶和聚氨酯的组合物制造。此外,EP211461公开了一种铁路,其中,铁轨通过靠着刚性支撑层的弹性支撑层得到支撑。以这种方式,铁轨嵌入在弹性材料,尤其是聚氨酯主体中。另一种其中使用聚氨酯的铁路轨道结构已经描述在W02008/040549中,其公开了一种紧固到支撑砌上的铁轨。在该支撑砌块与支撑结构之间放入预制的有弹性的构件以降低运行在铁轨上的火车和有轨电车的噪音和震动。该元件由例如聚氨酯制成。
[0003] 聚氨酯化合物提供令人满意的噪音和震动减缓性能。它们的生产涉及多元醇和异氰酸酯。在聚氨酯的生产中,聚氨酯作为双组分组合物供应,其中,一方面的诸如亚甲基二苯基异氰酸酯和甲苯二异氰酸酯预聚物等异氰酸酯和另一方面的多元醇被提供在单独包装的容器或套件中。这种聚氨酯组合物的实例已经描述在US5041517中。因为异氰酸酯与反应比与多元醇反应更快,所以聚氨酯在铁路轨道结构中的户外应用可能受例如源于天气条件如雨、雾或高湿度的湿气妨碍,或在湿基底上受妨碍。
[0004] 因此,开发不具有该缺点的能适用于铁路轨道结构中的另一聚合物组合物是有利的。
[0005] US3971751公开了一种包括具有硅端基的聚醚的组合物,该组合物在室温下暴露在大气湿气中能变成橡胶一样的物质。该聚合物通常通过大气湿气固化。然而,也可能加入额外的湿气以加速固化。当加入湿气或水时,可应用双组分体系。具有该类型聚合物的体系已经发现作粘合剂和/或密封剂的用途,这从EP824574和EP1743008中清晰可见。在EP824574中,已经描述了基于硅烷封端的聚醚预聚物的双组分密封剂组合物,其中第一组分包括具有高起始粘合性的湿气固化预聚物密封剂,并且第二组分是预聚物的交联剂和/或促进剂。高起始粘合性通过利用暴露在湿气中时能迅速固化的高粘性的浆状粘合剂或密封剂组合物获得。EP1743008也公开了一种双组分密封剂组合物,具有包括硅烷封端的预聚物、交联催化剂及促进粘合的低分子量硅烷的第一组分,以及包括水和吸水增稠剂的第二组分,并且,可选地,还包括硅烷封端的聚醚预聚物。在该已知组合物中的两种组分都是浆状的。双组分密封剂与单组分体系相比,声明的优点是非多孔性基底之间的键迅速固化,很大程度上与空气湿度无关。所得的与该组合物结合在一起的基底的组件,可很快被进一步处理和/或运输,而无需进一步机械固定。这两种组合物都可用作粘合剂和/或密封剂,例如,用于接缝密封目的。

发明内容

[0006] 惊奇地,现在已经发现具有相对低粘度的硅烷封端的预聚物组合物能用于铁路轨道结构中,由此克服了聚氨酯的应用缺点。
[0007] 因此,本发明提供一种聚合物组合物,所述聚合物组合物包括:
[0008] a)组分1,包括硅烷封端的预聚物;以及
[0009] b)组分2,包括水;以及
[0010] c)组分3,包括硅烷醇缩合催化剂,
[0011] 所述组合物在应用前包装为至少两种单独的包装物(package),其中,包装物不同时包含组分1、组分2和组分3所有三种组分,
[0012] 在所述组合物中,水相对于所述组合物中存在的每100重量份的预聚物以0.01~10重量份的量存在,并且
[0013] 其中,所述包装物中的每一种的表观粘度根据ISO 2555在23℃下至多为95Pa.s(布氏粘度(A/6/10))。
[0014] 由于包装物中组分的相对低粘度,本发明提供一种混合后能浇注的组合物,该组合物流动非常好,并且其中起始粘合性相对低,从而所述组合物可应用于预定位置。在铁路轨道结构中的应用会花费一些时间,从而应该避免固化进行太快。该相对慢的固化通过本发明的组合物得以实现。进一步,因为所述组合物提供水作为在所述组合物内的固化介质,所以当混合时,固化在整个混合的组合物中均匀地进行。本领域技术人员将意识到,EP824574和EP1743008的迅速固化的组合物的浆状组分不适合于此类应用,因为这些组合物太粘且固化太迅速以至于不能应用于相对难以到达的位置。当组分混合并应用于湿表面上时,所得的组合物不起泡沫并且所述组合物粘合到甚至在水下的湿基底上。所述组合物具有额外的优点,即它具有良好的电绝缘性能。它进一步具有非常好的温度稳定性和耐久性,并且在宽的温度范围内保持它的弹性,包括低于冻结温度的温度,例如,-20℃。进一步,材料能容易地再循环。
