主要由底层可膨胀粘土层和覆盖层组成的和/或油不可透密封垫

申请号 CN91101335.0 申请日 1991-03-05 公开(公告)号 CN1055788A 公开(公告)日 1991-10-30
申请人 诺伊纤维技术股份公司; 发明人 格里格·西尔泰; 沃克德·穆勒; 卡尔斯·约汉伯;
摘要 本 发明 提供一种 水 和/或油不可透密封垫。该垫由 膨润土 和无纺织物组成,能将来自一端的剪切 力 传递到另一端,即斜面剪切力可由 覆盖 层 通过可膨胀粘土传递到底层,该垫为 纤维 增强的无机密封垫,允许斜面剪切力的传递,而不在可膨胀粘土层中形成“滑移带”。该垫由无纺织物底层、可膨胀粘土层(优选钠膨润土)和覆盖层(优选无纺织物)组成。所有三层均用已知方法针刺连接,遇水时,粘土膨胀并形成水和/或油不可透层。该水和/或油不可透密封垫特别适用于水利工程和废 水处理 工程。
权利要求

1、一种作为和/或油隔板的水和/或油不可透三层密封垫,该垫包括底层、覆盖层和可膨胀粘土中间层,所述底层和覆盖层选自无纺织物、纺织物、编织物和塑料片,条件是至少一种所述底层和所述覆盖层由无纺织物组成,其中
(a)可膨胀粘土为粉状,其粒径为约90%小于0.06mm且约70%小于0.002mm,如附图1所示,底层和覆盖层之间可膨胀粘土层的厚度与粘土的膨胀能成线性关系,且位于附图1中标有“适宜范围”字样的阴影部分中,以及
(b)所用无纺织物的面积重量和有效开口尺寸Dw落在附图2中标有“允许范围”的部分内。
2、权利要求1的密封垫,其中
(a)可膨胀粘土至少部分地封存于无纺织物层中,
(b)可膨胀粘土层的厚度小于或基本上等于无纺织物层的厚度或几层无纺织物层的总厚度。
3、权利要求2的密封垫,其中约30至约50%所用的膨润土位于底层和/或覆盖层的至少一端。
4、权利要求1-3的密封垫,其中
(a)底层和覆盖层由无纺织物组成,
(b)无纺织物的面积重量为约300或600g/m2分别至约1000g/m2,厚度为约2至约8mm,有效开口尺寸为约0.08至约1.5mm,于2KN/m2载荷下水渗透性为10-3至约10-2m/s,且由切断长度为约60至约150mm的喷丝纤维制造。
5、权利要求1-3的密封垫,其中底层和覆盖层之一为无纺织物,另一层为纺织物或编织物,底层和覆盖层均由防腐合成树脂纤维或长纤维组成,或由防腐合成树脂制造的塑料片组成。
6、权利要求1-4的密封垫,其中底层和覆盖层为无纺织物,而且在底层和膨润粘土层间有一纺织物或编织物或塑料片,所有织物层和塑料片均由防腐合成树脂制造。
7、权利要求6的密封垫,其中底层为附图2图示“允许范围”之外的无纺织物,此外,将面积重量大于80g/m2的分切膜织物针刺连接在底层和粘土层之间,无纺织物优选面积重量为250g/m2的针刺无纺织物。
8、权利要求5的密封垫,其中底层仅由面积重量大于150g/m2的分切膜织物组成,或仅由厚度不小于200μ(0.2mm)的塑料片组成。
9、权利要求1-8的密封垫,其中无纺织物。纺织物或编织物和塑料片由聚烯或聚酯(PES)制成。
10、权利要求9的密封垫,其中聚烯烃为聚丙烯(PP)或高密度聚乙烯(PEHD)。

说明书全文

发明涉及一种和/或油不可透密封垫,更具体地说,本发明涉及一种水和/或油不可透密封垫,该密封垫特别适于作为水利工程的水和/或油隔板、为控制环境污染而建造水池、贮留池,以及作为有害的或核废物的土壤密封剂或用于澄清动物排泄物(如在农场)的土壤密封剂,以及通过阅读本说明书本领域的专业人员会意识到的其它用途。

