适用于高温使用条件的多层柔性石墨/金属的密封垫圈

申请号 CN200780012522.1 申请日 2007-02-08 公开(公告)号 CN101415511A 公开(公告)日 2009-04-22
申请人 洛林碳电路元件公司; 发明人 A·波捷;
摘要 本 发明 涉及通过交替叠放(n+1)个柔性 石墨 片和(n)个金属加强片(其中,n≥2)来制造的复合板,其特征在于,所使用的柔性石墨片的厚度是例如复合板的所有边缘都为2mm的厚度,所述复合板包括至少3层柔性石墨并且具有每单位面积至多2.34kg/m2的石墨 密度 ;其特征还在于,对于所述穿孔的金属加强片的每一个,存在于所述金属加强片上的尖齿相对于所述金属加强片的表面的高度不超过尖齿要钩住的柔性石墨层的最小厚度的1.3倍。所述复合板能够制造在连续使用中抵抗直到550℃的 温度 的密封 垫圈 。
权利要求

1.复合板,其通过交替的堆叠体实施而成,所述交替的堆叠体具有 (n+1)个柔性石墨片(10,11)和(n)个被穿孔的有尖齿的金属加强片 (20),其交替堆叠的方式是,所述交替的堆叠体的第一片和最末片是柔 性石墨片,
所述复合板的特征在于:
a)n≥2;
b)所使用的柔性石墨片的厚度可以相同或不同,并且是这样:复合 板的2mm厚度的整个切
(i)包括至少3层柔性石墨,
(ii)具有每单位面积至多2.34kg/m2的石墨质量
c)对于所述被穿孔的金属加强片中的每一个,所述的存在于所述金属 加强片上的尖齿相对于所述金属加强片的表面具有一高度,该高度不超过 所述加强片要钩住的、最薄的柔性石墨层的厚度的1.3倍。
2.按照权利要求1所述的复合板,其特征在于,所述的柔性石墨片 都为小于0.6mm的厚度,并且,都具有为1.3g/cm3的最大密度
3.按照权利要求1或2所述的复合板,其特征在于,位于所述堆叠 体的上表面和下表面上的柔性石墨片是用其密度小于其它石墨片的密度的 柔性石墨制成。
4.按照权利要求1或3所述的复合板,其特征在于,位于所述堆叠 体的外表面上的石墨片的密度不超过0.7g/cm3。
5.按照权利要求1至4中任一项所述的复合板,其特征在于,所述 复合板还包括至少一个厚度小于10μm的功能化的金属/石墨界面,
6.按照权利要求5所述的复合板,其特征在于,所述功能化选自以 下组:
(a)布置腈橡胶层,
(b)布置聚烯层或聚烯烃片,
(c)布置含氟的聚合物层或含氟的聚合物片,
(d)布置热塑性的含氟的弹性体的聚合物层或热塑性的含氟的弹性 体的聚合物片。
7.按照权利要求1至6中任一项所述的复合板,其特征在于,所述 金属加强片的材料选自由以下材料构成的组:不锈钢、镍、镍合金铝合金铜合金
8.按照权利要求1至7中任一项所述的复合板,其特征在于,所述 复合板的厚度为大约2mm;所述复合板通过切割能够制造外直径为 92mm、内直径为49mm的环形垫圈,所述环形垫圈具有一平行于所述层 的抗蠕变强度,直至坐压在所述垫圈上的压大于200MPa,优选地大于 230MPa,且甚至更优选地大于250MPa,所述抗蠕变强度在以下条件下 确定:
-在根据DIN2635的标准化的E DN40/PN40形式的法兰(bride)之 间夹紧;
-在垫圈的表面上施加特定的压力:30MPa;
-垫圈/法兰组件的热循环:在25℃和300℃之间1次;在300℃保持 48小时;
-根据标准EN 13555测量机械强度QSmax。
9.按照权利要求8所述的复合板,其特征在于,在所指出的条件下, 所述垫圈具有一渗漏率,所述渗漏率在所述法兰的内部的氦的压力为1巴 的情况下与垫圈/法兰组件一起测量,所述渗漏率小于10-4mb*l/s*m、并且 优选地小于5*10-5mb*l/s*m。
