超高分子量聚乙烯的高强度带状制品

申请号 CN201280016230.6 申请日 2012-02-03 公开(公告)号 CN103429806A 公开(公告)日 2013-12-04
申请人 霍尼韦尔国际公司; 发明人 T.谭; M.B.布恩; S.T.科里尔;
摘要 由超高分子量(UHMW)复丝纱制造具有改进的性质的带状制品。该带状制品可具有由以10℃/分钟的恒速从30℃至200℃的升温DSC扫描计算出的小于大约0.15的曲线下低温面积(120℃至Tm-起始)与曲线下总面积(120℃至165℃)的比率。另外,在一些实例中,该带状制品在通过ASTMD882-09在10英寸(25.4厘米)标距和100%/min伸长速率下测量时还可具有至少大约24g/d(2.06GPa)的韧度。此外,该带状制品在通过小 角 度x-射线分析测量时没有小于450埃(Å)的长周期。
权利要求

1.由超高分子量聚乙烯复丝纱制成的带状制品,所述带状制品具有:
至少大约10:1的平均截面纵横比;和
由以10℃/分钟的恒速从30℃至200℃的升温DSC扫描测得的小于大约0.15的曲线下低温面积(120℃至Tm-起始)与曲线下总面积(120℃至165℃)的比率。
2.权利要求1的带状制品,其中在通过ASTM D882-09在10英寸(25.4厘米)标距和
100%/min伸长速率下测量时,所述带状制品的韧度为至少大约24 g/d (2.07 GPa)。
3.权利要求2的带状制品,其中在通过小度x-射线分析测量时,所述带状制品没有小于450埃(Å)的长周期。
4.权利要求1的带状制品,其中在通过小角度x-射线分析测量时,所述带状制品没有小于450埃(Å)的长周期。
5.权利要求1的带状制品,其中所述带状制品的韧度为至少大约30 g/d (2.59 GPa)。
6.权利要求1的带状制品,其中所述带状制品的韧度为至少大约40 g/d (3.45 GPa)。
7.权利要求1的带状制品,其中由以10℃/分钟的恒速从30℃至200℃的升温DSC扫描测得的曲线下低温面积(120℃至Tm-起始)与曲线下总面积(120℃至165℃)的比率小于大约0.05。
8.权利要求1的带状制品,其中所述带状制品是半透明的。
9.权利要求1的带状制品,其中所述带状制品具有大于95%的超高分子量聚乙烯重量含量。
10.权利要求1的带状制品,其中所述带状制品具有大于98%的超高分子量聚乙烯重量含量。

说明书全文

超高分子量聚乙烯的高强度带状制品

[0001] 相关申请本申请是2009年8月11日提交的目前待审的美国专利申请序号12/539,185号的部分继续申请案。

技术领域

[0002] 本技术涉及由超高分子量聚乙烯(UHMWPE)复丝纱制成的带状制品,还涉及可由这种带状制品制成的织物、层压材料和耐冲击材料。
[0003] 相关技术描述耐冲击和防穿刺材料可用于许多用途,如运动设施、救生衣和最重要地,个人护身装甲。
[0004] 各种纤维增强构造已知用于耐冲击、防弹和防穿刺制品,如头盔、挡板和背心。这些制品表现出不同程度的防射弹或刀具冲击的穿刺并具有不同程度的每单位重量效
[0005] 例如,防弹效力的一个衡量标准是每单位目标面积密度从射弹上除去的能量。这2
被称作比吸能,缩写为“SEA”且单位是焦/千克/平方米或J-m/Kg。纤维构造的SEA已知通常随组成纤维的强度、拉伸模量和致断能量提高而提高。但是,其它因素,如纤维增强材料的形状可能起作用。美国专利4,623,574号显示了用带形增强材料构成的复合材料与使用复丝纱的复合材料之间的防弹效力比较:两者都为超高分子量聚乙烯(UHMW PE)。纤维的韧度高于丝带(ribbon):30克/旦尼尔(g/d)(2.58 GPa)相对23.6 g/d (2.03 GPa)。但是,用丝带构成的复合材料的SEA略高于用纱线构成的复合材料的SEA。美国专利4,623,574号因此指出用带形增强材料构成的复合材料在制造防弹复合材料方面比复丝纱更有效。