上述水和/或油不可透密封垫由柔性底层。可膨胀粘土层(优选膨润土)以及柔性覆盖层所组成。

过去,膨润土广泛地以各种形式用作水隔板。因此,人们知道通过在可能渗漏或流动的通道上施用一定量的可膨胀膨润土来提供防渗结构。在美国专利2,277,286(Bechtner)中公开了一种防止水的渗漏或流动的方法和组合物。如其中详细描述的那样,用商销膨润土阻隔水的渗漏或流动,通过用具有与水接触后膨胀和凝结的膨润的或高度胶态的粘土阻隔水流带来防止渗漏,保护各种结构。发现的一种特别适于上述目的的粘土为在Wyoming和South  Dakota地区得到的true  bentonite,但其它具有遇水时有很大程度膨胀和凝结的或高度胶态的膨润粘土也可使用。

另外,在过去,将细致分散的膨润土与吸水性纸板一起加工成层合板,如美国专利4,048,373,4,070,839和 4,139,588所述。这种层合板特别适于作为水隔板,并且用波面纸板制造。该波面纸板上的通道被细致分散的膨润土充满。当这种薄板置于水池底部并暴露于水中时,水通过皮纸表层,被膨润土材料吸收。同时,纸由于润湿作用而失去抗拉强度。膨润土具有吸收水后扩张或膨胀的能力。这种膨润土的扩张和牛皮纸抗拉强度的减弱导致底层和表层很难保持在一起。

在美国专利4,501,788(与欧洲专利8  059  625相对应)中,公开了另一种将膨润材料包装在板材或卷材中的方法,该板或卷可置于水池或贮留池底部以形成防水隔板。该专利还描述了用下述步骤制造这种包装有膨润土的板材的方法。

(a)以聚酯板材(如多孔无纺纤维)为支撑板,该支撑板具有允许气体从侧向逸出的性能。

(b)向上述板材的上表面涂覆粘合剂,该粘合剂是用淀粉状胶粘物制备的。

(c)在上述粘结剂上涂覆约1/4英寸膨润土。

(d)在膨润土的上表面喷涂另一层粘结剂。

(o)在粘结剂的上表面盖一层筛状(scrim)或细网眼材料。

(f)将上述复合物滚压成细长平整的板材。

(g)将上述板材于约300°F的长炉中烘烤,从而去除板材和膨润土中的所有水分。

上述过程不仅繁琐、费时、费钱,湿润后支撑板与覆盖层间的紧密接触还会受到损害。这个缺点是很关键的,因为在湿条件下,膨润土层在水池边缘或其它场合起到“滑移带”的作用。在湿条件下粘 结剂的溶解也加剧了这种通道作用。

因此,人们进行进一步的研究以避免至少一个上述缺点,也就是说,避免使用粘结剂以及使用这种粘结剂所需的烘烤步骤。在美国专利4,565,468中公开了一种无需烘烤或上述粘结剂的新方法。该专利的方法包括下述步骤:

(a)采用平整的聚酯板材,优选合成的无纺纤维,该无纺纤维为多孔、柔性聚丙烯材料。该板材能够从侧向散出气体,以允许该板材附近聚集的气体能够从侧向向外通过该板材。

(b)在基料的上表面涂敷一层约1/4英寸的膨润土。

(c)在膨润土表面铺一层普通牛皮纸或其它可生物降解的材料。该材料必须具有在水合之后降解的能力。

(d)将上述板材与基料缝合,使膨润土处于两片材料之间。优选的形式是在相对于板材轴向的交叉对线上进行缝合,以在表层板材和基料板材之间形成钻石状缝制间隔。在该缝制间隔中含有膨润土。这种缝制方法防止了缝制品滚动时和运输时膨润土的移动。另一种形式是使牛皮纸起波,以形成延长的波纹间隔,用来盛装膨润土。