10.扁平的密封垫圈,其特征在于,所述扁平的密封垫圈通过切割由 按照权利要求1至9中任一项的复合板来制造。
11.从按照权利要求9的复合板中切割的环形密封垫圈,其特征在于, 其平行于所述层的抗蠕变强度大于200MPa,优选地大于230MPa,更优 选地大于250MPa,所述层的抗蠕变强度在厚度为2mm、外直径为92mm、 内直径为49mm的垫圈上,处于坐压在垫圈的压力下,在以下条件下测定:
-在根据DIN 2635的标准化的E DN40/PN40形状的法兰之间夹紧;
-在垫圈的表面上施加特定的压力:30MPa;
-垫圈/法兰组件的热循环:在25℃和300℃之间1次;
-在300℃保持48小时;
-根据标准EN 13555测量机械强度QSmax。
12.按照权利要求10或11中任一项所述的密封垫圈,其特征在于, 所述密封垫圈的外表面的至少一个覆盖有抗粘合覆盖层
13.按照权利要求10至12中任一项所述的密封垫圈,其特征在于, 所述密封垫圈具有一可允许的最大应力QSmax,所述最大应力QSmax在 400℃下根据标准EN 13555测定,其大于180MPa,并且优选地大于190 MPa。
14.密封垫圈的使用,其特征在于,所述密封垫圈为按照权利要求 10至13中任一项所述的密封垫圈,其在不超过600℃的温度下,优选地在 350℃和550℃之间的温度下,并且更优选地在400℃和500℃之间的温度 下使用。
15.密封垫圈的使用,其特征在于,所述密封垫圈为按照权利要求 10至14中任一项所述的密封垫圈,其在450℃和550℃之间的温度下、在 不超过24小时的累积期限使用。

说明书全文

技术领域

[01]本发明涉及通过柔性石墨片和穿孔的金属片交替的堆叠体来制 造扁平的密封垫圈的领域,所述密封垫圈能够支持例如大于300℃的高温 条件而它们的品级不会遭到劣化,并且甚至在非常高的垫圈的夹紧应下 也是一样。

背景技术

[02]柔性石墨是通过石墨的热膨胀来制造的(最经常地呈薄片形状), 其中,原子或分子在轰击之后嵌入到酸性介质中;如此获得的材料具有非 常小的比重,并且具有自体聚集(auto-agglomérer)性能,而不用通过简 单的机械作用而连接。如此,通过轧制或压缩,获得呈卷筒(rouleaux) 或平板形状的柔性或半刚性材料。
[03]柔性石墨片长期以来使用于制造扁平的密封垫圈。这种扁平的密 封垫圈例如在化工或石油化工设备中使用,用以输送热流体腐蚀流体; 以及在制造热能或核能的发电厂中使用,用以输送加压的蒸气。扁平的 密封垫圈的使用在图1中示意性地示出。两个金属法兰(1,2)在两个如 此形成一管道的管状导管(5,6)之间彼此连接。通过位于安装周边上的 螺栓(3)夹紧两个金属法兰(1,2)使得能够夹住用作密封垫圈的柔性石 墨片(4)。柔性石墨的柔软特征和变形能力使得柔性石墨能够符合与金属 法兰相对的表面,并且确保在管道(a)和外部介质(b)之间的良好密封。 柔性石墨的热稳定和强的化学惰性的性质,尤其相对于有机液体或酸性液 体,使得它在许多情况下作为选用的材料。
[04]关于扁平的密封垫圈的性质因此测定以下三个特征:密封(以在 标准条件下测量的渗漏率的形式表达),构成垫圈的材料的最大劣化温度, 以及最后在使用构成垫圈的材料的温度范围内保持垫圈的结构的机械特 征。垫圈的特征应该总是使得,一方面适用于其压靠的表面,以及另一方 面其抗蠕变强度,用以在时间和热循环进程中保持法兰的夹紧压力,这用 以保证密封时间的连贯。