[0006] Takashi Nakahara等人,“Ultra High Molecular Weight Polyethylene Blown Film Process”,ANTEC 2005,178-181 (2005)提供了UHMWPE熔喷膜的制备的一个实例。将通过这种方法制成的膜纵切并牵拉以制造高强度带材。由拉伸吹塑膜制成的带材的韧度小于20 g/d (1.72 GPa)。
[0007] 美国专利5,091,133;5,578,373;6,951,685;7,740,779号公开了在升高的温度压实聚乙烯粉末以使颗粒粘合成连续片,然后将其进一步压实和拉伸。美国专利5,091,133号描述了具有3.4 GPa的抗拉强度的通过这种后一方法制成的纤维。由此制成的聚乙烯带材可以自BAE Systems以商标TENSYLON®商购得到。TENSYLON®网站上报道的最高韧度为19.5 g/d(1.67 GPa的抗拉强度)。
[0008] Yachin Cohen 等 人,“A Novel Composite Based onUltra-High-Molecular-Weight Polyethylene”,Composites Science and Technology,
57,1149-1154 (1997)提供了描述由Spectra®纤维制成的UHMWPE复合材料的制备的一个实例。用溶剂处理处于拉力下的Spectra®纤维以在形成预浸料坯的同时溶胀纤维表面并促进纤维之间的粘合。然后将该纱制预浸料坯缠绕在板上以制造单向层,其随后压制和加热并除去溶剂以产生在由之前溶解的纤维表面形成的重结晶UHMWPE基质中含有UHMWPE纤维的复合片材。研究人员声称,UHMWPE的独特性质使其成为与UHMWPE纤维一起使用的基质材料的合意候选;但是,由于几个原因,这在使用它们的溶剂型方法之前是不可能的:1) 定向UHMWPE纤维和无定向UHMWPE基质之间的熔融温度差太小,2) UHMWPE的极高熔体粘度导致用于形成复合材料的模塑过程中的熔体流动可忽略不计,3) 未处理的UHMWPE纤维与UHMWPE基质的相对较差的粘合。
[0009] 美国专利5,135,804号描述了通过加热和压制单向排列的凝胶纺成聚乙烯纤维制成的高强度板,而在压制前没有纤维的任何溶剂或树脂处理。通过围绕3英寸正方形金属板缠绕纤维、然后在加热压机中将组装件压制数分钟,形成板实例。该热压UHMWPE板基本没有空隙并且基本透明。
[0010] 美国专利5,628,946号描述了由热塑性聚合物纤维制成的均匀聚合整料,首先在足以选择性熔融一部分聚合物纤维的升高的温度下将所述纤维压至互相接触,然后在更高的第二压力下在该升高的温度压制以使该材料进一步固结。给出了由Spectra®纤维制成的尺寸为3 mm×55 mm×55 mm的单片板的一个实例,其中单向排列的纤维束在模具中在152℃下在第一压力下压制10分钟,并在更高的压力下压制30秒。据称,压制片材的DSC迹线显示通过原始纤维的熔融形成了大约35%的“第二相”。
[0011] 本技术概述本技术大体上涉及由超高分子量聚乙烯复丝纱制成的带状制品。本技术的带状制品可以在连续法中由高度定向UHMWPE复丝纱以在带状制品中基本保持该纱的高强度的方式制造。
[0012] 一方面,提供由超高分子量聚乙烯复丝纱制成的带状制品,其中该带状制品包括至少大约10:1的平均截面纵横比和由以10℃/分钟的恒速从30℃至200℃的升温DSC扫描计算出的小于大约0.15的曲线下低温面积(120℃至Tm-起始(Tm-onset))与曲线下总面积(120℃至165℃)的比率。在一些实例中,该带状制品在通过ASTM D882-09在10英寸(25.4厘米)标距和100%/min伸长速率下测量时还可具有至少大约24 g/d (2.07 GPa)的韧度。此外,该带状制品没有通过小度x-射线分析测得的小于450埃(Å)的长周期(long period)。
[0013] 附图简述为了例示和描述,已经选择了具体实例并显示在附图中,其构成说明书的一部分。
[0014] 图1图解由本技术的带状制品制成的三个试样的DSC数据,X轴是温度(℃),Y轴是DSC mW,且计算面积以mJ/mg表示。
