用于隔热和隔声的模制的多层衬垫

申请号 CN201280014690.5 申请日 2012-03-12 公开(公告)号 CN103443342B 公开(公告)日 2017-07-28
申请人 欧拓管理公司; 发明人 托马斯·布尔金; 皮埃尔·达尼罗; 菲利普·戈达诺; 斯蒂芬·柯尼希鲍尔; 文策尔·克劳泽;
摘要 一种用于 隔热 和隔声的加压 蒸汽 模制的多层 衬垫 ,包括形成加强层的第一层以及至少一个第二层,所述加强层由粉末或 纤维 或薄片形式的聚酰胺基体材料和加强纤维的混纺织物制成,所述第二层选自开孔 泡沫 层、或热反射层、或由粉末或纤维或薄片形式的聚酰胺基体材料和加强纤维的混纺织物制成的第二加强层,其中,由于加压蒸汽模制,所有的层被 层压 在一起,并且所有可用的混纺织物被 固化 以形成多孔加强层。
权利要求

1.用于隔热和隔声的加压蒸汽模制的多层衬垫,其特征在于,包括形成加强层的第一层以及至少一个第二层,所述加强层由粉末或纤维或薄片形式的聚酰胺基体材料和加强纤维的混纺织物制成,所述至少一个第二层选自开孔泡沫层、或热反射层、或由粉末或纤维或薄片形式的聚酰胺基体材料和加强纤维的混纺织物制成的第二加强层,其中,由于加压蒸汽模制,使得所述混纺织物中的聚酰胺基体材料在蒸汽压下以低于根据DSC的聚酰胺基体的熔融温度的温度熔融,从而所有的层被层压在一起,并且所有可用的混纺织物被固化以形成多孔加强层。
2.根据权利要求1所述的多层衬垫,其特征在于,还包括形成加强层、泡沫层或热反射层的混纺织物的第三层。
3.根据权利要求1或2所述的多层衬垫,其特征在于,所述加强纤维为矿物基纤维和/或人造纤维和/或天然纤维。
4.根据权利要求3所述的多层衬垫,其特征在于,所述矿物基纤维为玻璃纤维、玄武岩纤维或纤维,所述人造纤维为聚酯纤维,具有根据DSC测量的熔融温度,其高于蒸汽压力下聚酰胺的熔融温度,所述天然纤维为亚麻、椰子或洋麻纤维。
5.根据权利要求1或2所述的多层衬垫,其特征在于,至少两个层形成由混纺织物制成的加强层,这些混纺织物中的至少一种包括矿物基纤维、人造纤维或天然纤维的混合物。
6.根据权利要求5所述的多层衬垫,其特征在于,所述矿物基纤维为玻璃纤维、玄武岩纤维或碳纤维,所述人造纤维为聚酯纤维,具有根据DSC测量的熔融温度,其高于在蒸汽压力下聚酰胺的熔融温度,所述天然纤维为亚麻、椰子或洋麻纤维。
7.根据权利要求1或2所述的多层衬垫,其特征在于,至少两个层为加强层,这些加强层仅在边缘部分地层压在一起,使得相邻的加强层的至少80%的表面彼此不接触而是由空气层分隔。
8.根据权利要求1或2所述的多层衬垫,其特征在于,形成所述加强层的混合物为20-
40%重量的聚酰胺、20-50%重量的玻璃纤维和20-50%重量的聚酯纤维和/或天然纤维的混合物。
9.根据权利要求1或2所述的多层衬垫,其特征在于,所述开孔泡沫层是无表层泡沫。
10.根据权利要求9所述的多层衬垫,其特征在于,所述开孔泡沫层为板坯泡沫。
11.根据权利要求1或2所述的多层衬垫,其特征在于,所述开孔泡沫层由聚酯(PUR)或聚酯(PET)或纤维填充泡沫制成。
12.根据权利要求1或2所述的多层衬垫,其特征在于,所述开孔泡沫层包括阻燃剂。
13.根据权利要求12所述的多层衬垫,其特征在于,所述阻燃剂为石墨
14.根据权利要求1或2所述的多层衬垫,其特征在于,所述热反射层为红外反射涂层处理的非织造或织造纺织品、或金属丝编织物或金属箔层。
15.根据权利要求14所述的多层衬垫,其特征在于,所述金属箔层为箔或不锈箔。
16.根据权利要求1或2所述的多层衬垫,其特征在于,所述热反射层仅部分地覆盖相邻层。
17.根据权利要求1或2所述的多层衬垫,其特征在于,所述热反射层是金属箔层,其至少部分地包含用来使空气穿过所述金属箔层的通孔。
18.根据权利要求17所述的多层衬垫,其特征在于,所述通孔为穿孔、针刺孔或具有微缝隙的裂缝。
19.根据权利要求1或2所述的多层衬垫,其特征在于,所述热反射层至少为20μm至150μm之间。
20.根据权利要求19所述的多层衬垫,其特征在于,所述热反射层在50μm至80μm之间。
21.根据权利要求1或2所述的多层衬垫,其特征在于,所述聚酰胺基体材料为聚酰胺-6或聚酰胺-6.6或共聚酰胺或这些聚酰胺的混合物。
22.根据权利要求1或2所述的多层衬垫,其特征在于,所述加强层的面积重量为100g/m2
2
至2000g/m之间。
23.根据权利要求1或2所述的多层衬垫,其特征在于,所述加强层的气流阻力为500至
1000N.s/m3之间。