当把上述材料置于水环境中时,如置于水池或贮留池底,膨润土会膨胀并使水隔板表层的牛皮纸破裂。膨润土继续膨胀以覆盖缝制时形成的缝合孔,从而形成不透水层。

从上面的叙述似乎可以看出,根据美国专利,4,565,468的方法生产的板材比根据美国专利4,501,788(与欧洲专利0  059  625相对应)的方法生产的好,但仍存在一个很大的缺点,即在作为水隔板期间,膨润土层在湿条件下在斜向形成“滑移带”。

在上述美国专利记载的所有密封垫仅起盛装膨润土的作用,并总是基本上由底层、膨润土层和覆盖层所组成。这些密封垫使用并随之湿润后,底层和覆盖层仅通过其间的膨胀的膨润土层相连接,该膨润土层具有油脂一样的稠度。现在,如果考虑密封垫还需承受砂子或土壤以及砾石或岩石的压力,而这种压力不仅来自平面方向,还来自斜面方向,很容易想象到这种加在膨胀的膨润土中间层(起滑移带的作用)上的负载物会滑动,在实践中常会观察到这种现象。

因此,如上所述,上述美国专利所述的密封垫基本上仅以平面形式盛装膨润土,因而随着膨润土的膨胀,覆盖层与底层相分离,并形成连续膨润土层。

但是,实践中,可按美国专利4,344,722所述的方法简便、低成本地就地制造这种膨润土层。该专利提供了一种使所需底层防水的方法和系统,并进一步完成了防水、防化学的产物。该方法包括提供一段具有所需特性的柔性水可透过的合成薄板材,在需防水的底层上覆盖一层上述板材,用中心层膨润土(蒙脱土)覆盖在该板材之上,并在该膨润土之上再盖一第三层纤维。上述柔性水可透过的合成薄板材通常为无纺纤维。

所有上述先有技术中的密封垫都有一个很大的缺点,即中间所夹持的膨润土中间层遇水时可在所有三维空间上任意膨胀,这样就会产生膨润土滑移平面。

因此,本申请人已经做出努力,避免先有技术中的上述缺点,在英国专利2  202  189中公开了一种密封垫。该专利的相应申请于1988年2月12日提交,并于1988年9月21日公开。该英国专利中记载的密封垫包括底层、可膨胀粘土中间层和覆盖层, 其中底层和覆盖层中至少一个由无纺纤维材料制成,而另一个(如果有的话)底层和覆盖层由纺织的或编织的纤维制成,且其中所有三层都由针刺连接在一起。

在这种密封垫的制造过程中,首先将颗粒状或粉状可膨胀粘土施于底层,然后将无纺物覆盖层,即可针刺的纤维层,置于颗粒或粉状层之上。这种可针刺纤维用针体侧翼装有向下的倒钩来连接,这与例如加工无纺纤维时所使用倒钩相同。这样由针刺连接的纤维向与覆盖层表面平面垂直的方向弯曲。这需要具有一定强度和柔韧性的纤维,在纤维具有足够纤维长度的情况下,在长纤维的情况下,例如以松散的卷或圈的形式放置,纤维会成圈或绕成盘状,因而这种圈可被倒钩向下拉出而不破坏纤维丝。

如针刺领域所知,大量的针同时完成针刺操作,并贯穿一些顺序的打击,从而使从覆盖层或顶层穿入支持层的缝合密度达到如60针/cm2。针上的倒钩贯通覆盖层,沿支撑纤维的单根纤维或整个纤维束刺破,并使其向通过支持层的方向部分取向。由于针的回缩,支撑纤维从倒钩上脱离。然后大部分支撑纤维通过其在覆盖层的一定长度而保持固定,而同一纤维的另一部分固定地保留在支持层。由于大量的针刺,在遍布整个表面的大量点上支撑纤维得以被拉住。因此,使支持层与覆盖层成为一个整体。另一方面,颗粒层中嵌有大量纤维,从而防止颗粒在成品的表面平面上水平滑动。颗粒以松散的形式被支撑纤维所固定,这些支撑纤维将各层连接在一起。