[0015] 图2图解由市售带状制品制成的对比试样的DSC数据,X轴是温度(℃),Y轴是DSC mW,且计算面积以mJ/mg表示。
[0016] 图3图解由市售带状制品制成的对比试样的子午线SAXS强度曲线。
[0017] 图4图解由本技术的带状制品制成的试样的子午线SAXS强度曲线。
[0018] 图5图解本技术的带状制品的截面的SEM显微照片。
[0019] 详述带状制品是指长度大于其宽度,优选至少在带状制品制成时长度基本大于其宽度,的基本扁平的细长制品,不过在为了各种目的切割带状制品时可显著减小长度。
[0020] 本技术的带状制品在宽度上不同于目前已知的带材。例如,具有相当长度的已知带材被描述为最多6毫米宽。相反,本发明的带状制品可具有大于大约10毫米,大于大约100毫米或大于大约1000毫米的宽度。
[0021] 带状制品的高度或厚度可以为例如小于大约0.5毫米,小于大约0.25毫米,小于大约0.1毫米,或小于大约0.05毫米(2密尔)。可以在带状制品截面的最厚区域测量厚度。
[0022] 在一些实例中,带状制品可具有至少大约10:1的平均截面纵横比。平均截面纵横比是在带状制品的整个长度上平均的截面最大尺寸与最小尺寸之比,其通常是宽高比。例如,可以通过平均沿带状制品长度的至少三个位置测定的截面纵横比来确定平均截面纵横比。在一些实例中,带状制品可具有至少大约20:1,至少大约50:1,至少大约100:1,至少大约250:1,至少大约400:1或至少大约1000:1的平均截面纵横比。在一些实例中,带状制品沿其长度可具有恒定的截面纵横比。在另一些实例中,带状制品可具有沿其长度无规改变或以所选频率改变的变截面纵横比。
[0023] 带状制品的截面可以是任何合适的形状,包括但不限于矩形、椭圆形、多边形、不规则形状或满足上述宽度、厚度和截面纵横比性质的任何其它形状。在一个实例中,带状制品可具有矩形或基本或大致矩形的截面,根据用于制造精确或一致尺寸的方法的限制而允许一定的不规则性。在另一些实例中,带状制品可具有沿其长度无规改变或以所选频率改变的可变截面形状。另外,带状制品可沿其长度具有变纤维固结程度,所述固结无规改变或以所选频率改变。纤维固结是指UHMWPE纤维或长丝熔结在一起的程度。
[0024] 本技术的带状制品可以由UHMWPE纤维或长丝形成,优选由UHMWPE复丝纱形成。被选为用于形成带状制品的进料的UHMWPE纱可通过任何合适的方法制备。例如,所选UHMWPE纱可通过“凝胶纺丝”制备。凝胶纺成的UHMWPE纱可例如以商标SPECTRA®购自Honeywell International,以商标DYNEEMA®购自DSM N.V. and Toyobo Co. Ltd.,和购自其它。作为另一实例,所选UHMWPE纱可通过熔体纺丝制备。在美国公开20100178503号中描述了一种这样的熔体纺丝法,其公开内容经此引用全文并入本文。
[0025] 被选为用于制造本技术的带状制品的进料的UHMW PE纱可具有大约7 dl/g至大约40 dl/g,大约10 dl/g至大约40 dl/g,大约12 dl/g至大约40 dl/g,或大约14 dl/g至35 dl/g的通过ASTM D1601-99在135℃下在十氢化中测得的特性粘度。
[0026] 被选为带状制品的进料的UHMW PE纱可以是高度定向的。高度定向UHMW PE纱定义为具有至少大约0.96,优选至少大约0.97,更优选至少大约0.98,最优选至少大约0.99的c-轴取向函数。C-轴取向函数(fc)可通过适用于聚乙烯的Correale, S. T. & Murthy, Journal of Applied Polymer Science, Vol. 101, 447–454 (2006)中描述的广角x-射线衍射法测量。如其中公开,c-轴取向函数描述分子链方向与纤维方向的对齐程度并由下列方程式计算:其中θ是聚乙烯晶体的c-轴(分子链方向)与纤维方向之间的角度,脱字符(carets)表示它们之间的量的平均值。