24.根据权利要求1或2所述的多层衬垫,其特征在于,所述多层衬垫的整体气流阻力为
3
500至2500N.s/m之间。
25.根据前述权利要求中任一所述的加压蒸汽模制的多层衬垫的用途,所述多层衬垫用作汽车装饰部件。
26.根据权利要求25所述的多层衬垫的用途,其特征在于,所述汽车装饰部件为发动机舱覆盖面板、用于发动机的顶盖、侧盖或底盖、油盘盖、底部发动机罩、防火板,至少部分覆盖的外仪表板、发动机舱的冷却器后面的导气板、行李架或行李箱负载地板。

说明书全文

用于隔热和隔声的模制的多层衬垫

技术领域

[0001] 本发明涉及一种用于隔热和隔声的模制的多层衬垫,尤其用于机动车辆的发动机舱,以及多层衬垫作为汽车装饰部件的使用。

背景技术

[0002] 应用于车辆的声学和热量衬垫在本领域中是众所周知的。为了提供声音衰减,这些衬垫通常依赖于吸声和传输损耗,吸声即吸收入射声波的能,传输损耗即反射入射声波的能力。这些衬垫还依赖于热屏蔽性能,以防止或减少来自各种热源(发动机、变速箱和排气系统)的热量传输到车辆的乘客舱。这种衬垫尤其用于车辆的发动机舱区域,例如用作发动机罩,从而衰减更接近其声源的发动机的声音。
[0003] 在包括客车和商用车的机动车辆的发动机舱中,吸声器形式的隔音部件越来越多地被用来降低发动机的噪音。在一般情况下,这些吸声器被设计成模制品,以减少车辆的外部噪音和内部噪音。所述模制品可由织物(如)或聚泡沫制成,并通常具有高达约160℃的热稳定性
[0004] 在某些区域,如排气岐管、热空气回流区或在发动机周围,模制品可能经受高的热负载。因此,这些模制品往往是部分地或完全地层压箔来用作热反射器,以保护底层的非织物。通常,铝箔足够厚以作为载体层,使得部件的机械性能是自支撑的。吸声材料被保持为松散材料并尽可能厚来优化部件的声学特性。例如DE8700919公开了这样一种铝叠层,其具有胶接到内侧的用于隔离目的的泡沫。其它的例子是由夹持在两个金属箔层之间的松散的纤维材料垫制成,由此金属层具有结构载体特性。
[0005] 近年来,复合热量衬垫部分地取代了典型的热屏蔽装饰部件。这些复合衬垫一般都形成为多层组件。这些组件被构建有热暴露层以及复合层,热暴露层具有反射和不渗透的功能,复合层具有良好的隔热性、机械和结构特性,有时组件还具有附加的顶部层用于外表和抗渗透性能。这些类型的衬垫利用注射成型或压缩成型来制得。这些复合热量衬垫的缺点是它们是不渗透的和重的结构部件。虽然它们具有良好的热性能和结构性能,在大多数情况下仍然缺乏声学和热量衰减特性。
[0006] 虽然多年来已有许多粘合剂、粘合剂织物和粘接纤维被专开发用来确保叠层件的各个层固定在一起,层叠衬垫和隔离器在分层和失效方面具有固有的险。这种潜在的风险主要是由于衬垫和隔离器所经受的恶劣的工作环境。大多衬垫和隔离器位于热源附近和/或被设计用于屏蔽热源,如发动机、变速箱和排气系统的组件等热源。其结果是,衬垫和隔离器往往经受超过180℃的温度,在该温度下粘接剂或粘合剂随着时间的推移显示出强烈而快速的劣化。
[0007] 此外,直接邻近发动机安装的部件有可能由于从发动机传递的振动而振动并引起噪音。这些振动的部件可能形成不期望的附加的噪音。另一个方面涉及衬垫的疲劳性能,振动的频率可能对衬垫的整体寿命产生负面影响。
[0008] 现有技术的另一个缺点是获得最终复合物所需的高温。所要达到的加热温度取决于基体聚合物。通常,为形成复合物,基体和加强纤维利用如热空气、接触加热或红外线加热等干性加热方法来加热。为了补偿例如从加热装置到模制装置的温度损失,产品通常被加热到高于基体聚合物的实际熔点或高于粘合树脂的活性温度。聚合物的高于熔点的加热加速了退化。
[0009] 使用接触式加热器具有另外的缺点,产品必须被压缩以在产品的整个厚度上获得良好的热传递。热空气通常在粘合剂聚合物的熔融温度以上的温度下使用,因此聚合物受到热损伤,而红外线加热仅适用于薄的材料。较厚的材料中加热内部材料所需的能量会损伤聚合物的外表面。此方法通常只用于至多4-5mm的厚度。
[0010] 在多层衬垫中使用接触式加热器包括使用开孔板坯泡沫层,这会导致泡沫破裂,特别是板坯泡沫的表层,从而使其对于空气传播的声波是不渗透的,由此恶化该部件的整体吸声。