因此,如上述本申请人的英国专利2202  185所述的用针刺连接三层的方法使密封垫的三层机械连接,同时省略了上述美国专利4,501,788中所用的粘结剂。

此外,当膨润土遇水膨胀时,针刺连接压力抵消了膨胀压力,这一点连同上述纤维与膨润土的紧密连接,保证了密封垫的不透水性能。另外,针刺保证了密封垫的柔性,使其与机械连接的非纺织物具有同样的柔韧性。

尽管如上所述,本申请人的英国专利2  202  185所记载的密封垫在许多方面比先有技术中的其它密封垫优越,但已发现,从上覆盖层到底层的剪切力的传递仍需改善。

因此,本发明的第一个目的是提供一种含可膨胀粘土(优选膨润土)的水和/或油不可透密封垫,该密封垫在建筑工地的实际使用中,特别是用在斜坡上时,能够将由砂和石负载引起的剪切力从上覆盖层通过膨胀的中间膨润土层直接传递到底层上。换言之,本发明的水和/或油不可透密封垫即使在膨润土膨胀后仍可紧密连接,以防止其上的砂或砾石滑动。

从这一点出发,本发明的另一个目的是提供一种水和/或油不可透密封垫,这种密封垫可简便、经济地大规模制造。

本发明的再一个目的是提供一种水和/或油不可透密封垫,这种垫可根据作为水隔板的不同用途而按不同的厚度生产,该垫可用于水池、水库、水坝、城市和工业废水贮留池等场合以防止水的渗漏和/或污染物的浸入。

本发明实现了上述目的,提供了一种水和/或油不可透的作为水和/或油隔板的三层密封垫,该垫包括底层、覆盖层和可膨胀粘土中间层,该底层和覆盖层选自无纺织物、纺织纤维、编织纤维和塑料板,其条件是上述底层和上述覆盖层中的至少一个由无纺织物组成,其中

(a)可膨胀粘土为粉状,其粒径为约90%小于0.06mm且约70%小于0.002mm,如附图1所示,底层和覆盖层之间可膨胀粘土层的厚度与粘土的膨胀能力成线性关系,且位于附图1中标有“适宜范围”字样的阴影部分中,以及

(b)所用无纺织物的面积重量和有效开口尺寸Dw(effective  opening  size)落在附图2中标有“允许范围”的部分内。

上述三层用针刺连接,以便在可膨胀粘土层中提供多根支撑纤维,并使底层与覆盖层相固定,以保证即使在上述可膨胀粘土层的粘土膨胀后三层垫仍保持连结,并提供一种用于建筑工地的密封垫,该密封垫能承受粘土层上方指向底层上边沿的剪切力而不会在粘土层中形成“滑移平面”。

附图1的图示表明适于和不适于针刺技术的范围,这个范围以制备本发明密封垫所用粘土量与膨胀能力间的关系表示。

当所用粘土的量(g/m2)与其膨胀能力相协调时,只能通过针刺技术使底层和覆盖层直至可膨胀粘土层长期有效连接。也就是说,当使用高膨胀性粘土时,使用量应相对较少,因为高膨胀能力会破坏在用少量粘土时遇水后所形成的针刺复合体。另一方面,如用膨胀能力较低的粘土,可采用较大量的粘土。

根据本发明的另一个重要特征,附图2中的图示表明本发明所用的无纺织物的面积重量与实验得到的有效开口尺寸Dw的对应关系。在确定这种关系时,将脱模板与打孔板区别开,也就是将覆盖层(通常位于脱模板一端,亦称上穿孔板端)与底层(通常位于打孔板一端,亦称穿孔底板端)区别开。

为得到长期有效的针刺连接,安全地封存在上述粒径范围(约90%小于0.06mm且约70%小于0.002mm)内的粘土颗粒,无纺织物的定义参数为面积重量(g/m2)和作为特性孔尺寸的有效开口尺寸(Dw/mm)。