[0027] 可以通过公知的x-射线衍射法测量"c"晶轴与纤维方向之间的角度的平均余弦值。分子链方向与纤维轴完美对齐的聚乙烯纤维具有fc = 1。
[0028] 被选为带状制品的进料的UHMW PE纱可具有大约15 g/d (1.29 GPa)至大约100 g/d (8.62 GPa),大约25 g/d (2.15 GPa)至大约100 g/d (8.62 GPa),大约30 g/d (2.59 GPa)至大约100 g/d (8.62 GPa),大约35 g/d (3.02 GPa)至大约100 g/d (8.62 GPa),大约40 g/d (3.45 GPa)至大约100 g/d (8.62 GPa)或大约45 g/d (3.88 GPa)至大约100 g/d (8.62 GPa)的韧度。
[0029] 被选为带状制品的进料的UHMW PE纱可以是无捻或加捻的。所选UHMW PE纱优选具有小于大约3捻/英寸长度。
[0030] 所选UHMW PE纱可另外通过经此引用以不与本文冲突的程度并入本文的美国专利4,819,458中描述的方法热定形。
[0031] 所选UHMW PE纱可以由未连接的长丝构成,或长丝可以通过熔合或通过粘合至少部分连接。可以以任何合适的方式实现UHMW PE纱长丝的熔合,例如,如经此引用以不与本文冲突的程度并入本文的美国专利5,540,990;5,749214;和6,148,597号中所述,使用热和拉力或通过在暴露于热和拉力之前施加溶剂或增塑材料。
[0032] 如各种性质所证实,本技术的带状制品与目前已知的带状制品相比具有改进的性质。例如,由以10℃/分钟的恒速从30℃至200℃的升温DSC扫描计算时,该带状制品优选具有小于大约0.15,更优选小于大约0.05的曲线下低温面积(120℃至Tm-起始)与曲线下总面积(120℃至165℃)的比率。可以根据ASTM F2625-10由从峰值温度切线到熔融吸热绘制的线及其与构建的基线的交点确定Tm-起始。另外,带状制品优选没有通过小角度x-射线分析测得的小于450埃(Å)的长周期。下面提供可用于测量这些性质的方法。这些性质,独自或结合地,可用于表明由高强度复丝纱制成的带状制品具有合意地低的重结晶聚乙烯含量。重结晶基乙烯含量通常来自聚乙烯纤维在带状制品制造过程中的表面熔融和随后重结晶。预料不到能够形成具有如此少量的重结晶聚乙烯含量的UHMWPE带状制品,特别是充分固结并且无空隙或基本无空隙的UHMWPE带状制品,这对本技术的带状制品而言是优选的。空隙作为带状制品中的孔存在于带状制品中,并通常来自用于制造带材的长丝或纤维之间的空隙。无空隙或基本无空隙的带状制品可具有半透明或透明的光学外观,而具有显著空隙含量的带材趋向于散射光,由此产生不透明光学外观。在一些实例中,本技术的带状制品可以是半透明的,因此允许光漫射通过。本技术的一些带状制品甚至可以是透明的,由此提供光学透明外观。图5显示本技术的带材的截面的SEM显微照片。原始纱长丝已高度固结,因此在它们之间没有可观察到的空隙。长丝与其原始截面形状相比已经变形,以致它们无空隙地紧密堆积在一起。不同于之前的技术,不需要树脂或添加剂填充长丝之间的空隙或辅助将长丝粘合在一起,并且由于长丝互相紧密接触,需要极少的重结晶聚乙烯含量就能将长丝粘合在一起以形成具有充足机械完整性的带状制品。不受制于任何特定理论,认为重结晶聚乙烯含量的降低使得能够改进由高强度复丝纱形成的带状制品中的强度保持率。相反,目前已知的由复丝纱制成的带状制品由于用于制造带状制品的热或溶剂处理而具有显著量的重结晶聚乙烯含量。
[0033] 本技术的带状制品与目前已知的带材的区别还在于它们的尺寸,特别是它们的长度。例如,许多已知带材被描述为在分立(discreet)或间歇式的过程中形成,如围绕金属板缠绕纤维并将它们置于加热压机中以形成特定尺寸的固结片、盘或板。相反,本技术的带状制品可以在连续过程中形成,从而能够产生具有相当长度的带状制品。例如,本技术的带状制品可具有大于大约1米,大于大约5米或大于大约10米的长度。在一些实例中,本技术的带状制品可以高达或大于100米长,并可以卷绕到线轴上以供储存。