[0011] 另一个缺点是用作基质纤维和用作加强纤维的大多数热塑性聚合物的熔融温度彼此接近,例如,根据ISO11357-3使用差示扫描量热仪(DSC)测得的聚对苯二甲酸乙二醇酯(PET)的熔融温度为230-260℃,聚丙烯的熔融温度在140-170℃之间,聚酰胺-6(PA6.6)的熔融温度在170-225℃之间,以及聚酰胺-6.6的熔融温度在220-260℃之间。基质纤维和加强纤维均使用热塑性聚合物,例如PA6.6作为基体而PET作为加强纤维,需要将它们加热至基质纤维的熔融温度以上,这同样会导致加强纤维开始熔化软化。这将导致结构破裂,形成非常紧凑的复合物。
[0012] 毛毡由于其隔热和隔声性能而被广泛使用,特别是在汽车行业。目前的趋势是朝向可回收材料,因此在过去几年中,热塑性粘合剂已经占据了显著的份额。由例如聚酯、聚酰胺等高性能聚合物制成的纤维由于其机械性能和耐热性能而非常受到关注。但必要的粘合剂构成了它们在模制3D部件中的应用限制。
[0013] 迄今所用的粘合剂的熔点总是低于加强纤维的熔点,使得模制的纤维织物表现出相对较弱的性能,并且限制了其在车辆回火区中的使用。这些类型的模制纤维织物都不适用于发动机舱或车厢中的高温暴露,特别是发动机接触区。这些粘合剂中的一些是改性聚合物(以共聚酯(CO-PET)作为例子),其具有浇注特性,因为其改进的结构对解现象特别敏感。
[0014] 本领域中已知的模制这种毛毡的工艺是“冷”模制工艺或“热”模制工艺,“冷”模制工艺中毛毡通过各种手段预加热,然后转移到冷的模具中,并在其中被压缩以获得部件形状,“热”模制工艺中毛毡被引入到封闭的模具中,在其中传热介质(如空气)被引入使粘合剂到达其熔点,然后释放。然后,部件在工具内部或外部使用或不使用冷却辅助来冷却(例如参见EP1656243A、EP1414440A和EP590112A)。只有在完全冷却到材料的设置温度之后,才可以从模具中取出部件并运输。
[0015] 所公开的纤维复合物通常结合附加层使用,如所讨论的反射层,或者使用泡沫。可以通过对泡沫直接背部发泡(back foaming)(注射发泡或发泡成型)来将泡沫应用到这种纤维复合物中。然而,通常泡沫首先被生产为板坯泡沫并切成所需的厚度。对于邻近纤维层的泡沫的层叠结构一般使用热压成型。堆叠的层被放置于两个热板之间以熔化材料并获得多个层的层叠。压缩需要用来有助于将热量传递到层状材料的多孔加强件。尤其使用泡沫层的这种方法的一个缺点在于,泡沫破裂并在开孔结构上形成表层。这种表层劣化开孔泡沫的整体的吸声性能。

发明内容

[0016] 因此,本发明的目的在于提供一种特别用在机动车辆的发动机舱中的模制的多层衬垫,其具有可比的隔热和隔声性能,但重量更轻且在使用区域中长时间暴露于热负荷下时保持结构。
[0017] 该目的的实现是通过根据权利要求1所述的蒸汽模制的多层衬垫,以及通过根据权利要求17所述的这种衬垫的应用。
[0018] 根据本发明的加压蒸汽模制的多层衬垫包括:
[0019] ·第一层,其形成加强层,所述加强层由粉末或纤维或薄片形式的聚酰胺基体材料和加强纤维的混合织物制成,
[0020] ·以及至少一个第二层,其选自开孔聚氨酯泡沫层或热反射层,或者由粉末或纤维或薄片形式的聚酰胺基体材料和加强纤维的混合织物制成的第二加强层,[0021] ·其中,由于加压蒸汽模制,所有的层被层压在一起并且所有可用的混合织物被凝固来形成多孔加强层。
[0022] 已经发现,采用直接蒸汽模制工艺将聚酰胺作为粘合材料,在蒸汽压力下聚酰胺的软化和熔点温度被转换到低于根据DSC测量的聚酰胺的正常熔化温度。通过利用这一知识,与现有材料相比,现在可以使部件在使用中具有更高的熔融温度,并且能够在更高的温度下是热稳定的。此外,已发现加强层中使用的聚酰胺材料的量还足够层压相邻的层。令人惊讶的是,如泡沫层或热反射层等层也不需要附加的匹配胶水层来进行层压。特别是,发现在附加的泡沫层上使用直接蒸汽模制不会对泡沫层的声学特性产生任何负面影响,例如泡沫的熔融。因此,保持了生产的无表层开孔泡沫的有利的声学特性。
[0023] 根据本发明的加压蒸汽模制的多层衬垫可以用作汽车装饰部件,如发动机舱覆盖面板、用于发动机的顶盖、侧盖或底盖、油盘盖、发动机罩、防火板,以及至少部分地覆盖外仪表板、发动机舱的冷却器后的导气板、汽车内的行李架或行李箱负载地板。
[0024] 下面将以使用这种材料的实施例更详细地说明根据本发明的蒸汽模制的多层衬垫以及蒸汽模制工艺。
[0025] 生产工艺
[0026] 在根据本发明的方法中,高模量的加强纤维与形成聚酰胺纤维、薄片或粉末形式材料的基体通过任何合适的方法(如气流成网、湿法成网、梳理等)混合,以形成织物。然后用饱和水蒸气加热织物以在低于根据ISO11357-3使用差示扫描量热仪(DSC)测定的该聚合物的熔融温度的温度下熔融聚酰胺基体材料。例如,用DSC测得的聚酰胺-6(PA-6)的熔融温度Tm为220℃。然而,根据本发明在蒸汽压力下相同PA-6的熔融温度为例如190℃。
