座套

申请号 CN200610008393.6 申请日 2006-02-21 公开(公告)号 CN1824601B 公开(公告)日 2011-11-09
申请人 井上株式会社; 发明人 笹尾卓弘; 小栗恒宪; 高见典佳;
摘要 一种座套。该座套包括缓冲片,该缓冲片具有片体以及在该片体上形成的低摩擦层。在所述片体的与对应于所述低摩擦层的表面相对的表面上形成有 纤维 片;其中所述片体由多孔材料形成;并且其中通过在所述片体的所述表面上以非均匀的方式施加多根 合成 树脂 纤维而形成所述低摩擦层。优选地,每根合成树脂纤维的直径设置在10微米至600微米的范围内。还优选地是,与片体表面结合的合成树脂纤维的量在每平方米片体5克至100克的范围内。
权利要求

1.一种座套,该座套包括缓冲片,该缓冲片包括片体以及在该片体上形成的低摩擦层,该座套的特征在于:
在所述片体的与对应于所述低摩擦层的表面相对的表面上形成有纤维片;
其中所述片体由多孔材料形成;并且
其中通过在所述片体的所述表面上以非均匀的方式施加多根合成树脂纤维而形成所述低摩擦层。
2.根据权利要求1所述的座套,其特征在于,所述合成树脂纤维的直径在10微米至
600微米的范围内。
3.根据权利要求1所述的座套,其特征在于,所述合成树脂纤维的直径在15微米至
400微米的范围内。
4.根据权利要求1所述的座套,其特征在于,与所述片体的所述表面结合的所述合成树脂纤维的量在每平方米所述片体5克至100克的范围内。
5.根据权利要求1所述的座套,其特征在于,与所述片体的所述表面结合的所述合成树脂纤维的量在每平方米所述片体10克至40克的范围内。
6.根据权利要求1所述的座套,其特征在于,所述合成树脂纤维在所述片体上延伸和弯曲。
7.根据权利要求1所述的座套,其特征在于,所述合成树脂纤维布置成在所述合成树脂纤维中的相邻纤维之间存在有间隙。
8.根据权利要求1至7中任何一项所述的座套,其特征在于,所述合成树脂纤维由湿气硬化树脂形成。

说明书全文

座套

技术领域

[0001] 本发明涉及例如用在覆盖车辆座位的座套中的缓冲片以及用于制造该缓冲片的方法。

背景技术

[0002] 传统上,如图6中示出的具有三层的座套31例如用作覆盖车辆座位的座套。更具体地,座套31包括纤维片32、与纤维片32背面结合的缓冲片33、以及与缓冲片33背面结合的背衬34。纤维片32例如由织物片或氯乙烯片形成。缓冲片33例如由软性聚泡沫形成。背衬34例如由经编织物或无纺织物形成。背衬34改善了缓冲片33背面的光滑性,从而使得能容易地缝制座套31并将座套31安装在车辆座位的缓冲体内。
[0003] 然而,为了形成座套31,背衬34通过例如框架层压(frame laminating)而与缓冲片33的整个背面结合。这降低了座套31的透气性。而且,纤维片32与缓冲片33具有与背衬34的延伸率不同的延伸率。从而当将座套31固定到缓冲体时,易于在座套31中产生皱褶。此外,用于将背衬34与缓冲片33的背面结合的框架层压增加了制造缓冲片33的步骤,从而使缓冲片33的制造变得复杂。因此增加了制造缓冲片33的成本。
[0004] 为了解决这些问题,例如日本特开专利申请2000-107471号提出了在图7中示出的缓冲片35。参见附图,该缓冲片35包括透气片材36。多个粘结层38或粘胶的点形成在透气片材36的背面上。通过按照点状图案将热熔粘胶37施加到透气片材36的背面上形成粘结层38。更具体地,热熔粘胶37在熔融状态被挤压通过T形模具,并以形成预定图案的方式施加到透气片材36的背面上。这形成了按照点状图案布置的粘结层38。这确保了缓冲片35的、与图6的座套31的背衬34相当的透气性以及光滑性。
[0005] 为了形成缓冲片35,必须按照预定的点状图案布置粘结层38。从而热熔粘胶37的施加速度被限制在一定平上。如果该速度增加过大,就不能按所需方式布置这些点。这使得不能确保缓冲片35所需的光滑性,妨碍了座套31的缝制。
[0006] 通过热熔粘胶37在透气片材36上形成的点状图案中的每个点集中地包含相对大量的粘胶。这使得粘胶37渗透过该透气片材36。在这种情况下,热熔粘胶37对提高缓冲片35背面的光滑性没有帮助。如果这种粘胶37的量增加,那么增加量的粘胶对于形成粘结层38变得必须。这增加了缓冲片35的制造成本。而且,热熔粘胶37的渗透使透气片材36变硬。这降低了缓冲片35的触感并降低了缓冲片35的透气性。