[05]尽管对于柔性石墨的某些性质耐受高至500℃、甚至550℃的空 气温度,柔性石墨片具有多种缺点。柔性石墨难以操作,它相对容易撕裂, 以及难以将它们制成较大厚度。柔性石墨的制造者因此发展了多材料的堆 叠体,通常为金属片和柔性石墨片的交替堆叠体,以便更实际地使用密封 垫圈并且使得密封垫圈更机械耐用。今天,使用如在图2中所述的由一堆 叠体构成的垫圈是广为人知的,其中两个柔性石墨片(10,11)连接到中 心金属片(12)(嵌入件)。由于强的压应力很少分布于垫圈的全部表面 上,这些垫圈在平行于构成垫圈的层的方向也经受应力;称这种现象为“法 兰的夹住”。因此,它们可能具有蠕变问题,尤其是在高的使用温度下,当 热膨胀使得法兰的几何形状变形时。因此蠕变容易限制垫圈的寿命周期 (durée de vie)以及由它们组成的系统的密封。
[06]根据此原理并且主要为了进一步改善垫圈的机械强度,提出了多 种技术方案。根据垫圈的厚度、用于加强片的不同材料(不同金属,实心 片或穿孔的片、甚至栅栏(grille))、以及用以确保柔性石墨和加强片之 间的机械连接的不同技术方案,这些技术方案包括3、5、7层或更多层的 堆叠体。在这些机械连接的技术方案中,可以引用两种主要的使用技术: 或黏合,或机械保持锚定到石墨片中。这些机械保持部件可以是穹状件 或尖齿(picot),借助于一尖状体从薄板体或金属片中穿孔得到 所述尖齿(见专利申请FR 2 625 281(Dana Corporation))。
[07]在包括连接到刚性金属结构的柔性石墨片的类型的该材料组合 中,柔性石墨片确保变形功能/构造到接触表面和密封表面,而金属加强件 产生组件牢固的优点,并且因此能够便于操作(用于大尺寸的垫圈)并且 给所述组件提供了非常好的抗蠕变强度。
[08]为了将柔性石墨片固定到金属板或金属片上,传统地使用黏合剂 或粘合剂,而这些不能保证在300℃以上的机械强度。专利EP 616 884, US 5,509,993和US 6,962,349(Sigri Great Lakes Carbon AG)描述 了以下物质的使用,所述物质改进金属和石墨之间的界面,而不用黏合剂, 例如某些有机化合物、全氟化合物或金属皂。这些产品是粘附促进剂; 它们应当施加几纳米的厚度。如此,通过热压技术,典型地在150℃和300℃ 之间的温度下,将一层金属固定到一层石墨上,而不用黏合剂(见US 6, 258,457(SGL Technik GmbH))。然而由于生产率极低,施用该技术 非常昂贵,并且它不能保证在400℃以上组装的充分的机械强度。
[09]其它的技术方法使用机械保持部件,所述机械保持部件可以通过 在具有多个穿孔的呈穹状的金属片中制造而获得(见欧洲专利申请EP 0 640 782 A2(Tako Payen S.p.a.)),法国专利申请2 625 281(Dana Corporation),专利US 4,723,783(Dana Corporation),专利US 6, 258,457(SGL Technik GmbH)。然而,如上述专利US 5,509,993 所启示的,呈穹状的板材的穿孔导致了在板中的局部应力,这可能造成在 负荷之下断裂。然而,钩住金属板材的柔性石墨片的堆叠体也具有几个弱 点。首先,厚度大于或等于100μm的薄带(feuillard)中的穿孔的金属加 强件使得难于切割衬垫,该切割操作能够获得来自扁平片的所希望的几何 形状。为了限制该缺点,普通的实践(la pratique commune)要限制穿孔 的金属加强件的数量并且也限制金属加强件的厚度。对于为3mm的总厚 度,一般使用单个金属加强片,有时使用两个,极少多于两个,并且这仅 仅对于大于3mm的垫圈的厚度。薄带的厚度最经常地接近100微米。