[0027] 所述织物被放置于具有至少一个蒸汽可渗透表面的耐压模具中。该模具被封闭并夹紧以承受内压。至少9巴绝对压力的饱和蒸汽被施加以熔融粘合剂。大于20巴绝对压力的饱和蒸汽是不经济的。优选地,11至15巴绝对压力范围是一个不错的工作范围。聚酰胺的熔融温度的实际转换取决于蒸汽模制产品的腔体中产生的蒸汽压力。因此,所使用的压力的选择也取决于加强纤维的熔融温度。例如,使用PA-6作为粘合纤维的优选压力是11至15巴绝对压力。
[0028] 通过使用蒸汽取代通常的热空气、热板或红外波,有可能使用蒸汽中的水分子的影响将聚酰胺的熔点转换到更低的温度。水对聚酰胺的影响是已知的并且通常被认为是一个缺点,许多现有技术描述了避免该影响或试图防止该影响的方法。意外地是,正是该影响使其可能将粉末、薄片或纤维形式的聚酰胺材料与具有通过DSC测量的相似熔点的其它热塑性纤维(如PET)结合,使用聚酰胺作为唯一的粘合材料将加强纤维(如PET)保持在其纤维形式。现在得到具有多孔结构的热稳定模制产品是可能的,从而提高了声学特性(如吸声)和抗气流性,以及热传导性。
[0029] 蒸汽的影响基于可逆的扩散机制。使用小纤维直径或细颗粒形式的聚酰胺,熔融和固化速度快,生产周期短。一旦蒸汽从模具中释放,聚酰胺转变成固体状态,并且部件可以脱模成刚性部件。相比于在获得结构部件之前需要在模具内部或外部明显冷却的其它热塑性粘合剂,这是一个优点,其具有用以操作的足够刚性。
[0030] 因为与没有使用蒸汽的加热方式相比现在使用的整体温度能够保持得更低,PET纤维的韧性保持完好,从而获得更蓬松有弹性的材料。此外,还发现PA的粘合足够获得所需的最终产品的刚度。因为PET纤维保持了其韧性并且熔融的PA基体材料仅在交叉点粘合。由于织物中的空隙容积,该材料保持了其蓬松的外形。因此,最终产品仍是可透气的。此外,还发现使用玻璃纤维作为加强纤维以及使用聚酰胺作为基体,蒸汽的使用是有利的。由于粘合特性的精确调节,在加热和冷却过程中操作所需的能量较少。
[0031] 在现有技术的加热过程中,材料被加热到热塑性基体材料的熔点。材料的冷却是缓慢的,因为产品散热的较慢对流以及由于加强纤维缺少弹性而使材料压缩并变得致密。因此,熔融状态将持续一段较长的时间。其结果是更加难以调节粘合量。此外,在冷却期间,由于粘合基质较长的熔融状态,材料保持松软并因此更加难以处理。对于较大的汽车装饰部件,如卡车或更大车辆的顶篷或负载地板,尤其如此。
[0032] 出乎意料地,已经发现使用根据本发明的材料和工艺,一旦蒸汽从材料中移除,熔融过程立即停止,并且材料再次处于固体状态。在减少生产周期时间方面这是有利的,因为可以立即处理材料。事实上,可以立即停止的熔融过程也是调节粘合特性以及材料孔隙率的一种非常精确的方式。对于材料的透气性能,这是重要的。
[0033] 使用如薄片、粉末或纤维等离散形式的聚酰胺是必要的,以保证加强纤维的离散粘合来获得多孔但固化的结构。由于加强纤维的离散但完全固化,可以得到高的抗弯刚度和动态刚度。当所选择的材料优选在至少180℃以上是热稳定的时,所得到的材料保持其结构,特别是不会在长时间暴露于高的热负荷时软化或解体(sack)。由于聚酰胺和加强纤维的固化仅基于在加压饱和蒸汽的直接处理影响下聚酰胺的软化和熔融,没有必要将加强层压缩超过获得希望的最终产品的三维形状的必需量。
[0034] 令人惊讶地,发现在相同的蒸汽模制工艺步骤中将附加层层压到多孔加强层是可能的。甚至发现PA基体材料足以牢固到被用作层压粘合剂来粘合附加层,例如结合开孔泡沫层和/或热反射层(如铝箔)和/或网格布(scrim)层。
[0035] 甚至更令人惊讶地,发现在根据本发明的温度范围内使用蒸汽模制,泡沫材料的声学性能没有改变。在现有技术的常规热模制方法中,泡沫通常是被加热到一个温度,在该温度下泡沫软化并形成外层表层或者甚至最严重的是体积收缩或皱缩。这对模制后的泡沫的质量以及声学性能有着恶化的影响。与原始状态相比可以看出,模制之后在吸声方面出现不希望的转换。在最坏的情况下,该转换可能转化为整体的吸声损耗。
[0036] 已知的是,蒸汽将泡沫再生到其初始成分,因此通常不被用于不希望材料退化的部件的模制。令人惊讶的是,根据本发明的方法没有显示出在所处理的泡沫的结构和声学性质上的任何可测量的影响。由于蒸汽工艺过程中泡沫尤其没有熔融,最初获得的开孔结构在泡沫的生产过程中被保持。多孔加强层与泡沫层的粘合完全来自于聚酰胺粘合剂材料的熔融液滴。这足以获得稳定的层压粘合。额外的优点在于,在例如发动机舱的热负荷环境中,用于分层的温度远高于通常使用的材料的温度。此外,热薄弱环节不再是粘合剂本身。