发明内容

[0007] 因此,本发明的目的在于提供一种缓冲片以及一种用于制造该缓冲片的方法,该缓冲片能被快速制造从而提供了生产率,而且该缓冲片具有提高的光滑性、改善的触感和增强的透气性。
[0008] 为了实现上述以及其它目的,并根据本发明的目的,提供一种座套,该座套包括具有片体以及在该片体上形成的低摩擦层的缓冲片。在所述片体的与对应于所述低摩擦层的表面相对的表面上形成有纤维片;其中所述片体由多孔材料形成;并且其中通过在所述片体的所述表面上以非均匀的方式施加多根合成树脂纤维而形成所述低摩擦层。
[0009] 本发明还提供一种用于制造缓冲片的方法,该缓冲片具有片体以及在该片体上形成的低摩擦层。该低摩擦层由多根合成树脂纤维形成,且这些合成树脂纤维以类似于铺展布(spread cloth)的状态与片体的表面结合。该方法包括:制备片体和用于纤维的熔融的合成树脂材料;以及通过使熔融的合成树脂材料与片体的表面结合而使得在片体的表面上形成处于类似于铺展布的状态的合成树脂纤维,从而形成低摩擦层。
[0010] 本发明的其它方面和优点将通过下面结合附图的描述变得明显,这些附图以示例的方式示出了本发明的原理。

附图说明

[0011] 通过参考下面对当前优选实施例的描述以及附图,可最好地理解本发明及其目的和优点,在这些附图中:
[0012] 图1是表示根据本发明实施例的缓冲片的主要部分的立体图;
[0013] 图2是表示缓冲片的放大横截面图;
[0014] 图3是表示用于缓冲片的制造设备的立体图;
[0015] 图4是表示该制造设备的主要部分的侧视图;
[0016] 图5是表示该制造设备的分解立体图;
[0017] 图6是表示传统座套的主要部分的立体图;以及
[0018] 图7是表示传统缓冲片的主要部分的立体图。