[10]总之,在层之间通过黏合的连接方法一方面产生了其耐温性有限 的元素(黏合剂)。此外,所述连接方法需要施用比简单共轧(colaminage) 更难的制造方法,所述共轧用以将穿孔的片和柔性石墨片连接在一起。另 一方面,也存在不用黏合剂的组装方法,但这些方法也是复杂的,因为它 们求助于热轧方法,以及应用改进表面的厚度非常小的化学产品。
[11]而共轧可以容易地理解为一连续地制造材料的“三明治 (sandwich)”的操作,黏合将需要进行表面处理、干燥、以及最经常地尤 其是对于能够在大约300℃的温度下起作用的黏合剂进行热处理用以稳定 黏合剂。该系列操作或者通过连续步骤,或者通过一系列复杂的连续运行 装置进行。
[12]在任何情况下,具有穿孔板的共轧好象是最经济的连续组装方 法,但是具有很大的缺点,如难以用一般的部件切割。
[13]通常地,当使用的温度超过400℃时,并且当要密封的流体的压 力非常大时,在以柔性石墨为基的复合板中的扁平的切割垫圈必须由更可 靠的、但更昂贵的技术方案代替,然而这些技术方案就尺寸而言是较不灵 活的,如螺旋的垫圈、锯尖齿形的垫圈和其它的金属垫圈。
提出的问题
[14]因此,本发明尝试解决的问题是提供用于制造板和/或垫圈的新方 法,所述垫圈包括一交替堆叠体的柔性石墨层和金属片,所述堆叠体能够 方便的切割并且方便且经济的制造,并且所述堆叠体具有非常好的机械强 度直到迄今为止对于扁平的法兰垫圈不可能达到的温度和压力,同时保证 根据新的标准的密封,所述密封旨在限制气体的渗漏发射,所述气体对于 空气从环保观点上是有害的。

发明内容

[15]本发明的目的是一复合板,其通过交替的堆叠体实施而成,所述 交替的堆叠体具有(n+1)个柔性石墨片和(n)个被穿孔的有尖齿的金属 加强片,其交替堆叠的方式是,所述交替的堆叠体的第一片和最末片是柔 性石墨片。
[16]所述复合板的特征在于:
[17]a)n≥2;
[18]b)所使用的柔性石墨片的厚度可以相同或不同,并且是这样: 复合板的2mm厚度的整个切
[19](i)包括至少3层柔性石墨,
[20](ii)具有每单位面积至多2.34kg/m2的石墨质量
[21]c)对于所述被穿孔的金属加强片中的每一个,所述的存在于所 述金属加强片上的尖齿相对于所述金属加强片的表面具有一高度,该高度 不超过所述加强片要钩住的、最薄的柔性石墨层的厚度的1.3倍,
[22]另一个目的是通过切割本发明的复合板制造的扁平的密封垫圈。
[23]又一个目的是在不超过600℃的温度下,优选地在350℃和550℃ 之间的温度下,更优选地在400℃和500℃之间的温度下,使用这种垫圈。
附图说明
[24]图1示出了扁平的密封垫圈的简图。字母(a)表示管道的内部, 字母(b)表示外部介质。
[25]图2示出了柔性石墨/柔性金属嵌入件/金属嵌入件/石墨/柔性石 墨类型的堆叠体的简图。
[26]图3示意性地示出了贯穿本发明的复合板的横截面。
[27]图4示出了当对于2mm厚度的、在具有不同结构(金属片的数 目、三种不同密度数值的石墨)的复合板中截出的垫圈在300℃下进行标 准化的试验时所观察到的渗漏率。
[28]图5示出了用于本发明的实施方案的金属板材的穿孔的布置。尺 寸值以毫米给出。

具体实施方式

[29]根据本发明,通过可容易地切割成扁平的垫圈的板来解决所述问 题,所述扁平的垫圈在室温下具有类似于甚至大于传统的多层组合体的抵 抗夹紧力的特性,而它直到接近材料(柔性石墨和金属)的劣化极限(limite de dégradation)的温度仍保持出色的机械特性。然而,具有或不具有黏合 剂的公知结构组合体不能合理地超过400℃的温度,但是本发明的产品直 到石墨的化温度也能够保持这些机械性能。
[30] I600°型的公知柔性石墨片适用于制造本发明的产品。