[0037] 甚至发现,根据同样的原理,反射材料可以直接与多孔加强层进行层压。然而,在金属箔的情况下(特别是在铝箔),与多孔加强层接触的层压表面可能要预先处理以增强层压。
[0038] 如果需要,薄膜、粉末、薄片或网格布层形式的附加的聚酰胺粘合剂层可以布置在层与层之间,以提高粘合性能。
[0039] 多孔加强层
[0040] 多孔加强层是一种刚度增加的可透气的复合物,随机配置的粘合材料和加强纤维通过热塑性粘结材料的基本上不连续的液滴在纤维交叉位置固持在一起。
[0041] 用作热塑性粘结材料的材料是粉末、薄片或纤维形式的聚酰胺基体。在多孔加强层中使用聚酰胺纤维是非常有利的,因为纤维通常更好地混合在一起,并在固化前织物的处理过程中保持这种方式。特别地,薄片或粉末能够通过处理离开织物落入加强纤维之间而不需固化。
[0042] 对于聚酰胺,所有类型的聚酰胺的混合物都是可行的,优选CoPA(共聚酰胺)、聚酰胺-6(PA-6)或聚酰胺-6.6(PA6.6)中的至少一种。期望基本聚酰胺配方中通常使用的添加剂是所要求的基本聚酰胺材料的一部分,例如化学化合物,以实现抗紫外线,或者其它化学物,以增加热稳定性
[0043] 聚酰胺粘合纤维的使用是最优选的,并用于实施例和优选的实施方案中,然而,粉末或薄片也可以用在相同的实施例中,具有可比较的效果。
[0044] 加强纤维可以是:
[0045] ·矿物基纤维,如玻璃纤维、玄武岩纤维或纤维,和/或
[0046] ·人造纤维,其具有根据DSC测得的熔融温度,该温度高于聚酰胺在蒸汽压力下的熔融温度,如聚酯纤维,和/或
[0047] ·天然纤维,如亚麻、椰子或洋麻纤维。
[0048] 特别地,加强纤维可以是具有根据DSC测量的熔融温度的任何热塑性聚合物基材料,该熔融温度高于在蒸汽环境中聚酰胺粘合剂材料的熔融温度。举例来说,例如熔融温度为230-260℃之间的PET(聚对苯二甲酸乙二醇酯)的人造纤维可以用作加强纤维。材料的选择基于最终产品的整体热稳定性要求和各种材料的价格。
[0049] 另外,具有矿物纤维的人造纤维的混合物可以周作加强纤维,例如PET连同GF。使用这样的组合将会增加最后层的蓬松性并可被定义为声学加强层,更多的细节请参见对于该层的单独描述。根据所需的材料特性,加强纤维可为切割纤维、无接头长丝或粗纱。
[0050] 加强层的起始材料是随机设置的粘合材料和加强纤维的底垫,可以根据本领域中已知的方法来制造,例如,使用气流成网或梳理技术,或在纤维材料挤出之后直接成形。所制得的底垫可以例如通过横撑木(needling)预先固化以便更容易处理。
[0051] 聚酰胺粘合材料与加强纤维的比率使得在蒸汽处理后,材料保持多孔。优选聚酰胺粘合材料的重量在20%和60%之间。
[0052] 声学加强层
[0053] 声学加强层是加强层的一种蓬松形式,其具有增强的吸声性能。粘合剂材料与公开的用于多孔加强层的粘合剂材料相同,但是加强纤维可以是矿物纤维、人造纤维和/或天然纤维的任何组合或共混物,矿物纤维例如为玻璃纤维、玄武岩纤维或碳纤维,人造纤维具有根据DSC测量的熔融温度,其高于聚酰胺在蒸汽压力下的熔融温度,如聚酯纤维,天然纤维例如为亚麻、椰子或洋麻纤维。举例来说,熔融温度在230-260℃之间的PET(聚对苯二甲酸乙二醇酯)连同玻璃纤维的组合能有效作为加强纤维。
[0054] 结果发现,通过使用这样的纤维组合,材料在蒸汽模制工艺期间保持了其蓬松性。材料不仅具有增强的刚性也具有增加的吸声性。
[0055] 例如玻璃纤维的矿物纤维是超细纤维,因此首选用于吸声,但是在热处理时,它们往往会失去其体积并因此失去初始的吸声性能。令人惊讶的是,已发现适当选择的人造纤维或天然纤维,如聚酯纤维或洋麻纤维,在衬垫材料的蒸汽模制过程中维持了它们的刚性。因此,材料的体积被保持并且固化的材料保留了多孔,从而仍然提供了初始的吸声性能。
[0056] 优选地,约20-40%(重量)的聚酰胺、约20-50%(重量)的玻璃纤维和20-50%(重量)的聚酯纤维或天然纤维的混合物将很好地工作。
[0057] 根据所需的材料特性,加强纤维可以是切割纤维、无接头长丝或粗纱。
[0058] 热反射层