[0015] 因此,本发明还提供一种应用聚合物混合物的方法,该方法包括下列步骤:
[0016] i)混合聚合物组合物以得到未固化的混合物,所述聚合物组合物包括:
[0017] a)组分1,包括硅烷封端的预聚物;以及
[0018] b)组分2,包括水;以及
[0019] c)组分3,包括硅烷醇缩合催化剂,
[0020] 所述组合物包装为至少两种单独的包装物,其中,包装物不同时包含组分1、组分2和组分3所有三种组分,
[0021] 在所述组合物中,水相对于所述组合物中存在的每100重量份的预聚物以0.01~10重量份的量存在,并且
[0022] 其中,所述包装物中的每一种的表观粘度根据ISO 2555在23℃下至多为95Pa.s(布氏粘度(A/6/10));
[0023] ii)将所述未固化的混合物的层应用到至少一个基底上;以及
[0024] iii)使所述未固化的混合物的层固化。
[0025] 这些组合物的固化相对慢,可能花费数分钟,例如,从2分钟至120分钟。固化的持续时间还可取决于未固化的混合物的温度、基底的温度、硅烷醇缩合催化剂的本质和浓度以及水的浓度。
[0026] 在另一方面,本发明提供一种上述组合物在铁路轨道结构中的用途。
[0027] 组分1、组分2和组分3被单独包装为至少两种包装物。因此可提供由三种或更多种包装物组成的组合物。上述包装物可分别包含组分1、组分2和组分3。然而,如将在下面阐述的内容,所述组合物中组分的相对量可显著变化。如果三种组分被包装在三种或更多种包装中,可能对以最期望的比例混合造成不必要地困难。因此,优选以包括下述组分的形式提供本聚合物混合物:
[0028] a)组分A,包括硅烷封端的预聚物;以及
[0029] b)组分B,包括水和/或硅烷醇缩合催化剂,
[0030] 其中,如果组分B包含选自水和硅烷醇缩合催化剂中的一种成分,组分A则包括至少另一种成分,并且其中组分A和组分B在应用前被单独包装。
[0031] 在特别优选的实施方式中,组分A包括硅烷封端的预聚物和水,并且组分B包括硅烷醇缩合催化剂和硅烷封端的预聚物,其中,组分A和组分B在应用前被单独包装。
[0032] 组分1或组分A包括硅烷封端的预聚物。预聚物在硅烷基之间的聚合物链可改变。例如,可使用其中硅烷基之间的聚合物链由以下构成的预聚物:聚氨酯残基、聚烯残基、诸如聚丙烯酸酯或聚甲基丙烯酸酯等聚酯(例如聚丙烯酸甲酯、聚丙烯酸乙酯、聚甲基丙烯酸甲酯或聚甲基丙烯酸乙酯)、聚醚,以及它们的混合物。优选硅烷封端的预聚物包括硅烷封端的聚醚预聚物。除已经提及的与上述组合物有关的通常优点外,聚醚类预聚物具有额外的优点,即在火灾的情况下或当焊接或切断铁轨时,上述材料不会释放出氰化氢,而当在铁路轨道结构中使用聚氨酯时可能会发生上述情况。这种预聚物可由聚醚骨架和甲硅烷基末端基组成。甲硅烷基包括羟基及能水解的基团。这些能水解的基团包括卤素、烷基、酰氧基、氨基烷基-二烷氧基。更多的基团已经描述在US3971751。更优选,预聚物包括烷基-二烷氧基甲硅烷基端基,更具体地包括甲基-二甲氧基甲硅烷基端基。每个预聚物分子的末端甲硅烷基端基的数目可高至12。高于2的数目确保预聚物链之间的交联可发生,这增强了固化产物的强度。或者,可加入交联剂或至少部分预聚物包括三个或更多个臂,在臂的末端处存在一个或多个硅烷基。聚醚骨架优选由烷氧单元组成,该烷氧单元由2~6个原子的直链或支链亚烷基以及氧自由基组成。预聚物的数均分子量可在范围内变化。有利地,预聚物的数均分子量在500~50000范围内变化,优选在2000~10000范围内变化。如果分子量较高,粘度可能变得不期望地高,而在较低分子量时,最终的固化混合物的弹性变得相对低。用于制备上述预聚物的合适方法已经描述在US3971751中。