[31]通过使用 I600°型的柔性石墨片,本发明将使用由柔性 石墨制成的扁平的垫圈的可能性推进至少100℃至150℃,所述扁平的垫圈 用于密封具有高流体压力的系统。
[32]通过作用在金属和石墨之间的每个界面上的制剂(agent)的小 厚度的附着层,本发明的组合体的结构还能够作用于在金属和石墨之间的 每个界面,而同样没有损害所述多层结构的优良的机械强度。
[33]本发明的原理在于通过机械锚固而将柔性石墨片和具有尖齿的 被穿孔的薄金属片连接在一起。所提出的技术方案的不同之处在于以下部 件的组合:
[34](a)复合板包含交替(2n+1)层,其中(n+1)层柔性石墨和n 层金属,其中n≥2。外层是柔性石墨层。因此,n=2的实施方案示出了以 下堆叠体:
[35]柔性石墨/加强片/柔性石墨/加强片/柔性石墨。
[36]柔性石墨的厚度可以相同或不同;同样,柔性石墨的密度可以相 同或不同。
[37](b)金属加强片是单个厚度不超过60微米的片。金属加强片的 特性和厚度可以相同或不同。所述金属加强片的材料选自由以下材料构成 的组:不锈钢、镍、镍合金铝合金铜合金
[38](c)金属片被穿孔,以便制造出小高度的尖齿,通常地相对于 金属片的平面高度不超过860微米。此外,在共轧组装步骤中,尖齿在密 度为1g/cm3的柔性石墨中穿嵌得不太好。柔性石墨片钩住具有尖齿的穿孔 的嵌入件不足以确保最佳的机械性能。图5示出了一个关于可以在本发明 的范围内使用的被穿孔的金属片的实施方式。
[39]该金属片的穿孔可以用具有四个面的圆针(aiguille ronde)进行: 当圆针刺穿金属时,通过将板材打破成四个面,圆针刺穿一孔,所述四个 面然后在针的进给方向上折起。如此,获得一尖齿,所述尖齿典型地具有 四个点,其理论高度最多为孔的直径的一半。图5示出了根据本发明的一 个实施方式的、厚度为50μm的316不锈钢制成的片中的孔的布置。然后, 为了获得可容易地切割和足够机械强度的多层结构,使用理想厚度在 40μm和60μm之间的不锈钢金属片。孔的直径有利地在0.8mm和1.72mm 之间。
[40](d)限定柔性石墨片的厚度,以便在法兰之间压缩前石墨的层 数在总的结构厚度的每毫米上不小于大约1.5。
[41]将加强片的厚度限制在60微米或更小,能够保留自完整表面开 始切割垫圈的巨大便利,这与加工具有更大厚度的多层加强片的情形相反。 所提出的技术方案能够用以下简单工具切割形体:冲头、剪板机、切割刀 片。基于使用厚度为100微米或更厚的片的传统技术方案,需要使用更复 杂的技术,例如喷水切割,或需要使用在该多层结构上转动的工具。所述 使用方便对于垫圈的切割者就经济和操作的灵活性来说是很大的优点。
[42]在一个具体实施方式中,本发明的复合板的特征在于,全部柔性 石墨片的厚度都小于0.6mm,并且全部柔性石墨片的最大密度为1.3g/cm3。
[43]在另一个可以与前述实施方式结合的具体实施方式中,本发明的 复合板的特征在于,位于堆叠体的上表面和下表面上的柔性石墨片由密度 小于其它层的石墨片的密度的柔性石墨制成。
[44]在其它具体的实施方式中,本发明的复合板的特征在于,位于堆 叠体的外表面上的石墨片的密度不超过0.7g/cm3。
[45]本发明具有多个优点。第一个优点涉及复合板的制造方法:不需 要黏合剂或其它粘着剂。所述黏合剂或其它粘着剂是用于高温下延长使用 的微量元素:在工业实践中没有可以在拓展到大于300℃的温度下使用的 黏合剂,而由专利US 6,258,457所描述的方法的组合体不能够拓展到400℃ 以上使用。
[46]第二个优点涉及层之间的机械钩接的品质:由于保持为三维的结 构,本发明的机械钩接大大减少了柔性石墨片的蠕变(fluage)危险,甚 至在法兰过度夹紧的情况下。平行于层的方向上的蠕变可以发生在两层石 墨之间或一层石墨的内部。这通常导致垫圈的夹紧应力的释放,甚至完全 毁坏垫圈。