具体实施方式

[0019] 现在将参照图1至图5描述根据本发明实施例的缓冲片。如图1所示,缓冲片11具有片体12(例如,INOAC公司的产品,产品号:EL-67F,厚度:1.5毫米至4毫米)以及低摩擦层14。低摩擦层14形成在片体12的侧表面上。片体12由多孔材料形成并具有预定厚度。该多孔材料可以是柔性聚氨酯泡沫。低摩擦层14具有比传统的类似层的摩擦系数低的摩擦系数。低摩擦层14是通过以非均匀、连续延伸且弯曲的方式将多根合成树脂纤维13与片体12的侧表面结合而形成的。合成树脂纤维13布置在片体12上,且在合成树脂纤维13中的相邻纤维之间存在间隙,并处于类似铺展布的状态。因此,片体12的表面在合成树脂纤维13之间露出。
[0020] 合成树脂纤维13由为湿气硬化树脂(moisture curing resin)的树脂形成,该树脂通过与空气中的湿气反应而变硬。该湿气硬化树脂可以是聚氨酯热熔湿气硬化树脂(其例如为聚氨酯热熔湿气硬化树脂:HITACHIKASEI POLYMER有限公司的二苯甲撑二异氰酸酯,型号MDI,产品号:YR067)。
[0021] 每根合成树脂纤维13的直径优选为10微米至600微米,更优选地为13微米至400微米,且进一步优选地为15微米至400微米。如果每根合成树脂纤维13的直径小于10微米,则低摩擦层14的厚度就不够。这降低了缓冲片11的表面光滑性。如果每根合成树脂纤维13的直径大于600微米,则低摩擦层14的厚度就变得太大,或者增加了合成树脂纤维13渗透过片体12的材料量。这降低了缓冲片11的触感并降低了缓冲片11的透气性。
[0022] 在每平方米片体12内,与片体12的表面结合的合成树脂纤维13的量优选地为5克至100克,且更优选地为10克至40克。如果该量小于5克,则低摩擦层14的密度就不够,从而降低了缓冲片11的表面光滑性。如果该量超过了100克,则低摩擦层14的密度就变得太高,从而降低了缓冲片11的透气性。
[0023] 下面将说明用于缓冲片11的制造设备。
[0024] 如图3至图5所示,该设备包括一对喷丝板17、18,这对喷丝板与支撑板16的下表面结合并隔开预定距离。喷丝板17、18具有相互对置的端部,每个端部都形成喷丝头19。而且,喷丝板17包括进气腔21,喷丝板18包括进气腔22。进气腔21、22中的每个都形成在喷丝板17、18中的相关喷丝板与另一喷丝板17、18对置的表面内。喷丝板17还包括树脂供应腔20,其形成在喷丝板17与喷丝板18对置的表面内。多个树脂引入孔23延伸穿过支撑板16和喷丝板18,从而与树脂供应腔20连通。多个空气引入孔24延伸穿过支撑板
16和喷丝板17,从而与进气腔21连通。类似地,多个空气引入孔25延伸穿过支撑板16和喷丝板18,从而与进气腔22连通。
[0025] 喷嘴板26布置在喷丝头19之间。为垂直延伸的细长凹槽的多个喷孔27形成在喷嘴板26中并以预定间隔隔开。喷孔27中的每个喷孔与树脂供应腔20和进气腔21、22对应。每个喷孔27的横向尺寸例如约为0.4毫米。
[0026] 为了采用所述设备在片体12的表面上形成低摩擦层14,如图3和图4所示,片体12被布置在与喷丝头19隔开预定距离的位置处。片体12然后沿与布置喷孔27的方向垂直的方向运动。在这种状态下,熔融的合成树脂材料经由未示出的通道被供应至树脂引入孔23。然后该材料通过树脂引入孔23被引入到树脂供应室20中。因此,该材料从喷孔27被挤压到片体12的相对表面上。
[0027] 在这一阶段中,已经通过相关的空气引入孔24、25被引入到进气腔21、22中的空气与熔融的合成树脂材料一起通过喷孔27被喷射到片体12的表面上。这样,合成树脂材料以对应于具有预定直径的纤维的细长形状延伸,从而形成合成树脂纤维13。而且,因为空气作为湍流被喷射,从而合成树脂纤维13随机摆动。这使得合成树脂纤维13以非均匀、连续延伸且弯曲的方式并处于类似铺展布的状态与片体12的表面结合。合成树脂纤维13然后变硬,从而在片体12的表面上形成低摩擦层14。
[0028] 在示出的实施例中,合成树脂纤维13以非均匀的方式设置在片体12上。因此,与现有技术不同,如果片体12快速运动并提高了加工速度,就能通过相应提高挤压合成树脂纤维13的速度,抑制合成树脂纤维13的不期望布置。
[0029] 如上所述,合成树脂纤维13由湿气硬化树脂形成,而且制造设备的喷丝头19与片体12隔开。合成树脂纤维13以半硬化的状态与片体12结合。这抑制了合成树脂纤维13的材料渗透过片体12。
[0030] 为了将缓冲片11用作车辆座位的座套,片体12与对应于低摩擦层14的表面相对的表面由纤维片覆盖,该纤维片例如由织物或氯乙烯片形成。该纤维片可通过粘胶与片体12的表面结合。尽管这种结合会产生热,但因为合成树脂纤维13是由湿气硬化树脂形成的,所以抑制了合成树脂纤维13材料的再活化(再熔化)。