[0034] 本技术的带状制品在使用中可以与复合材料工业中常用的所谓“预浸料坯”材料相比较。通常通过用树脂涂布连续长度的高强度纤维以形成预浸带状制品(其可以卷绕和储存备用)来制造预浸料坯。所用树脂量通常为带状制品的大约10重量%或更多。然后将预浸料坯退卷并通过长丝缠绕法、铺带法或其它方法制成成型制品。本技术的带状制品可以以类似方式使用,因为其大长度可以储存备用,并可以使用已知的复合材料制造法成型成简单或复杂的形状。与预浸料坯一样,本技术的带状制品也可以制成机织结构。
[0035] 尽管可以通过用树脂涂布UHMWPE纤维以形成预浸料坯,但这不是形成带状制品的最合意方式,因为UHMWPE表现出与大多数树脂的低粘合强度,因此树脂含量会降低用这种预浸料坯制成的复合结构的强度。使用本技术的带状制品可避免由于粘合树脂的使用造成的强度损失,因为不需要这样的树脂。本技术的带状制品优选不包括粘合树脂,或不包括显著量的粘合树脂,且不包括显著量的其它添加剂。相应地,本技术的带状制品可具有接近或高达带状制品的大约100重量%的UHMWPE含量。在一些实例中,本技术的带状制品可具有高于带状制品的大约95重量%或高于带状制品的大约98重量%的UHMWPE含量。在一些实例中,共聚物可以与UHMWPE一起用于形成可用于制造本技术的带状制品的纤维。在这样的实例中,本技术的带状制品可具有高于带状制品的大约95重量%或高于带状制品的大约98重量%的纤维含量,并优选具有高于带状制品的大约90重量%的UHMWPE含量。
[0036] 可以通过使用ASTM D882-09在10英寸(25.4厘米)标距和100%/min伸长速率下测量带状制品的韧度来测定本技术的带状制品的强度。在一些实例中,本技术的带状制品可具有小于大约24 g/d (2.07 GPa),大约24 g/d (2.07 GPa)或优选至少大约24 g/d (2.07 GPa)的韧度,包括但不限于至少大约30 g/d (2.58 GPa)或至少大约40 g/d (3.45 GPa)。
[0037] 可以通过任何合适的方法制造本技术的带状制品。通常,制造本技术的带状制品的方法开始于选择至少一种聚乙烯复丝纱。该聚乙烯复丝纱可具有通过ASTM D2256-02在10英寸(25.4厘米)标距和100%/min伸长速率下测得的大约15 g/d (1.29 GPa)至大约
100 (8.62 GPa)的韧度。该聚乙烯复丝纱还优选具有大约7 dl/g至40 dl/g的通过ASTM D1601-99在十氢化萘中在135℃下测得的特性粘度(IV)和/或至少0.96的c-轴取向函数。该方法可包括使所述纱在张力下经过在大约100℃至大约160℃下的一个或多个加热区,以及将加热后的纱拉伸至少一次以保持或提高该纱的强度。该方法随后可包括将经加热拉伸的纱置于纵向拉力下并对所述纱施以至少一个横向压实步骤以在大约100℃至大约
160℃的温度下压平、固结和压实所述纱,由此形成具有至少大约10:1的平均截面纵横比的带状制品。在一些实例中,在初始成形后,可任选将带状制品在大约130℃至大约160℃的温度下拉伸至少一次,这可提高该带状制品的强度。该带状制品可随后在纵向拉力下冷却至小于大约70℃的温度。最后,制成的带状制品可以卷绕到包装如线轴上以供储存,或可以传送至另一工艺以形成成型制品。
[0038] 测量方法小角度X-射线散射(SAXS)
下面阐述进行小角度x-射线分析和测定带状制品是否没有小于450 (Å)的长周期的一种方法。在进行小角度x-射线散射时,可以使用任何合适的设备。合适的设备必须能够解析直到450 Å的散射峰。