[47]在标准试验的条件下,其详情在实施例2中进行了描述,发现厚 度为2mm、外部直径为92mm而内部直径为49mm的圆形垫圈(n=3) 具有直到垫圈上的支承压力大于200MPa,优选地大于230MPa,更优选 地大于250MPa的机械抗蠕变强度。在标准试验的同样条件下,测量小于 10-4mb*l/s*m、优选地小于5*10-5mb*l/s*m的渗漏率(taux de fuite)。
[48]第三个优点涉及本发明的复合物的耐温性(la tenue en température)。本发明的通过锚定的钩接技术方案能够实现具有相同的机 械性能、甚至大于通常在市场上提供的由厚度为50微米的扁平的黏合嵌入 件构成的多层结构的机械性能的多层结构( HD和 HP)。所述钩接技术方案带给这些现有的结构,除了相同的、在室温下甚 至更大的最大可允许夹紧压力外,当与 I600°牌号的柔性石墨联 接时,更好地保持所述机械特性直到连续加热到550℃(峰值为600℃); 而对于标准的 I980°牌号的柔性石墨,则更好地保持所述机械特 性直到连续加热到500℃。本发明的复合垫圈可以在450℃和550℃之间 的温度下、在超过24小时的累积期限使用。
[49]最后,机械锚定方法比公知的具有或不具有黏合剂或粘着剂的组 装方法更易实现。这使得能够获得减少的制造成本。
[50]在所述结构中存在小厚度的柔性石墨片所产生的唯一(seul)局 限在于要将由金属穿孔产生的尖齿的高度保持在小高度。金属片之上的尖 齿的高度应当小于其要扣住的柔性石墨片的厚度的1.3倍。在该数值之外, 在共轧操作中可观察到片的撕裂和/或存在其中层是脆弱的或层之间极少 连在一起的区域,从而危及“坐拥(à cheval)”这些缺陷的切割的垫圈的机 械完整性。
[51]可以注意到所有这些部件的组合会导致新的和有利的结果:复合 板,其可以根据简单的连续方法制造,其可以很方便地切割以获得所需的 垫圈形状,其不包含任何黏合剂或热脆元件,并且其一旦切割将提供就密 封来说非常有效同时机械地(mécaniquement)对使用温度不敏感的垫圈, 只要使用温度没有到达柔性石墨片开始氧化的数值(大约500℃,甚至 550℃)。
[52]本发明的另一个主要优点包含改进柔性石墨和金属嵌入件之间 的界面的可能性,然而不劣化组合体的机械耐热性。发明人发现,在温度 方面即便能够造成劣化的物质附着层也不会损害所述的具有尖齿的多层结 构的垫圈的机械性能,只要在嵌入件上的该附着层的厚度不超过10μm。 有利地,该功能化(fonctionnalisation)选自由以下构成的组:
[53](a)布置腈橡胶(caoutchouc nitrile)层,
[54](b)布置聚烯层或聚烯烃片,
[55](c)布置含氟的聚合物(polymère fluoré)层或含氟的聚合物片,
[56](d)布置热塑性的含氟的弹性体的聚合物层或热塑性的含氟的 弹性体的聚合物片。
[57]作为实例,发明人施加一薄层粘合剂(3M75型)到石墨-金属 界面上。该层能够更便于切割垫圈,其行迹宽度小于10mm,而在打孔过 程中没有分层的危险。
[58]发明人将此原理施加到低成本的穿孔的铝制嵌入件。为了避免电 流腐蚀与石墨接触的嵌入件的危险,通过电泳方法嵌入件被一薄层抗腐蚀 的油漆保护。如此制成的垫圈的机械性能保持与未使用油漆保护的结构的 机械性能等同,同时克服了与使用低成本的金属嵌入件(低钢、铝等) 相关的电流腐蚀问题。