从过滤技术可知,具有一定粒径的颗粒可被其有效开口尺寸Dw较小的更细小、更轻的产物所阻隔。更大的有效开口尺寸是允许的,如果无纺织物的厚度和面积重量同时增大的话。因此可延长过滤长度。根据申请人的经验和大量实验,为实现无纺织物的针刺而将粘土层包封于其中,针刺机的脱模板与打孔板对所用无纺织物层有不同的要求。

例如,作为底层的无纺织物的面积重量可为700g/m2最大有效开口尺寸(Dw)为0.18mm或更低,如0.14或0.09等。另一方面,底层的面积重量必须至少为600g/m2,不能更少。

作为覆盖层的无纺织物的面积重量应至少为300g/m2。因此,覆盖层的面积重量可为400g/m2,有效开口尺寸(Dw)最大为0.10mm或更小。

一般来说,优选面积重量为约300至约1000g/m2,厚度为约2至约8mm,有效开口尺寸为约0.08至约1.5mm,于2KN/m2负荷下透水性为约10-3至约10-2m/s的无纺织物,该无纺织物由切割长度为约60至约150mm(优选约120至约150mm)的喷丝纤维制得。

例如,一个根据本发明制得的密封垫具有下述特性:

1.膨润土层厚度

干燥:约2mm

于水中贮存3小时后:约8mm

2.膨润土垫的厚度(mm)

负荷  干燥  于水中贮存3小时后

2KN/m29.9 14.9

20KN/m28.9 13.9

3.在遇水膨胀状态下在底层与覆盖物间仍保持良好的连接。

4.使用长度为120mm至150mm的优选纤维。

5.贯通膨润土层的针刺得到纤维增强的膨润土垫,该垫可将剪切应力转移到膨润土层(从膨润土垫的上端至底端或相反)。于200KN/m2负载下进行剪切试验,测得剪切应力为120KN/m2。

优选的是,底层和覆盖层均由无纺织物组成。但是,下述结构也是所希望的,即底层由无纺织物组成,覆盖层由纺织物或编织物或塑料片组成,或者覆盖层由无纺织物组成,而底层由纺织物或编织物或塑料片组成。

所用无纺织物和塑料片最好由高品位合成树脂(特别是聚乙烯、聚丙烯、聚酯、聚丙烯酸酯和/或聚酰胺)组成。在废水处理工程中应用时,由高密度聚乙烯(HDPE)制造的无纺织物是特别优选的。

这样的无纺织物和塑料片能抗腐蚀(抗水中和土壤中存在的所有物质),因此能保证特别长期的使用。其优异的高撕裂强度能实质性地抗机械磨损。它们在紫外辐射下,也具有高度稳定性

本发明中所用的无纺织物最好具有定长短纤维的机械增强结构。将定长短纤维挤压在一起以形成有大量内孔的板结构。这种设想模仿土壤的结构。无纺织物的结构可粗可细,取决于土壤的性质,以保证与所施用处的土壤类型有最佳的匹配。机械增强保证了土壤与无纺织物及覆盖材料间有高的摩擦系数。除针刺机械连接的无纺织物外,还可使用由压合连接或旋流得到的机械增强的、或化学键连的无纺织物。

根据本发明的另一个实施方案,底层和覆盖层均由无纺织物组成,但除此之外,在底层和可膨胀土层间还需放置纺织材料和/或塑料片和/或编织增强的塑料片,这些材料均通过针刺连接在一起。

根据本发明,还可以按如下方案设计密封垫:底层是落在附图2图示的“允许范围”之外的无纺织物,此外,将面积重量大于80g/m2的分切膜织物(split film woven)(可选择纺织原材料,优选聚烯)针刺连接在底层和粘土层之间,上述无纺织物优选面积重量为250g/m2的无纺织物。

另一方面,底层可仅由面积重量大于150g/m2的分切膜织物(可选择纺织原材料,优选聚烯烃)组成,或仅由厚度不小于200μ(0.2mm)的塑料片组成。

因此,当通过针刺机时靠近打孔板一端的底层可为:

(1)根据附图2所示的针刺无纺织物,可选择其纤维原材料,但优选合成纤维;