[0033] 上述包装物的表观粘度至多为95Pa.s(布氏粘度(A/6/10)),其在23℃下通过ISO 2555测定。标准详述了利用标准中描述的旋转粘度计测定液态或类似状态的树脂的表观粘度的方法。尽管对于不同的粘度应用不同的纺锤或不同的旋转频率,该粘度计准许0.02~60000Pa.s的粘度测量。优选每种组分的表观粘度根据ISO 2555在23℃下至少为
0.02Pa.s(布氏粘度(A/1/100))。这确保能得到容易的混合。更优选,上述包装物中的每一种的粘度根据ISO 2555在23℃下从0.02Pa.s(布氏粘度(A/1/100))到50Pa.s(布氏粘度(A/6/10))变化,最优选从0.1Pa.s(布氏粘度(A/1/50))到50Pa.s(布氏粘度(A/6/10))变化。
[0034] 组合物中水的量能依据所用的预聚物和组合物将要固化的速率由本领域技术人员选择。合适的量为相对于每100重量份预聚物的0.01~10重量份。较低的量降低固化速率,而较高的量可能影响固化产物的强度。而且,如果水的量在上述范围内,能获得更佳的固化过程的均匀性。由相对于每100重量份预聚物的0.1~2.0重量份的水量已经获得了良好的结果。
[0035] 硅烷醇缩合催化剂能选自各种各样已知的催化剂。US3971751已经公开了许多合适的催化剂。其他合适的催化剂已经描述在EP520426及US2007/0060732中。作为催化剂的合适的实例包括烷基酸酯,例如四丙基钛酸酯或四丁基钛酸酯及钛配合物、有机硅钛酸酯;羧酸的金属盐,特别是羧酸,例如辛酸亚锡、十二酸二丁基锡、乙酸二丁基锡以及来酸二丁基锡、环烷酸锡、烷氧基锡(tin alkoxylate)或烷氧基二丁基锡(dibutyl tin alkoxylate)(其中该烷氧基具有2~16个碳原子)、羧酸烷基锡烷,例如二乙酸基二烷基锡烷(bisacetoxy dialkylstannane)(其中该烷基可包含4~12个碳原子),以及乙酰丙二丁基锡;铋盐与羧酸的反应产物,例如三(2-乙基-己酸)铋、三(新癸酸)铋;有机锌化合物,特别是羧酸锌,例如辛酸锌;氨基化合物,例如吗啉、N-甲基吗啉、2-乙基-2-甲基咪唑、1,8-二氮杂双环(5.4.0)十一碳-7-烯、二丁基氨-2-乙基己酸;以及其他已知对硅烷醇缩合反应有效的酸性催化剂或性催化剂。还可使用合适催化剂的混合物。优选羧酸锡,并且特别优选羧酸锡与羧酸铋的组合。
[0036] 用于固化的催化剂量可相对于每100重量份预聚物在0.01~10重量份范围内。太少的量将不期望地使反应慢下来。如果使用较高的量,可能产生可引起气体形成并产生泡沫的局部热斑点。泡沫的形成影响固化产物的强度。
[0037] 如果需要,粘合性和固化速率可通过加入低分子量烷氧基硅烷化合物来影响,例如3-缩水甘油醚氧基丙基三烷氧基硅烷、3-丙烯酰氧基丙基三烷氧基硅烷、3-氨基丙基三烷氧基硅烷、1-氨基烷基三烷氧基硅烷、乙烯基三烷氧基硅烷、α-甲基丙烯酰氧基甲基三烷氧基硅烷、N-氨基乙基-3-氨基丙基三烷氧基硅烷、N-氨基乙基-3-氨基丙基甲基二烷氧基硅烷、苯基氨基丙基三烷氧基硅烷、氨基烷基三烷氧基硅烷、i-丁基甲氧基硅烷、N-2-氨基乙基)-3-氨基丙基三烷氧基硅烷或它们的混合物。在上述化合物中,烷氧基合适地为C1~6烷氧基,更优选为C1~4烷氧基。代替上述三烷氧基硅烷化合物,还可使用相应的二烷氧基硅烷类似物,在这种情况下,烷氧基由非功能性C1~8烷基取代。此外,可使用上述低分子量烷氧基硅烷化合物通过烷氧基的低聚反应得到的低分子量低聚烷氧基硅烷。还可使用上述低分子量烷氧基硅烷化合物的混合物。