[0039] 提供两个测试样品。一个测试样品是由以商标Tensylon®出售的已知带状制品制成的对比样品。另一样品由本技术的带状制品制成。使用Rigaku小角度散射测角仪作为光具座(optical bench)以针孔准直构造使用两个0.15°针孔在各测试样品上进行小角度X-射线散射。将测角仪安装在具有在45kV和30mA下运行的(Cu)细焦点x-射线管的Rigaku DXR3000发生器上。使用镍(Ni)箔滤波器使铜(Cu)辐射单色化。使用MBraun GmbH制造的 OED-50-M Location(线性)Sensitive Proportional Counter收集数据,其距离各测试样品大约330毫米安装。对于各测试样品,在样品与检测器之间设置300毫米长的真空路径以使空气对x-射线的任何散射最小化,并尽可能靠近计数器放置。在真空路径末端尽可能靠近计数器放置1.5毫米宽的射束截捕器。
[0040] 各测试样品由与机器或带材方向平行切割并围绕样品支架平行缠绕几层厚的带状制品的长条构成。条带的长度和支架开孔的直径对使用针孔准直的这种方法而言不重要,只要它们比准直束(其在样品处的直径小于1.5毫米)大。但是,要指出,本文所述的测量中所用的条带的长度为大约2.5厘米,样品支架开孔的宽度为5毫米。将各测试样品安装在小角度测角仪上以使机器方向(也称作子午方向)与OED-50-M计数器中的检测线平行。收集数据1至4小时。通过在没有样品的情况下在相同条件下收集基准数据集,并在校正样品的吸收效应后从各测试样品的数据中减去该基准数据,来从数据中除去射束截捕器周围的寄生散射。通过测量与和不与测试样品一起的硬脂酸铅的5.0 ηm衍射峰的衰减,测量该样品量在x-射线中造成的吸收效应。
[0041] 可以作为归因于结晶结构如聚乙烯片晶的周期性间距的散射峰来测量长周期。进行分析以在除去寄生散射后,通过使用Jandel Scientific's PeakFit软件峰形拟合(profile fitting)该数据而从各测试样品的小角度X-射线散射数据中解析出任何这样的散射峰。作为对照散射角绘制的强度数据中的最大值或作为在平稳连续改变的强度(其随着散射角提高而降低)上的强度数据增长来识别长周期峰,其可以解析为高度和宽度大于强度数据中的统计噪声的峰。在指数形背景上使用Lorentz峰形拟合散射峰。
[0042] 使用布拉格定律由散射峰最大值的角度测定片晶间距的长周期:d= nλ / (2sinθ) (方程1)
其中d是长周期的间距,n是反射级数,λ是Cu Kα1,2发射谱线的波长,且θ是散射角。
[0043] 图3显示Tensylon®带的对比样品的子午线SAXS强度曲线,从中可以辨识出表明大约380Å的平均长周期的峰。图4显示本技术的带状制品的测试样品的子午线SAXS强度曲线,从中无法辨识出峰,由此表明没有小于450 (Å)的长周期。
[0044] 带材的差示扫描量热法(DSC)测定曲线下低温面积(120℃至Tm-起始)与曲线下总面积(120℃至165℃)的比率的一种方法是如下所述由以10℃/分钟的恒速从30℃至200℃的升温DSC扫描计算该比率。
[0045] 由本技术的带状制品制造三个测试样品并测试。所有三个测试样品的DSC数据显示在图1中,X-轴是温度(℃),Y轴是DSC mW。由以商标Tensylon®出售的带状制品制造对比测试样品并也进行测试。对比测试样品的DSC数据显示在图2中。
[0046] 通过从带状制品上切下多个试样以将试样摊平在样品盘底部上并且试样边缘不接触铝样品盘壁,制造各测试样品。各试样的任何尺寸都小于5毫米,尤其是任何尺寸都是大约3毫米至大约5毫米。将给定带状制品的多个试样堆叠在盘中直至试样总重量为大约5毫克,使用堆叠试样作为相应的测试样品。为制造测试样品而堆叠的试样数可以改变以获得大约5毫克的所需测试样品重量。在试验样品上放置样品盘的铝平盖,并使用细尖镊子折叠该盘的两个沿直径相对侧上的壁边缘以制造两个小的夹点,从而将盖子和测试样品固定就位。盖子的放置方式和铝样品盘的折边或密封方式不在测试样品上产生任何压力或在加热时束缚测试样品。准备带盖的相同空铝样品盘作为基准。使用Seiko Instruments Inc制造的 RDC220 DSC收集升温DSC扫描。DSC数据收集在30℃的温度下开始并在流动的氮气气氛中以10℃/分钟的恒速继续将温度提高至200℃。