(2)由面积重量至少为150g/m2的分切膜织物制成,可 选择其纤维原材料,但优选聚烯烃;

(3)厚度至少为200μ(0.2mm)的能抗腐蚀的塑料片,优选聚烯烃,特别是高密度聚乙烯(HDPE);

(4)无纺织物与分切膜织物和/或塑料片的结合,此处,无纺织物的面积重量可在附图2的图示范围之外,例如:250g/m2的针刺无纺织物与至少80g/m2的分切膜织物的结合;

(5)用针刺连接的粗和细无纺织物的结合,其中之一的性质必须与附图2的图示相一致。

可膨胀粘土内层最好由膨润土组成。膨润土是一种含大量蒙脱石的粘土,主要是这些蒙脱石决定了粘土的性质(高膨胀性,良好的水吸收能力,高塑性)。为从在水中膨胀性能较低的土金属膨润土制得高膨胀活性膨润土,膨润土的碱土金属离子应由碱金属离子(优选钠离子)来取代。因此,具有显著提高的塑性、粘度触变性和水吸收性的钠膨润土是本发明优选的膨润土。

膨润土以粉状使用。特别优选的是钠活化的膨润土,其粒径分布为:大部分或主要部分颗粒的粒径低于0.002mm(2微米),例如,大于约90%的颗粒粒径小于0.06mm,大于约70%的颗粒粒径小于0.002mm。

这种优选的钠活化的膨润土例如具有如下粒径分布(在下述实例中,称之为膨润土B4):

60μm  1.5%

60-40μm  2%

40-20μm  1.5%

20-10μm  2%

10-2μm  6%

2μm  87%

化学分析(平均值):

SiO256.0%

Al2O320.6%

Fo2O34.7%

TiO20.3%

CaO  2.0%

MgO  3.4%

Na2O 3.0%

K2O 1.4%

燃烧后损失  8.6%

矿物学分析:

蒙脱石  70-80%

伊利石  10-18%

石英  3-5%

其它矿物  3%

层稠度 约0.8g/cm3

颗粒密度 2.65g/cm3

m3/t装于麻包 1.20

可膨胀粘土层是基本均匀的。随着特定应用的不同,上述粘土层的厚度最好在0.5至10.0mm之间。但也可更薄或更厚,这取决于所用粘土的种类或密封垫的最终用途。需要指出的是,膨胀时膨润土的体积最好增大10-20倍。

可膨胀粘土至少部分地包封在无纺织物层内。可膨胀粘土层的厚度优选小于或基本上等于无纺织物层的厚度或几层无纺织物层的总厚度。

优选的是,约30至约50%所用粘土处于底层和/或覆盖层。

本发明的一个优选方案为这样的密封垫,其中

(a)底层和覆盖层由无纺织物组成,

(b)面积重量从约300或600分别至约1000g/m2的非纺织物,其厚度为约2至约8mm,有效开口尺寸为约0.08至约1.5mm,于2KN/m2的载荷下的透水性为约10-3至约10-2m/s,且由切断长度为约60至约150mm的喷丝纤维制得。

(c)无纺织物纤维由高密度聚乙烯、聚丙烯或聚酯组成,

(d)可膨胀粘土为粉状钠活化的膨润土,其粒径分布为大部分 或主要部分颗粒的粒径小于0.002mm(2微米),

(e)均匀膨润土层的厚度为约0.5至约10mm,

(f)约30至约50%的所用膨润土位于底层和/或覆盖层的至少一端。

如前所述,底层可由针刺连接的两层无纺织物组成,其中一层无纺织物具有根据附图2图示的细孔,而与膨润土层相连的无纺织物具有粗孔。在这种情况下,粗孔无纺织物(上限Dw=1.5mm)可由高达100%的膨润土填充。

本发明密封垫的生产方法是首先将干燥的可膨胀粘土中间层置于底层之上,再在其上铺上覆盖层,然后用针刺机将这三层针刺连接。

为达到上述目的,从供料斗将作为膨润土中间层的膨润土施于底层(优选无纺织物),松开供料轴。然后,松开供料轴后将覆盖层铺于膨润土中间层之上。由此得到的三层板结构通过针刺机,用已知方法针刺。根据膨润土中间层的厚度,将水不可透密封垫板结构在轴上卷起或按所需的长度切割。