[0031] 因此,通过在缓冲片11的表面上形成由纤维合成树脂制成的低摩擦层14,提高了缓冲片11的表面光滑性。这样,例如在缓冲片11的缝制完成后,能有效地处理缓冲片11。
[0032] 而且,在形成低摩擦层14的相邻合成树脂纤维13之间形成了间隙。这增强了缓冲片11的透气性并改善了缓冲片11的触感。缓冲片11从而能令人舒适地用于覆盖车辆座位。
[0033] 与现有技术不同,形成在片体12上的低摩擦层14使得无需提供背衬。这减少了缓冲片11的部件数量。而且,与现有技术的背衬不同,低摩擦层14基本上维持了片体12的弹性。这抑制了在片体12上以及在位于片体12上方的座套的暴露表面上产生皱褶。
[0034] 在缓冲片11的制造中,低摩擦层14通过提供合成树脂纤维13而形成在片体12的表面上。合成树脂纤维13以非均匀的方式且处于类似铺展布的状态与片体12的表面结合。这提高了制造速度并从而提高了生产率,而与其中按照预定图案在透气片材的表面上布置点状粘结层的现有技术不同。
[0035] 此外,能在片体12的切片步骤(其中将片体12切成预定厚度的切片)中使用该制造设备。这样,能连续进行低摩擦层14的切片和成形。这大大地提高了生产率,并抑制了生产设施的扩大。
[0036] 在缓冲片11的制造中,熔融的合成树脂材料与空气流一起被挤压通过与片体12隔开的喷孔27。合成树脂纤维13从而以类似于铺展布的状态与片体12的整个表面结合。这样,就以提高了的效率在片体12的整个表面上均匀地设置合成树脂纤维13。
[0037] 而且,通过用合成树脂材料形成每根都具有预定直径的纤维,从而增大了表面面积相对于材料体积的比值。合成树脂纤维13从而以半硬化的状态展开在片体12的表面上。这基本上防止了合成树脂纤维13的材料渗透过片体12。从而减少了用于形成合成树脂纤维13的材料量。缓冲片11的触感和透气性也通过抑制合成树脂纤维13的材料渗透过片体12而得以保持。因此,缓冲片11具有改善了的触感、增强了的透气性以及提高了的光滑性。
[0038] 示出的实施例具有以下优点。
[0039] 因为确保提高了片体12的光滑性,所以例如提高了片体12的缝制效率。也可靠地改善了缓冲片11的透气性和触感。
[0040] 因为对于形成缓冲片11而言不需要背衬,所以减少了缓冲片11的部件数量。
[0041] 抑制了在缓冲片11的表面上形成皱褶,从而改善了缓冲片11的外观。
[0042] 与按照预定的图案施加点状粘结层的现有技术不同,可迅速地形成该示出实施例的缓冲片11。这提高了缓冲片11的生产率,从而降低了缓冲片11的制造成本。
[0043] 基本上防止了合成树脂纤维13的材料渗透过片体12。这减少了用于形成合成树脂纤维13的材料量,从而减小了用于制造缓冲片11的成本。此外,提供了具有改善的触感、增强的透气性和提高的光滑性的缓冲片11。
[0044] 片体12由多孔材料形成。因为该多孔材料具有改善了的触感和增强了的透气性,从而改善了缓冲片11的触感和透气性。
[0045] 每根合成树脂纤维13的直径都设置在上述范围内。这抑制了合成树脂纤维13的材料渗透过片体12。从而以类似于铺展布的状态在片体12的表面上可靠地设置合成树脂纤维13。
[0046] 与片体12结合的合成树脂纤维13的材料量设置在上述范围内。这在确保增强缓冲片11的透气性的同时提高了缓冲片11的光滑性。
[0047] 合成树脂纤维13设置在片体12上,并以非均匀的方式延伸和弯曲。这使得形成低摩擦层14极为容易。
[0048] 在合成树脂纤维13被挤压通过喷孔27以形成缓冲片11时,合成树脂纤维13摆动。这使得合成树脂纤维13与片体12的表面结合并以非均匀的方式延伸和弯曲。
[0049] 可如下改进示出的实施例。
[0050] 在示出的实施例中,合成树脂纤维13中的每根纤维作为连续体而设置在片体12上。然而,可替换的是,合成树脂纤维13可在被分成每个都具有预定长度的部分的情况下设置在片体12上。
[0051] 合成树脂纤维13可按照均匀的图案与片体12结合。例如,可将合成树脂纤维13设置成网格状或条形或螺旋形。在这种情况下,通过增加用于形成合成树脂纤维13的材料供应量而在片体12上可靠地形成合成树脂纤维13,而不用考虑片体12的运动速度。
[0052] 合成树脂纤维13可通过喷射形成。更具体地,可将用于形成合成树脂纤维13的熔融的合成树脂材料喷射到片体12的表面上。这样,就将每根长度都减小了的多根合成树脂纤维13施加到片体12的表面上。