[0059] 至少一个热反射层可以与纤维多孔加强层一起使用。至少在增加的热负荷区域中,面向热源的表面可部分地或全部地覆盖有热反射覆盖层,热源通常是发动机或动力传动系的部件或排气管道或暴露在阳光下的表面。反射覆盖层应该是热稳定的,并能反射来自热源或太阳的红外线辐射,以获得装饰部件的良好的隔热,优选地,反射覆盖层为金属箔层(优选不锈或铝箔层)、或铝的纺织物或无纺物、或铝纤维制成的纺织物中的一种。热反射层至少应该能够抵抗蒸汽处理而不变质。
[0060] 反射覆盖层优选为在20μm和150μm之间,更优选在50μm和80μm之间。由于加强层执行主要的静态功能,可以使用较小的厚度,反射层唯一的作用是基本上反射热辐射。
[0061] 反射覆盖层可以至少部分地微穿孔,虽然没有必要在所有的情况下都是这样。微穿孔可以通过已知的技术来实现,如针刺、切缝、微裂隙或打孔技术。借助于反射层的可选的穿孔,所述层的热反射效果被保持,但是在该区域获得声波的透射,使得多层衬垫的朝向声源的铝箔覆层侧面保持其声学活性。
[0062] 特别地,在反射覆盖层材料被选择为非多孔的或无穿孔的情况下,热入口优选应在纤维装饰部件未覆盖有反射覆盖层的一侧,以优化进入多孔加强层的蒸汽渗透。
[0063] 在材料的两侧均使用反射覆盖层的情况下,所使用的多层中的至少一层应该是穿孔的和/或多孔的,足以使蒸汽流入纤维层。
[0064] 同样,反射材料层可以用在根据本发明的两个加强层之间。该层优选是穿孔的或多孔的,但是,如果蒸汽流从两个模具半部流入模具,而不是经由仅仅一个模具半部,箔是没有必要穿孔的或多孔的。
[0065] 泡沫层
[0066] 作为附加层,可以使用开孔泡沫层。泡沫优选是无表层泡沫(skinless foam)。连续或不连续生产的板坯泡沫是最优选的,因为这种泡沫在发泡并固化后被切成片状,因此可直接接近开孔结构而无需任何表层。
[0067] 优选地,所述泡沫层在160℃和220℃之间至少是短期热稳定的,例如其由开孔聚氨酯(PUR)泡沫或聚酯(PET)泡沫制成。
[0068] 聚氨酯泡沫通过多异氰酸酯和多元醇的加成反应制成。添加剂根据需要来使用。可以用在根据本发明的衬垫中的PUR泡沫的实施例例如公开在EP 0937114或EP 937109A中。
[0069] 特别地,对于发动机舱区域或具有增加的热负荷的区域,阻燃剂的使用是有利的,例如使用液体和/或固体的阻燃剂处理,或在泡沫中包含这种阻燃剂。使用例如在EP 1153067或US 6552098中公开的具有附加石墨的泡沫将是优选的。
[0070] 这些文献中特别是关于板坯泡沫的生产工艺以及材料成分的所有公开内容通过引用并入本文。
[0071] 可以用于根据本发明的衬垫的制备板坯泡沫的工业可取得的泡沫例如是来自Huntsmann的ACOUSTIFLEX S15(半刚性)或ACOUSTIFLEX F25(柔性),或Foampartner的Flexidur 15FR+(半刚性)或Rigidur 10(半刚性),或由Eurofoam制得的不同等级和密度的Thermoflex半刚性泡沫范围,例如Thermoflex 15、Thermoflex15MDA、Thermoflex 15MDA VW、Thermoflex 16、Thermoflex 22,以及柔性Thermoflex泡沫,如T-flex 16或T-flex 22。
[0072] 优选地,泡沫的密度为8-40kg/m3之间,更优选为12-30kg/m3之间。由于开孔泡沫将增加根据本发明的衬垫的整体噪声衰减,对于模制前板坯泡沫约为6-45mm之间的厚度,空气流动阻力优选的范围为100-5000N.s/m3之间。
[0073] 令人惊奇地,发现在蒸汽处理期间泡沫层并不改变它的声学特性,特别是在时间和条件上,使得泡沫保持了开孔泡沫结构。特别地,在标准热模制工具中以泡沫层压时可以看到的表层封闭在使用根据本发明的方法时不再能观察到。因此,开孔泡沫的声学特性完全保持在根据本发明的衬垫中。
[0074] 如果衬垫用于具有高的机械负荷的结构部件,所用的泡沫层可被选择来提高整体的结构特性,例如,通过选择更硬的泡沫层(例如聚氨酯或聚酯制成的泡沫层),或通过添加加强纤维至泡沫层。
[0075] 附加的层
[0076] 优选地,可以使用附加的层。比如可以需要美观的盖,或者防粘层以防止层叠的衬垫粘附模具的壁。优选地,使用热塑性纤维材料制成的网格布层,以在蒸汽模制期间所给定的温度范围内耐热。
[0077] 网格布是一种薄的非织造物,其厚度在0.1至大约1mm之间,优选在0.25至0.5mm之间。优选地,它们具有在500至3000N.s.m-3之间的增加的气阻(AFR),更优选为1000至1500N.s.m-3之间。网格布层的面积重量可以介于15至250g/m2之间,优选在50至150g/m2之间。