[59]在本发明的范围内,发明人进行了石墨-金属界面的其它改进, 由于存在如上所述的机械锚定,所述改进能够改善垫圈的密封而不会劣化 机械强度。因此,本发明的界面的改进可以包括其它的功能化促进剂,例 如热塑性的聚合物(聚烯烃、聚四氟乙烯...),热塑性的橡胶(腈橡胶、 等等...)。
[60]发明人注意到对于全部的相同厚度和相同法兰之间的夹紧压力, 因为所述堆叠体包括层以及因此的功能化的界面,由本发明的复合板制备 的垫圈产生了更高的密封水平。所述结果由图4中提供的曲线示出。因此 对于总厚度为2mm的垫圈,具有3层密度接近1g/cm3的柔性石墨和2层 金属的堆叠体——其具有的厚度为:
[61]0.65mm/0.05mm/0.6mm/0.05mm/0.65mm
[62]在相同的夹紧压力下,将获得显著好于具有三层同样柔性石墨和 一层同样金属的堆叠体的密封程度,所述堆叠体的厚度为:
[63]0.90mm/0.05mm/0.90mm,
[64]此外,所有的要件都相同(相同性质的加强片、同样的钩接技术、 相同性质的柔性石墨片和金属片,具有相近的厚度)。
[65]本发明能够制造具有一最大的可允许应力QSmax的垫圈,所述最 大的可允许应力在400℃下根据标准EN 13555测量,大于180MPa,优选 地大于190MPa。在一个具体的实施方式中,垫圈的外表面的至少一个覆 盖有抗粘合覆盖层。
[66]借助于以下但非限制性的实施例将更好地理解本发明。
[67]实施例
168]实施例1
[69]通过交替地叠放四个由Carbone Lorraine公司制造的柔性石墨 片(按卷筒形式提供的宽1m、长300m的片)和三个不锈钢片(按卷盘形 式提供的宽1m、长300m的片)来制造复合板,所述柔性石墨片牌号为  I600°,密度为1g/cm3,厚度为0.5mm;所述不锈钢片牌号为316, 厚度为50微米,穿有孔,所述孔具有1.2mm的直径,按每平方厘米(cm2) 4个孔的密度均匀地分布,并且在片的平面之上由穿孔操作产生的尖齿的 高度为650微米。垫圈的最终厚度为2mm。
[70]在20MPa的预应力下将垫圈在550℃下保持48小时之后,最大 的可允许应力QSmax的测量给出了根据标准EN 13555的接近200MPa的 数值。
[71]实施例2
[72]通过交替地叠放四个由Carbone Lorraine公司制造的柔性石墨 片(按卷筒形式提供的宽1m、长300m的片)和三个不锈钢片(按卷盘形 式提供的宽1m、长300m的片)来制造复合板,所述柔性石墨片牌号为  I980,密度为1g/cm3,厚度为0.5mm;所述不锈钢片牌号为316, 厚度为50微米,穿有孔,所述孔具有1.2mm的直径,按每平方厘米(cm2) 4个孔的密度均匀地分布,并且在片的平面之上由穿孔操作产生的尖齿的 高度为650微米。这些钢片的两侧都覆盖有厚度为5μm的腈橡胶。
[73]通过持续共轧七层(4层柔性石墨,3层穿孔的金属)来制造复 合板,其具有大约2mm的总厚度。在共轧结束时,所述产品保持扁平并 且切割成尺寸为1m×1m的板。
[74]这些板中的某些借助于简单冲头被切割成环形垫圈。这种外直径 为92mm、内直径为49mm的垫圈(总厚度为2mm)根据标准VDI 2440 在以下条件下表征:
[75]-在根据DIN2635的标准的E DN40/PN40形状的法兰之间夹紧;
[76]-在垫圈的表面上施加特定压力:30MPa;
[77]-垫圈/法兰组件的热循环:在25℃和300℃之间1次;在300℃ 下保持48小时;
[78]-用垫圈/法兰组件测量渗漏率:在法兰的内部的氦的压力为1 巴。
[79]所测量的渗漏率是6*10-5mb*1/s*m。
[80]作为比较,制造由同样材料的堆叠体制成的复合板,但是仅仅具 有如下厚度的3层:1mm/0.1mm/1mm。