[0047] 对于各样品,以递增的毫瓦特(mW)对递增的温度绘制DSC数据图,吸热熔融峰(或多个峰)的方向为尖头朝下,这是热流式DSC常见的。记录最大吸热峰的温度以及任何其它峰的温度。从120℃至165℃绘制基线,并测量基线与峰(或多个峰)之间的面积。通过自最大峰低温侧最大斜率(由一阶导数曲线中的最大值确定)的温度处的外推直线与在70℃处自基线拟合的外推线的交点确定最大峰的起点,Tm-起始。使用熔融温度的起点,通过测量这些峰的分面积,即使只有一个峰,来进一步分割该面积。在120℃和Tm-起始之间计算低温面积,并从120℃至165℃计算总面积。然后计算低温面积与总面积的比率。本技术的测试样品的结果显示在下表1中,“面积(低)”是低温面积,“面积(总)”是总面积。
[0048] 表1样品IDTm-起始(℃) 面积(低)(J/g) 面积(总)(J/g) 面积(低)/面积(总)
1 143.3 9.72 260.1 0.037
2 143.9 11.92 255.5 0.047
3 144.2 22.25 235.8 0.094
[0049] 本技术的带状制品优选具有如低温峰下的小面积所示的低重结晶聚乙烯含量。在上表1中可看出这一性质,尤其是对样品编号1和2而言,它们各自具有小于0.05的低温面积/总面积比。市售UHMWPE带材具有明显更高的低温面积/总面积比,例如图2中所示的对比试样具有大约0.267的比率。实施例
[0050] 下列实施例用于提供本技术的更完整理解。为例示本技术的原理而提出的具体技术、条件、材料、比例和报道数据是示例性的并且不应被解释为限制本技术的范围。
[0051] 下面论述的实施例3-8通过下列方法制造。Spectra®纱从包装上退卷并通过限制辊表面,其以大约1至15米/分钟的速度传送该纱。离开限制辊的纱在热炉中加热和拉伸,炉温为100℃至160℃,拉伸比为1.01:1至10:1,所选拉伸比足以在压制成带状制品之前获得所需的纱强度。加热的拉伸纱随后在压实开始和结束时都在纵向拉力下横向压实。压实步骤开始时纱上的纵向拉力的量级基本等于该压实步骤结束时该带状制品上的纵向拉力的量级。在压实步骤中施加的横向压力为大约50至500磅/平方英寸,所选压力足以使纱长丝变形以使它们紧密堆积成基本无空隙的带状制品。压实步骤在130℃至160℃的温度下进行,所选温度足以获得纱的所需熔结程度而不造成纱或带状制品的断裂。在压实步骤后,成型的带状制品保持在130℃至160℃的温度下并拉伸至所选拉伸比。所选拉伸比足以获得所需带状制品强度。在带状制品拉伸步骤后,该带状制品在拉力下冷却,然后通过牵引辊表面,其以大约2至75米/分钟的速度传输该带状制品。要指出,牵引辊与限制辊之间的表面速度差在拉伸步骤和压实步骤(它在这两组辊之间进行)过程中在纤维中和在带材中提供纵向拉力。在离开牵引辊后,该带状制品在拉力下卷绕到卷装管上。
[0052] 本技术的一些实施例由单头纱进行,另一些通过合并多头纱进行。表2包含纱头(yarn end)数和带材旦数,以及相应的最终带材截面尺寸。
[0053] 表2实施例编号 纱头数 带材dtex 带宽(mm) 带厚(mm) 带材纵横比
3 1 1053 3.05 0.038 80:1
4 6 8613 11.94 0.076 157:1
5 1 877 3.85 0.023 167:1
6 4 3190 6.35 0.051 125:1
7 12 19027 12.7 0.165 77:1
8 1 660 100:1
[0054] 实施例1(对比)将 由 熔喷 膜 根 据Takashi Nakahara 等人 , “Ultra High Molecular Weight Polyethylene Blown Film Process”, ANTEC 2005, 178-181 (2005)中描述的方法制成的UHMWPE带纵切和拉伸,具有60.5:1的截面纵横比、13.1 g/d (1.13 GPa)的韧度、0.210的DSC低温面积比和通过x-射线分析得出的331埃的长周期。
[0055] 实施例2(对比)将由在压力下固结成膜的UHMWPE粉末制成的Tensylon®带纵切和拉伸,具有40.5:1的截面纵横比、19.3 g/d (1.66 GPa)的韧度、0.290的DSC低温面积比和通过x-射线分析得出的380埃的长周期。