[0078] 网格布可由连续的或短纤维或纤维混合物制成。该纤维可以由熔喷或纺粘技术制成,也可以与天然纤维混合。优选地,选择的材料在长时间的热负荷暴露下是热稳定的。网格布可由纤维制成,例如由聚酯、或聚酰胺、或化的热稳定的聚丙烯腈(PAN,也被称为PANox)制成,或者为纤维的组合,例如聚酯和纤维素、或聚酰胺和聚酯。该层可以用通常在应用区域所需的处理方式来处理,例如防油、防水、易燃性处理等。网格布层的优选实例可以是聚酯纤维和粘胶纤维制成的非织造网格布层。
[0079] 当根据本发明的衬垫用在乘客区域时,也可使用如无纺地毯或簇绒地毯等替代性覆盖层。这些层还可在蒸汽模制工艺步骤后通过使用在本领域中已知的常规方法来添加。
[0080] 在蒸汽模制工艺中,聚酰胺网格布层可以用来额外层压不直接相邻加强层的附加层和/或增加层叠区域中粘合材料的量。聚酰胺也可以粉末或薄片的形式在添加附加层之前撒在表面上,或用作薄的粘接箔或织物状结构。因此,不直接相邻加强层的其它层也可以层压在根据本发明的多层衬垫上,例如不同的美观的覆盖层,如簇绒或无纺地毯层、植绒材料或无纺物覆盖材料。
[0081] 多层衬垫
[0082] 根据本发明的蒸汽模制的多层衬垫包括多孔加强层,以及选自泡沫层、反射层、或第二多孔加强层中的至少一个第二层。
[0083] 也可以使用附加的层以进一步提高根据本发明的多层衬垫的特性,如附加的泡沫层或加强层或相似的美观的覆盖层、或工艺网格布层。也可预见使用不同密度的类似的层。举例来说,如果两个泡沫层直接接触使用,也可使用聚酰胺纤维网格布、织物、穿孔箔、粉末或薄片形式的聚酰胺粘合层。使用聚酰胺作为附加的粘合层是有利的,因为它会以与加强层中的基体材料相同的方式对蒸汽作出反应。
[0084] 多孔加强层主要形成了必要的结构刚度。在大多数应用中衬垫被用作自支撑结构。
[0085] 在一个优选的应用中,多层衬垫包括选自多孔加强层和声学多孔加强层的至少两个层。优选地,这两个层只在衬垫的边缘彼此连接,或通过使用间隔物在两层的主表面之间留下中空的空间。该中空的空间用作附加的吸声区域以及声学和热去耦区域。通过使用至少一个声学多孔加强层,可以增加整体的声学性能。
[0086] 在发动机舱区域可使用不同类型的装饰部件,例如发动机封装罩(encapsulation)、发动机顶部覆盖物以及被安装到车辆底盘的发动机封装罩。此外,如车前盖衬垫、外舱壁衬垫以及沿着前横梁的下侧发动机护罩和垂直元件等其它组件可以被放置在发动机舱内,以优化发动机舱的热管理。尤其是发动机罩衬垫、防火板、或邻近汽车发动机的盖部件(如发动机气缸盖罩)、发动机侧面板,以及其它用在车辆中热暴露区域(如包括齿轮箱和排气管路的动力传动系,尤其是安装在车身和动力传动系和/或排气管路上的热屏蔽罩)的衬垫。此外,特别是在发动机和乘客舱中使用的所有类型的下侧车身面板都落入本发明衬垫的使用范围内。
[0087] 本发明的这些及其它特点将从如下参照附图对作为非限定实施例给出的优选形式的描述变得清楚。
[0088] 借助于附图,将给出用于特定应用的有利的层的组合的实施例,以更进一步地说明本发明。然而,本发明应不被限制于这些实施例,这些实施例更多地意味着示出根据本发明的衬垫的各种可能性。

附图说明

[0089] 图1是根据本发明的蒸汽处理的示意性视图;
[0090] 图2示意性地示出了根据本发明的衬垫材料的分层。

具体实施方式

[0091] 将使用图1来更详细地说明生产工艺,图1示出了包括下部半模2和上部半模1的蒸汽模具。这两个半模一起限定模腔,半成品将在该模腔中被至少固化。所述模腔可形成为最终装饰部件所需的三维形状。非织造纤维毡作为半成品,其具有粘合材料和加强纤维10以及例如泡沫层11的混合物。优选地,模具的两个半部具有入口7和出口8,饱和蒸汽通过所述入口和出口流入模腔与待固化和层压的多层材料直接接触。由于使用饱和蒸汽,优选将半模保持为温暖的,以帮助形成压力并防止蒸汽冷凝。因为蒸汽冷凝会造成热能损失,并通过水导致产品湿透。在该图中示出了通道3、4、5和6,示出了半模的封闭加热系统。
[0092] 模具可以在其边缘具有附加的切割密封元件9,它们可以被独立地移动和推动,并且它们形成模具周边的压力密封,即通过迷宫式密封。在模具压力密封后,半成品暴露于饱和蒸汽。蒸汽用作加压蒸汽,其在模腔中的压力约为2-20巴绝对压力之间,优选为至少9巴绝对压力,并在整个固化过程中在模腔中保持此压力。