针刺处理得到连接底层和覆盖层的邻接纤维。

底层和覆盖层以针刺的方式连接,使位移(即剪切力),如在斜坡上,可由覆盖层通过纤维传递到底层。如果没有这些贯穿整个膨润土层的纤维,膨润土层(特别是在膨胀情况下)会在斜面上形成“滑移带”)。在粘土膨胀且密封垫的厚度增大之后,针刺连接的底层和覆盖层之间保持连接(以保证剪切力的传递)。其结果是得到纤维增强的膨润土层。除上述增强外,膨润土封存在纤维结构之间。

本发明的水不可透密封垫特别适用于水利工程和废水处理工程。

通过上面叙述可以看出,本发明涉及一种特殊的膨润土、无纺织 物的组合,可以将剪切力从垫的一端传到另一端,即可将斜面剪切力从覆盖层通过膨润土层传递到底层上。本发明涉及到纤维增强的无机密封垫,该垫能使斜面上的剪切力传递出去,而不会在膨润土层中形成“滑移带”。

现通过下述非限定性实施例进一步说明本发明。

实施例1

在本例中,描述在以防冲乱石作为保护层的水渠、水库或大坝上作为防水护墙的A型密封垫。A型密封垫由重载体geotextile组成,后者是根据Bundesanstalt  für  Wasserbau(联邦航道工程研究院)的说明制造的,作为4型土壤的geo  toxtile过滤填料。A型密封垫可直接用重石覆盖。

使用下述原材料:

底层:  双层PES/PP纤维

800g/m2无纺织物

覆盖层: 单层PES纤维300g/m2

无纺织物

中间层: 3000g/m2B4膨润土

A型密封垫的性能如下:

面积重量(g/m2): 约4100

最大拉伸强度(N/10cm):

纵向:  1600

横向  2500

断裂伸长(%)

纵向:  60

横向:  50

厚度(mm)  10

Kv值(m/s) 约1.0×10-10

(Kv值为渗透系数)

此处所用膨润土B4为说明书中所述的“优选的钠活化的膨润土”。

实施例2

在本例中,描述用作农业工程(水池、蓄水槽、收集饮用水区域的道路)密封、用砂或碎石作保护层的水池隔板等的B型密封垫。B型密封垫由较轻的载体组成。其上只能覆盖细小的砂和砾石或碎石。

使用下述原料:

底层: PP纤维400g/m2单层无纺织物

覆盖层: PP纤维300g/m2单层无纺织物

中间层: 3000g/m2膨润土B4

B型密封垫的性能如下:

面积重量(g/m2): 约3700

最大拉伸强度(N/10cm)

纵向:  1400

横向:  2400

断裂伸长(%):

纵向:  60

横向:  50

厚度(mm):  7.5

Kv值(m/s): 约1.0×10-10

实施例3

在本例中,描述用于保护合成膜免受垃圾堆中粗大排泄物料(例如16/32mm砾石)破坏的C型密封垫。C型密封垫由高度抗化学侵蚀的高密度聚乙烯(PEHD)制成。因此,C型密封垫还可用于垃圾堆或相似的高侵蚀环境。作为合成隔板的保护层,渗透系数Kv约为10-10m/s的膨润土密封垫形成附加的不透性水隔板,可以减少可能的渗漏并保护膜使其避免与整的排泄物层直接接触。

使用下述原料:

底层: PEHD纤维800g/m2

单层无纺织物

覆盖层8PES纤维400g/m2单层

无纺织物

中间层: 3000g/m2膨润土B4

C型密封垫的性能如下:

面积重量(g/m2): 约4200

最大拉伸强度(N/10cm):

纵向:  1200

横向:  1800

断裂伸长(%):

纵向:  140

横向:  100

厚度(mm)89

Kv值(m/s): 约1.0×10-10

QQ群二维码
意见反馈