[0038] 在铁路轨道结构中,在用于减缓噪音和震动的聚合物组合物中使用填料和其他添加剂并不是不常见。在本发明中也合适地使用了填料和添加剂。将与组分1、组分2和组分3,或组分A和组分B分开的填料和/或添加剂加入到未固化的混合物中是一种选择方案。有利地,在根据本发明的组合物的一种或多种包装中,可包括一种或多种填料和其他添加剂。一种非常合适的填料包括微球体。在本申请中,微球体指由有机材料或无机材料构成的具有1mm或更小的直径,优选具有500μm或更小的直径的中空体。与其中没有加入微球体的产物相比,这些微球体的优点在于固化产物改进了弹性。微球体的密度合适地3 3
在0.01~0.9kg/dm 范围内,优选在0.1~0.5kg/dm 范围内。加入到组合物中微球体的量可根据需要的弹性而变化。通常,微球体的量相对于每100重量份预聚物将选自0.01~
100重量份,优选相对于每100重量份预聚物选自0.1~50重量份,更优选相对于每100重量份预聚物选自0.3~40重量份。如上指出,该微球体可已经由无机材料或有机材料制成。合适的微球体是中空火山灰球(silas balloon)(由火山灰制成的中空微球体)、珠光体、中空玻璃球(glass balloon)、中空二氧化硅球(silica balloon)或中空飞灰球(fly ash balloon)、中空球(aluminaballoon)、中空氧化锆球(zirconia balloon)或中空碳球(carbon balloon)。用于生产中空微球体的合适的有机材料包括树脂、环氧树脂或脲、聚苯乙烯、聚甲基丙烯酸酯、聚乙烯醇,或苯乙烯-丙烯酸酯聚合物或偏二氯乙烯聚合物。进一步,某些微球体可具有涂布有热固性树脂的表面。
[0039] 另一合适的填料材料由软木颗粒及有机或无机纤维构成。有机纤维可为合成的,例如,聚酯纤维或聚酰胺纤维,也可使用诸如亚麻纤维等天然纤维。填料材料还可包含其他聚合物,例如:聚苯乙烯、聚氨酯、如聚乙烯或聚丙烯等聚烯烃。填料还可为再循环材料。非常合适的再循环材料是橡胶细粒,例如,来自颗粒状的轮胎。合适的无机填料包括玻璃纤
3
维。这些填料的密度合适地在0.1~1.0kg/dm。
[0040] 非常优选的填料包括软木颗粒、中空二氧化硅球、中空玻璃球以及它们的混合物。如果存在这些填料,它们可在上述组分中的任一种或多种中存在。
[0041] 上述组合物还可包含密度大于1kg/dm3的多种填料,这些填料合适地有效增强所得的固化聚合物混合物,例如气相法二氧化硅(fume silica)、沉淀二氧化硅、硅土气凝胶、炭黑、碳酸、碳酸镁、硅藻土、白石、粘土、滑石粉、氧化钛、氧化铁、氧化锌、玻璃球及其他细丝。提高固化产物硬度的其他合适的填料是骨料(aggregate),即粗颗粒,包括沙子、沙砾、碎石、矿渣及再循环的混凝土。具有骨料的组合物在铁路轨道结构中提供稳定的地基同时保持弹性。也可使用填料的混合物。
[0042] 骨料具有1kg/dm3以上的密度。它们在还包含微球体的组合物中特别有用。由于3
微球体的存在,微球体与预聚物的组合的密度可能低于1kg/dm。如果将这种组合浇注入模具中,例如铁路结构中的腔和缝隙中,人们冒着如下险:可能将来自环境中的水夹带进组合物中,因此负面地影响铁路轨道结构的载荷容量。通过将骨料加入至组合物中,不仅提高
3
固化产物的硬度,而且增加所得组合物的密度,从而该密度为1kg/dm 以上。这确保了组合物将在铁路轨道结构的腔和缝隙中可能存在的水赶出这些腔和缝隙,从而保证了铁路轨道
3
结构的载荷容量。如果未固化的混合物的密度为1kg/dm 以上,铁路轨道结构的腔和缝隙中的静压较大,从而未固化的混合物在其中可能存在任何阻碍物下流动较好。水被赶出,这确保没有水存在,水可能危及电绝缘性并且在冻结条件下形成损坏上述结构的