[0093] 工艺时间由用于固化的蒸汽压力上升和释放来支配。优选地,在打开压制模具前,加压蒸汽被释放。虽然在蒸汽处理过程中一些水没有冷凝,而是保留在根据本发明的衬垫材料中,它们将会在打开模具后干燥,这主要是由于剩余热能保留在部件的内芯中。令人惊讶地是,一旦蒸汽压力被带走,聚酰胺的软化和熔化逆转,并且部件变成固体。因此,蒸汽工艺不仅由于需要的闭模时间短暂而是有利的,它也消除了使用干燥系统的传统压缩模制在模制部件可从模腔移除以前所需的任何冷却时间。
[0094] 根据本发明的多层衬垫的制造方法的一个实施例至少包含以下步骤:
[0095] ·将40%至80%的加强纤维和纤维、薄片或粉末形式的20%至60%的聚酰胺基体材料混合,并形成所述共混物的织物;
[0096] ·在由两个半模组成的模具内将第一混纺织物和至少一个附加的层分层,所述附加的层选自开孔泡沫层、热反射层或加强纤维和聚酰胺基体材料的第二混纺织物;
[0097] ·用加压饱和蒸汽处理层叠的多层材料,使得混纺织物中的聚酰胺基体材料在蒸汽压力下以低于根据DSC的聚酰胺基体的熔融温度的温度熔融,从而将加强纤维粘合在一起,并固化形成多孔加强层的混纺织物,使得层叠的层被层压在一起。
[0098] 半模可在开始时完全关闭,或者可以在蒸汽处理过程中被关闭,从而在蒸汽工艺开始时和/或结束时排出部分蒸汽。饱和蒸汽压力的范围优选为9至20巴绝对压力。
[0099] 可以使用至少一层附加的网格布层来防止层状材料粘附到模具。例如聚酯-纤维素非织造网格布层。层叠的多层材料还可以包含其它的附加的层,如混纺织物附加层、泡沫层等。聚酰胺基体优选为聚酰胺-6或聚酰胺-6.6或共聚酰胺或不同类型的聚酰胺的混合物。
[0100] 根据所披露的生产工艺生产的模制的饱和多孔多层衬垫可以直接模制成3D形状,以用作汽车的装饰部件,如发动机舱覆盖板、发动机的顶板、侧板或底板、油盘盖、底部发动机罩、防火板、至少部分覆盖的外部仪表板、发动机舱的冷却器后面的导气板、行李架或行李箱负载地板。
[0101] 蒸汽模制的多层衬垫可以最有利地用在车辆的增加热负荷的区域中,如发动机、动力传动系和排气附近,也可用在行李箱区域或作为车窗后直接暴露于阳光的装饰部件,如行李架或遮阳板。
[0102] 图2显示了可能的多层衬垫材料的实施例。基于根据本发明的衬垫,可以选择多孔加强层或声学多孔加强层。不同的是,加强层主要由聚酰胺基体和加强纤维制成。虽然声学加强层由聚酰胺基体和加强纤维组成,但加强纤维是人造纤维和矿物纤维的混合物,例如聚酯纤维和玻璃纤维的混合物,在使用蒸汽工艺固化后提供一种更蓬松的层。
[0103] 图2A示出了多孔加强层10和开孔泡沫层11的一个实施例,优选地,热反射层12可以至少部分地覆盖衬垫的至少一个外表面。同样的,网格布层13也可以用于覆盖衬垫的外表面。声学加强层可取代多孔加强层10用于需要更高吸声水平的情况下。
[0104] 一般来说,加强层可以代替注射模制的塑料层来通常用在汽车装饰部件中,因为它具有可比较的刚度性能。然而,由于其多孔性显现出吸声性能,这是注射模制部件不具备的。使用附加的吸声层甚至增加了吸声。
[0105] 对于在高温环境中使用的汽车装饰部件,特别是在发动机舱区域,多孔加强层与开孔泡沫层的组合是一个很好的选择,因为其非常轻并适合大多声学要求。
[0106] 对于具有增加的热负荷区域中使用的装饰部件,如直接发动机安装部件,使用多孔加强层和蓬松声学多孔加强层的组合是一个更好的选择。
[0107] 热反射层可用于特别是被引导到热源并且/或者获得最直接的热能的表面或部分表面中。
[0108] 多孔加强层10也可以结合声学加强层14(图2B)。
[0109] 图2C和2D示出了至少三层的实施例。在图2C中,泡沫层11被夹在两个加强层10之间,虽然这里使用的是标准的加强层,也可使用两层声学加强层或一种类型一层,视多层衬垫使用的情况而定。特别地,在泡沫需要热保护的汽车高热负荷区域,这是一种选项。优选地,还可至少部分地覆盖有反射表面(未示出)和/或网格布层。
[0110] 图2D示出了具有夹在两个泡沫层11之间作为芯层的加强层10的夹层结构。如果用在乘客和/或服务人员经常接触的表面中,这种布局具有优势。玻璃纤维如果从衬垫表面伸出,会有令人讨厌的刺痛效果,这是最令人不愉快的。泡沫会覆盖玻璃纤维表面,以防止这种现场效果(site effect)。加强层构成主要的结构性能,因此,泡沫可以是半刚性的,甚至通常使用的更柔性的开孔泡沫类型。
QQ群二维码
意见反馈