[0056] 实施例3由具有240根长丝的Spectra®复丝纱制造UHMWPE带,具有80:1:1的截面纵横比、33.0 g/d (2.84 GPa)的韧度、0.048的DSC低温面积比并且没有通过x-射线分析得出的长周期。
[0057] 实施例4由具有总共1440根长丝的Spectra®复丝纱制造UHMWPE带,具有157:1的截面纵横比、
31.5 g/d (2.71 GPa)的韧度和0.037的DSC低温面积比。
[0058] 实施例5由具有240根长丝的Spectra®复丝纱制造UHMWPE带,具有167:1的截面纵横比和40.9 g/d (3.52 GPa)的韧度并预计具有小于0.035的DSC低温面积比。
[0059] 实施例6由具有总共960根长丝的Spectra®复丝纱制造UHMWPE带,具有125:1的截面纵横比、
28.0 g/d (2.41 GPa)的韧度和0.120的DSC低温面积比。
[0060] 实施例7由具有总共5760根长丝的Spectra®复丝纱制造UHMWPE带,具有77:1的截面纵横比、
30.0 g/d (2.59 GPa)的韧度和0.094的DSC低温面积比。
[0061] 实施例8由具有总共240根长丝的Spectra®复丝纱制造UHMWPE带,具有100:1的截面纵横比、
50.0 g/d (4.31 GPa)的韧度、小于0.030的DSC低温面积比并且没有通过x-射线分析得出的长周期。
[0062] 实施例9使本技术的带状制品沿其长度具有可变纤维固结,使得存在由高度固结的基本无空隙的1英寸长的带段和较低固结的多孔的1英寸长的带段构成的重复图案。
[0063] 实施例10将如实施例5中所述的本技术的带状制品纺成方平组织织物。
[0064] 实施例11可以使用本技术的带状制品形成层压材料,其包括两个或更多个单向的带状制品层,相邻层中的带材方向彼此旋转大约15至90度。在一个这样的实例中,将如实施例5中所述的本技术的带状制品卷绕在多个包装中并将这些包装置于粗纱架上。从粗纱架上退卷的带状制品的多个端头侧向接触地平行对齐,置于由0.00035厘米厚的高密度聚乙烯(HDPE)膜构成的载体网幅上。使载体网幅和带状制品在压力下通过加热的咬送辊以使带状制品粘合到载体网幅上。将该载体网幅和粘合的平行带状制品卷绕成两卷。将这两卷进给到如美国专利5,173,138号中所述的交叉铺层(cross-plying)装置中,其中将含有该带状制品的网幅交叉铺层并借助热和压力固结。由此形成四层层压材料,其中纵贯该层压材料的各层依次是HDPE-带状制品-带状制品-HDPE,相邻层中带材的方向相互呈直角。然后将该层压材料卷起。
[0065] 实施例12将如实施例10中所述的方平组织织物层叠并松散结合以形成具有1.5千克/平方米的面密度的本技术的组装件。预计该组装件具有通过MIL.-STD. 662F测得的对9×19 mm FMJ Parabellum子弹的至少大约500 J-m2/Kg的比吸能。
[0066] 实施例13将如实施例11中所述的层压材料层叠并固结形成具有1.5千克/平方米的面密度的耐冲击防穿刺复合制品。预计该复合制品具有通过MIL.-STD. 662F测得的对9×19 mm FMJ Parabellum子弹的至少大约500 J-m2/Kg的比吸能。
[0067] 实施例14将如实施例11中所述的层压材料和如实施例10中所述的方平组织织物层叠并固结形成具有1.5千克/平方米的面密度的耐冲击防穿刺复合制品。预计该复合制品具有通过MIL.-STD. 662F测得的对9×19 mm FMJ Parabellum子弹的至少大约500 J-m2/Kg的比吸能。
[0068] 由上文认识到,尽管在本文中为了举例说明已经描述了具体实例,但可以在不背离本公开的精神或范围的情况下做出各种修改。因此上文的详述意于被视为示例性而非限制性的,并且要理解的是,下列权利要求,包括所有等同物,意在特别指出和清楚主张所要求保护的主题。
QQ群二维码
意见反馈