[0043] 虽然这些填料也可单独加入,但合适地,将这些填料包括在根据本发明的组合物3
的包装中。具有1kg/dm 以上密度的填料可在组分的任一种或多种中存在。
[0044] 填料的量能由本领域技术人员根据他的愿望决定。该量还可取决于组合物中存在3
的其他添加剂和微球体。合适地,具有1g/cm 以上密度的填料的量相对于每100重量份预聚物在0~300重量份的范围内。
[0045] 有利地,未固化的混合物在包装物混合后的密度在0.5~2.5kg/dm3范围内。
[0046] 根据本发明的组合物还可包含一种或更多种增塑剂以改进固化产物的延伸性能或以使能够并入更大量的填料。例如,下列增塑剂可单独使用或以两种或更多种的组合使用:邻苯二甲酸酯,例如邻苯二甲酸二辛酯、邻苯二甲酸二丁酯或邻苯二甲酸丁基苄基酯;脂肪族二元酸酯,例如己二酸二辛酯、琥珀酸异癸酯或癸二酸二丁基;乙二醇酯,例如二乙二醇二安息香酸酯;或季戊四醇酯;脂肪族酯,例如油酸丁酯或甲基乙酰基蓖麻醇酸酯;磷酸酯,例如磷酸三甲苯酯、磷酸三辛酯或磷酸辛基二苯酯;烷基磺酸酯,例如烷基磺酸的苯酚酯,其中,烷基包含8~25个碳原子,特别是烷烃(C10~21)磺酸苯基酯(Mesamoll exLanxess出售);环氧增塑剂,例如环氧化大豆油或苄基环氧硬脂酸酯;聚酯增塑剂,例如由二元酸和二价醇产生的聚酯;聚醚多元醇,例如聚丙二醇及其衍生物;聚苯乙烯,例如聚α-甲基苯乙烯或聚苯乙烯;以及其他增塑剂,例如聚丁二烯、丁二烯-丙烯腈共聚物、聚氯丁烯、聚异戊二烯、聚丁烯或氯化石蜡。增塑剂通常相对于每100重量份预聚物以0~150重量份的量使用。增速剂可包括在包装物的任何一种或多种中。
[0047] 除填料、增塑剂及硅烷醇缩合催化剂外,根据需要,可加入包括诸如苯酚树脂或环氧树脂等的粘合给予剂(adhesion imparting agent)、颜料、抗氧化剂或紫外吸收剂的多种添加剂。
[0048] 包装物中的任一种或多种进一步合适地包括一种或多种稳定剂。特别是当组分B包括填料材料时,加入这些稳定剂防止这些填料材料下沉。当稳定剂加入的组分中也包括水时,稳定剂特别有用。水能吸附到无机稳定剂上或溶解于有机稳定剂中。通常稳定剂是水溶性聚合物或无机稳定剂。有机天然稳定剂的实例是琼脂琼脂、叉菜、黄芪胶、阿拉伯树胶、藻酸盐、胶质、多糖、胍尔豆面粉、淀粉、糊精、明胶、酪蛋白。有机全合成或部分合成稳定剂的实例是羧甲基纤维素、纤维素醚、羟乙基纤维素、羟丙基纤维素、聚(甲基)丙烯酸衍生物、聚乙烯醚、聚乙烯醇、聚酰胺、聚酰亚胺。无机稳定剂或水的吸附剂的实例是高度分散聚硅酸、火成亲水二氧化硅、粘土矿物、例如蒙脱石、高岭石、多水高岭石、氢氧化铝、氧化铝水合物、硅酸铝、滑石、石英矿、氢氧化镁等。这些稳定剂还可具有增厚效应。当需要增加谈论的组分的粘度时,这可能特别有用。这可以是当人们想使包装物的粘度更相似以利于组分的混合时的情况。
[0049] 当如上定义的组分B不包括水和硅烷醇缩合催化剂两者时,组分B优选还包含硅烷封端的预聚物。由此,使组分B的体积与组分A的体积更一致。有利地是提供组分A和组分B的配方,使得最终的混合比例在100∶5~5∶100w/w之间变化,优选在100∶10~10∶100w/w之间变化,并且更优选在100∶50~100∶100之间变化。在这些情况下,组合物在应用过程中能容易地通过混合和给量错误。降低了在组分A和组分B之间的混合比例方面犯明显错误的几率。
[0050] 本领域技术人员将领会组分A和组分B能以任何传统的方式制备。合适地,将期望的成分以期望的数量混合。该混合能通过利用传统的混合设备完成。