[81]对于同样尺寸和在同样操作条件下所测量的渗漏率是2*10- 3mb*1/s*m。
[82]对于这种类型的多层结构制成的垫圈,直到在垫圈上的支承压力 为250MPa时在平行于层的方向上的强的机械抗蠕变强度,与在等同结构 上测量的机械抗蠕变强度一致,所述等同结构由黏合在柔性石墨片上的扁 平的带条的连续组装制成。
[83]然而,发现本发明的垫圈在连续使用且暴露于空气中时保持所述 抗蠕变强度直到500℃的温度,而现有技术的不具有机械钩接的垫圈在更 低的温度下显示出显著的蠕变。
[84]在400℃下最大的可允许应力QSmax的测量给出了根据标准EN 13555接近200MPa的数值。
[85]该测量超过了在现有技术的组合体上的测量。那么在400℃下的 QSmax的数值不超过150MPa。
[86]实施例3:
[87]一般的多层结构(例如:Sigraflex Select和HD,或HP) 也不允许将符合标准VDI 2440(TA Luft)的密封与这种高温下的机械强 度和高的机械性能(performance)结合,而不添加密封如在专利US 6, 962,349中描述的垫圈的内边缘(tranche)的金属环。
[88]在没有掌握所述环的添加方法的情况下,通过使用者在板中按垫 圈尺度进行的切割不能够保证按规范所要求的被切割的垫圈的渗漏率水 平。
[89]然而,可注意到根据我们的发明的、结合所述金属环的结构能够 获得符合标准VDI 2440(TA Luft)的结果,甚至不添加功能化促进剂, 并且不管与在US 6,962,349中所述的相反的、所有的金属层都是穿孔的事 实。
[90]在厚度为2mm的多层结构上所测量的渗漏率为8.9*10-5 mb*1/s*m,所述多层结构包括3个与在前述实施例中同样类型的穿孔的金 属加强件。外层石墨是由厚度为0.5mm、密度为0.7g/cm3的 I980 制成的,而外层石墨对于0.6mm的厚度密度为1.1g/cm3。
[91]实施例4:
[92]通过交替叠放六个由Carbone Lorraine公司制造的柔性石墨片 (按卷筒形式提供的宽1m、长300m的片)和五个不锈钢片(按卷盘形式 提供的宽1m、长300m的片)来制造复合板,所述柔性石墨片牌号为  N998,密度为1g/cm3,厚度为0.5mm;所述不锈钢片牌号为316、 厚度为50微米。所述钢片包括穿孔,所述穿孔的孔径为1.2mm,以每平 方厘米(cm2)4个穿孔的密度均匀地分布;在片的平面之上由穿孔操作产 生的尖齿的高度为650微米。
[93]通过连续共轧11层(6层柔性石墨,5层穿孔的金属)来制造复 合板,其总厚度大约为3mm。在共轧结束时,产品保持扁平并且切割成尺 寸为1m×1m的板。
[94]从这些板中切割出的3个外直径为540mm、内直径为406.5mm 的大直径的垫圈在120MPa的支承压力下被压缩。这些垫圈在350℃下保 持2小时。在回到室温后,测量厚度的相对变化Δe/e和表面的相对变化 Δs/s。这能够基于几何标准评估垫圈的热蠕变。
[95]所述结果记载在下表中:
  测量 垫圈1 垫圈2 垫圈3 Δe/e 6.65% 5.71% 7.10% Δs/s 1.01% 0.67% 0.59%
[96]在这些夹紧条件和温度条件下,并且尽管在不同的石墨层和金属 层之间的不同膨胀效应,该大尺寸的垫圈完美地抵抗蠕变现象。
[97]任何以柔性石墨为基础的扁平的垫圈没有达到与此同样低的数 值。大部分具有Δe/e>10%,并且Δs/s>5%。
[98]不同层的机械锚定因此提供给该产品相对于现有的其它技术方 案更大的机械强度,特别在大于350℃的温度下更是这样。
QQ群二维码
意见反馈