[0053] 合成树脂纤维13可由热固树脂形成。在这种情况下,在加热的环境中将合成树脂纤维13的材料供应到片体12的表面上。合成树脂纤维13从而通过热而硬化。
[0054] 合成树脂纤维13可由紫外线硬化树脂形成。在这种情况下,优选地相对于通过喷孔27提供的合成树脂纤维13的材料布置紫外线辐射装置。
[0055] 缓冲片11除了车辆座位用的座套外还可用于不同目的。也就是说,缓冲片11可用在用于容纳如照相机显微镜等精密装置的保护罩中。
[0056] 只要合成树脂纤维13在成形后不进行加热,合成树脂纤维13就可由不与湿气反应的不反应热塑性树脂形成(例如,HITACHI KASEIPOLYMER有限公司产品号为#9618的产品)。这使得无需进行维护制造设施的复杂作业,例如在结束设施运行时封堵空气以及在长期待机之前更换清洗剂
[0057] 下面将说明根据示出实施例制造的缓冲片11的示例1、2、3、4以及比较示例1、2。
[0058] 对于示例1至4中的每个示例而言,缓冲片11是按以下方式制造的。更具体地,通过按照1300毫米的长度以及320毫米的宽度切割INOAC公司的厚度为2.5毫米的聚氨酯泡沫片(产品号EL-67E),形成片体12。然后,将片体12安放到以30米每分钟的速度运行的运送辊式输送器上。同时,启动示出实施例的制造设备。然后将HITACHI KASEI POLYMER有限公司的热熔湿气硬化树脂(二苯甲撑二异氰酸酯,MDI型,产品号:YR067)与130摄氏度的加热空气一起通过喷嘴喷射。从而在片体12正被运送的同时,树脂在类似于铺展布的状态下与片体12结合。在每个示例1、2、3、4中,喷孔27相对于片体12保持在不接触状态。根据恒定的宽度施加合成树脂纤维13的材料。
[0059] 比较示例1的缓冲片具有与示例1至4的片体一样的片体。聚氨酯热熔湿气硬化树脂为HITACHI KASEI POLYMER有限公司产品号为YR067的产品,而且采用NORDSON KK的2
涂层涂抹器(产品号:BC62)按照10g/m 的涂层重量将聚氨酯热熔湿气硬化树脂施加到片体的表面上。涂层涂抹是指这样的技术,即,通过T形模具将热熔粘胶压靠在目标物上。在涂层涂抹中,对例如T形模具的远端和目标物之间的距离、树脂的粘性、或位移进行控制。
这样,用于施加粘性热熔树脂的图案从线性形状改为类似于虚线的形状,从而形成低摩擦层。
[0060] 比较示例2的缓冲片具有与示例1至4的片体一样的片体。由尼龙(KABUSHIKI KAISHAKIRYU TRICOT的产品,产品号:15d)形成的经编编织物(tricot knit)与片体的表面结合作为背衬。
[0061] 示例1至4以及比较示例1、2安放在基底材料1至4上。采用根据ISO 8295(JIS K 7125)的摩擦试验法,确定以下表面相对于每个基底材料1、2、3、4的静摩擦系数动摩擦系数:每个示例1、2、3、4的缓冲片11的合成树脂纤维13的结合表面、比较示例1的喷射涂层表面、以及比较示例2的经编编织物结合表面。基底材料1至4如下形成。
[0062] 基底材料1:涂有三聚氰胺的胶合板
[0063] 基底材料2:高弹性聚氨酯模制形成的密度为0.047g/cm3的车辆座位用泡沫体[0064] 基底材料3:高弹性聚氨酯模制形成的密度为0.028g/cm3的车辆座位用泡沫体[0065] 基底材料4:聚氨酯加热模压形成的密度为0.024-0.030g/cm3的车辆座位用泡沫体
[0066] 表1示出了获得的测量结果。每个示例1至4的涂层重量代表合成树脂纤维132
的施加量。例如,涂层重量10对应于10g/cm。
[0067] 此外,在每个示例1、2、3、4中,测量了粘附到片体12上的一些合成树脂纤维13的直径。具体地,采用50倍显微镜测量了任意选择的三十个合成树脂纤维13的直径的最小值、最大值及平均值。表1中示出了测量结果。
[0068] 表1
[0069]
[0070] 如表1所示,对每个基底材料1至4而言,示例1至4显示出比所述比较示例1、2小的静摩擦系数和动摩擦系数。也就是说,示例1至4显示出相对于比较示例1、2改善了的光滑性。
[0071] 此外,在示例1和示例2中,合成树脂纤维13的最小值、平均值、以及最大值全部都在15微米到400微米的范围内。因此,示例1和示例2显示出了与示例3和示例4水平相当的光滑性,但使用了比示例3和示例4更少量的合成树脂材料,在示例3和4中合成树脂纤维13的直径最大值超过了400微米。因此,相对于示例3和示例4而言,示例1和示例2降低了制造成本,并便利了合成树脂的结合过程。
[0072] 当前这些示例和实施例应理解为是示意性的而不是限制性的,本发明不限于这里给出的细节,而是可在所附权利要求的范围和等价物内进行改进。
QQ群二维码
意见反馈