[0051] 如上指出,本发明还提供一种应用上述组合物的方法。将根据本发明的组合物有利地应用为至少5mm厚度的层。将包装物混合后,所得的混合物具有能容易地浇注入缝隙、腔、沟槽或模具以提供至少5mm的层的粘度。与EP1743008和EP824574的已知组合物相比,那产生明显的优点,该已知组合物是如此粘稠的浆状,以至于在相对大的表面区域上或在腔中等不方便提供厚层,而且该层必须均匀地固化。根据本发明的组合物的相对低粘度使能操控未固化的混合物,从而能将厚层容易地应用在模具、腔等中。而且,在整个预聚物中硅烷醇缩合催化剂和水的均匀分布确保了均匀固化。产生的固化产物是弹性的并且具有良好的粘合强度。优选地,将未固化的混合物应用为5~500mm厚的层,更优选,未固化混合物的层以10~300mm厚度应用。
[0052] 根据本发明的组合物可与底漆一起使用或不与底漆一起使用。在将未固化的产物粘合到非多孔表面,例如不锈钢、铝或聚合物表面上时,人们可决定不使用底漆。此外,因为根据本发明的组合物与沥青的粘合好,人们可直接将该组合物使用在沥青表面上。在所有情况下,如果在将根据本发明的组合物应用到基底上之前,已经除去所有松散的部分、灰尘和泥土、铁锈和其他污染物,粘合性会改进。然而,特别是当将根据本发明的组合物应用到混凝土基底上时,有利的是在基底上首先应用底漆。合适地,首先预处理基底以确保基底没有水泥乳、固化化合物、脱模剂以及诸如泥土、油和油脂等污染物。实施这些预处理的合适的方法包括湿喷沙清洗或干喷砂清洗以及研磨。底漆能选自一系列商业产品。合适的底漆包括商业环氧树脂类底漆和异氰酸酯类底漆。合适地,底漆包括具有至少一个含硅基团的聚合物链,该含硅基团包括结合到作为羟基或诸如烷氧基、氨基、巯基或氨氧基等能水解的基团的末端基的硅原子。聚合物链合适地由选自由丙烯酸烷基酯和甲基丙烯酸烷基酯,以及它们的混合物组成的组的单元构成,其中,上述烷基包含1~30个碳原子。已获得具有应用下述单元的聚合物链的良好的底漆:烷基包含至少10个碳原子的丙烯酸烷基酯或甲基丙烯酸烷基酯与烷基具有1~8个碳原子的丙烯酸烷基酯或甲基丙烯酸烷基酯的组合。这些底漆的制备已经描述在US5731039中。
[0053] 因为组合物能被铸模(cast)或浇注(pour),有利的是将组合物浇注到由固化的产物将粘合到其上的基底之一形成的腔或沟槽中。因为组合物自流平,组合物的顶面将是光滑和平坦的。非常合适的应用是本组合物在制造铁路轨道结构中的用途。因此,使用聚合物组合物的基底优选为围绕第二基底,即铁路、地铁或电车轨道的铁轨的钢沟槽或混凝土沟槽。
[0054] 因此,本发明还提供一种上述组合物在铁路轨道结构中的用途,特别是在铁路轨道结构中固定铁轨的用途。在优选的实施方式中,该用途产生嵌入在由固化的组合物组成的三侧处或嵌入在固化的组合物的主体中的铁轨。这提供了固定、连续支撑以及隔离震动和噪音。
[0055] 供选择的实施方式是固定混凝土砌块,在混凝土砌块上铁轨已经被紧固到基底上,例如,混凝土托架、桥或隧道,从而上述混凝土砌块弹性地固定到基底上,由此提供噪音和震动的隔离。类似于WO 2008/040549中已经公开的构造,也可将聚合物托架固定在另一聚合物托架中,从而形成用于混凝土砌块的支撑体。
[0056] 进一步供选择的实施方式是在生产钢底板或聚合物底板例如,聚酰胺底板中的用途,该底板用根据本发明的组合物铸模。随后将铁轨紧固到底板上。底板可紧固到基底上,例如,道路、隧道或桥梁
[0057] 因为,根据本发明的组合物能容易地浇注,所以上述组合物还能用作在铁轨与基底表面例如道路表面之间的填充材料。
[0058] 或者,在铁轨下面的空间能填充有根据本发明的组合物,从而铁轨在垂直方向被支撑和减震。
[0059] 本发明还提供一种如上所述通过使用根据本发明的聚合物组合物的方法能得到的铁路轨道结构。具体地,提供一种嵌入在合成树脂主体中的铁轨,其中,上述合成树脂是如上所述的固化的组合物。附图说明
[0060] 本发明将进一步通过下列附图来阐明。
[0061] 图1示出本发明实施方式的简化横截面,其中接合处填充有根据本发明的组合物。
[0062] 图2示出具有所谓的嵌入式铁轨系统的本发明供选择的实施方式。
[0063] 图3示出进一步的实施方式。
[0064] 图4示出另一实施方式,其中根据本发明的组合物用于填充接合处。
[0065] 图5示出嵌入式铁轨系统的供选择的实施方式。
[0066] 图6示出其中使用本发明的组合物的紧固系统。
[0067] 图7示出嵌入式砌块系统。
[0068] 图8示出涂布有根据本发明的组合物的铁轨的横截面。

具体实施方式

[0069] 参考图1,它示出放低在沟槽中的铁轨1。该沟槽位于例如道路中。该道路覆盖有沥青上层4。该铁轨传统地利用弹性材料的第一主体2和弹性材料的第二主体3固定,由此,提供铁轨的牢固固定,并且当火车或有轨电车在铁轨上运行时,令人满意地减缓噪音和震动。主体2和主体3中的材料可以相同或不同,并且可由聚氨酯组合物组成。主体2和主体3仅部分地填充沟槽以允许在道路表面下留出缝隙。该缝隙由根据本发明的组合物填充,并且使该组合物固化以提供弹性主体5。这样,该组合物由于其弹性和强度性能而对道路的沥青层4和钢轨1兼有优异的粘合性。关于该图以及其他图,观察到通过利用上述讨论的底漆可改进粘合性。此外,诸如除泥土、除油或除其他污染物等预处理可改进粘合强度。
[0070] 在图2中,铁轨21被放入已为铁轨提供的沟槽中。该铁轨固定在其期望的位置。将根据本发明的组合物混合并且浇注到沟槽中,从而部分地覆盖上述铁轨。使上述组合物固化并由此产生弹性主体22。主体22固化后,用本组合物进一步填充沟槽以提供弹性主体23和弹性主体24。当希望将铁轨嵌入不同水平面的弹性材料中时,如由主体23和主体
24的不同水平面所示,该实施方式特别方便。如果不需要这种差别,也可用一个步骤填充沟槽,从而仅获得类似于22的主体,但在这种情况下,填充整个沟槽。在类似的实施方式中,有弹性的弹性主体已经并入在铁轨21以及横靠铁轨21的其他聚合物主体(未示出)的底部下面。这些外加的主体可增强铁路轨道结构的所需性能。
[0071] 为获得图3的实施方式,形成铁轨31位于其上方的模具(未示出),从而设置有轨底32的铁轨31不与模具的底部接触。剩余的空间用根据本发明的组合物填充并且使该组合物固化以提供弹性主体33。移走该模具,则具有弹性主体33的铁轨能用于制造铁路轨道结构。
[0072] 图4与图1非常类似。在该实施方式中没有沥青层,但沟槽已经提供在混凝土道路(未示出)中,在该沟槽中固定铁轨41。类似于图1的铁轨系统,通过弹性主体43和弹性主体44,铁轨41被固定在该沟槽中。因为主体42仅部分地填充沟槽,剩余的接合处用根据本发明的组合物填充,产生弹性主体44。主体44对钢轨具有良好的粘合性能。进一步,它还与道路的混凝土牢固地结合。
[0073] 图5示出嵌入式铁轨系统的不同变形。在该实施方式中,铁轨51包含轨底52。轨底52通过连接单元54紧固到托架(tray)53上。托架53可由诸如铁或钢等多种材料制成。托架53包括在每一端的侧壁55和侧壁56。当将如此形成的系统放低在为铁轨预定的沟槽中时,侧壁55和侧壁56与沟槽的璧之间形成缝隙。用一个或更多个步骤填充该缝隙。在图5的实施方式中,在第一步骤中用固化后提供弹性主体57的本组合物的层填充该缝隙,接着进行第二步骤以提供第二主体58。
[0074] 图6示出直接紧固系统,其中铁轨61通过延伸件63和钩64紧固到底板62上。显然也可应用其他紧固系统。提供两个侧壁65和66以在两侧壁之间形成模具。将具有底板62的铁轨61放低在该模具中而不接触底部。由此形成的缝隙用根据本发明的组合物填充以产生弹性层67。
[0075] 图7示出在类似于WO2008/040549中描述的那些实施方式的本发明的用途。图7示出紧固在通常由混凝土制成的砌块72上的铁轨71。聚合物混凝土和其他材料也可用于制造上述砌块。铁轨通过常规单元被紧固;在图中,紧固通过利用固定到砌块的紧固延伸件74以及紧固铁轨71下部的钩73完成。将砌块放低到铁路轨道结构内的托架77中。以这种方式形成的缝隙用根据本发明的组合物以一个或多个步骤填充。在根据该图的实施方式中,该缝隙通过两个步骤填充。在使用砌块的系统的可替代实施方式中,有弹性的构件由根据本发明的组合物预制造,与铁路轨道分开并且放置在其预定位置。它们的定位可以以与WO2008/040549中描述的方法相同的方法放置在所需位置。
[0076] 图8示出主要部分覆盖有由根据本发明的组合物制成的层82的铁轨81的横截面。预制造具有层82的铁轨81。当将铁轨81放置在其预定位置时,它被定位在沟槽内而不与沟槽的璧接触。混凝土在铁轨81下方和旁边被铸模,由此形成铁路轨道结构。可相当厚的层82提供噪音和震动的减缓。或者,层82较薄并且通过在铁轨81上喷涂根据本发明的组合物而应用。快速固化的层82提供电绝缘性和耐腐蚀性。铁轨81机械固定到表面上。在铁轨的顶部,可应用具有抗滑性能的两个弹性主体83。
[0077] 通过下列实施例将进一步示例本发明。
[0078] 实施例
[0079] 通过以表1中示出的量混合成分制备组分A和组分B。硅烷封端的预聚物是从Kanegafuchi得到的以甲硅烷基封端的聚醚。硅烷醇缩合催化剂是硅酸(H4SiO4)的四乙基酯和二乙酸基二辛基锡烷的共混物。
[0080] 表1组合物
[0081]组分A 组分B
成分 量(重量份) 量(重量份)
硅烷封端的预聚物 24.00 2.40
聚醚多元醇 3.12 8.88
硅烷醇缩合催化剂 0.24 -
水 - 0.12
乙烯基三甲氧基硅烷 0.48 -
N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷 0.36 -
3-氨基丙基三甲氧基硅烷 0.36 -
白云石 60.02 -
[0082] 根据ISO 2555,在23℃下,组分A具有94Pa.s(布氏粘度(A/6/10))的表观粘度。本领域技术人员将意识到表观粘度值取决于使用的方法。例如,根据ASTM D 6267测量的组分A的上述样品的动力学粘度共计133.000cP(133Pa.s)。根据ISO 2555,在23℃下,组分B的表观粘度为0.79Pa.s(布氏粘度(A/1/10))。
[0083] 将各组分混合以产生未固化的混合物。将未固化的混合物浇注到模具中以产生具有5mm厚的层,使该层固化。20分钟后,未固化的混合物结束处理。7天后测量固化层的性能。测得的值示于表2中。
[0084] 表2固化产品的性能
[0085]性能 单位 方法
硬度 邵氏硬度A 50 DIN 53505
抗拉强度 MPa 1.2 ISO 37
断裂伸长率 % 65 ISO 37
E-模数 MPa 2.2 ISO 37
密度 kg/dm3 1.6 DIN 53479
[0086] 比较实验
[0087] 为了表明根据本发明的组合物与根据EP1743008的组合物之间的差别,测定了根据EP1743008的两种组合物的组分的粘度。测量用包含至少一种硅烷封端的预聚物、催化剂及低分子量硅烷的组分A′,以及包含至少一种硅烷封端的预聚物、水及吸水化合物的组分B′和B″完成。这些组分具有表3中所示的组合物。
[0088] 表3组合物
[0089]
[0090] 使用ISO 2555方法测定了表观粘度。组分A′的表观粘度在23℃下为1200Pa.s(布氏粘度(A/7/2.5)),组分B′的表观粘度在23℃下共计大于8000Pa.s(布氏粘度(A/7/0.5)),以及组分B″的表观粘度在23℃下为4100Pa.s(布氏粘度(A/7/0.5))。单独的组分A′、B′、B″不能浇注,因此它们的混合物也不能浇注。
[0091] 这些结果清楚地表明现有技术的组合物与根据本发明的组合物之间的差别。
QQ群二维码
意见反馈