超疏性表面

申请号 CN201280035411.3 申请日 2012-06-18 公开(公告)号 CN103687916B 公开(公告)日 2017-01-18
申请人 金伯利-克拉克环球有限公司; 发明人 秦建; D·E·沃尔德鲁普; C·M·麦加里迪斯; T·M·舒茨尤斯; I·S·拜耳;
摘要 本 发明 涉及基底的表面或基底自身,所述基底的表面或基底自身当用包含疏 水 性组分、纳米结构的颗粒和水的配方处理时显示超疏水性特性。超疏水性可以被应用于整个表面上,贯穿基底材料或在基底材料上形成图案,和/或直接穿透基底材料的z-向厚度。
权利要求

1.一种超疏性表面,其包含用组合物处理的基底,所述组合物包含:
a.疏水性组分;
b.纳米结构的颗粒,其中所述纳米结构的颗粒包含纳米粘土;和
c.水;
其中所述疏水性组分与纳米结构的颗粒的重量比为1:1至4:1,以及按组合物的重量计,所述疏水性组分和所述纳米结构的颗粒以1.0%至3.0%的量存在。
2.权利要求1的超疏水性表面,其中所述疏水性组分选自氟化的聚合物及其混合物。
3.权利要求1的超疏水性表面,其中所述疏水性组分选自全氟化的聚合物及其混合物。
4.权利要求1的超疏水性表面,其中所述纳米结构的颗粒为纳米粘土或纳米粘土与火成、疏水性二氧化和氧化锌中一种或多种的混合物。
5.权利要求1的超疏水性表面,其中按组合物的重量计,水以95%至99%的量存在。
6.权利要求1的超疏水性表面,其还包含按组合物的重量计0%至3%的表面活性剂
7.权利要求6的超疏水性表面,其中所述表面活性剂选自非离子、阳离子或阴离子表面活性剂。
8.权利要求1的超疏水性表面,其中所述疏水性组分是水可分散的疏水性聚合物。
9.权利要求8的超疏水性表面,其中所述水可分散的疏水性聚合物包含共聚单体,所述共聚单体选自丙烯酸单体。
10.权利要求8的超疏水性表面,其还包含按组合物的重量计0%至2.0%的粘合剂
11.权利要求1的超疏水性表面,其还包含稳定剂,所述稳定剂选自长链脂肪酸、长链脂肪酸盐、乙烯-丙烯酸共聚物、乙烯-甲基丙烯酸共聚物、磺酸和乙酸中的一种或多种。
12.权利要求1的超疏水性表面,其还包含填充剂,所述填充剂选自磨碎的玻璃、、三水合、滑石、三氧化锑、飞灰和粘土中的一种或多种。
13.权利要求12的超疏水性表面,其中按疏水性组分的重量计,所述填充剂以0.01至
600份的量存在。
14.权利要求1的超疏水性表面,其中所述组合物通过喷雾的方式分散。
15.权利要求1的超疏水性表面,其中所述表面是无纺纤网。
16.权利要求1的超疏水性表面,其中所述表面是纸巾产品。

说明书全文

超疏性表面

发明领域

[0001] 本发明涉及当用包含水基的非有机溶剂的组合物处理时显示超疏水性性质的表面。
[0002] 发明背景
[0003] 超疏水性表面显示大于150°的固着水接触。此外,如果表面显示小于10°的水滴滚动(滑动)角,则认为表面是“自动清洁的”。在自然界中,荷花叶显示这种性质(所谓的荷叶效应)。多数人造材料,例如织物、无纺织物、纤维素纸巾、聚合物膜等没有具有这种性质的表面。当前,通常有两种方法来修饰非超疏水性表面以实现荷叶效应。一个方法是将疏水性单体接枝到非超疏水性材料的每个表面上。这种方法使得材料在整个材料的厚度具有超疏水性,这在大多数情况下是不希望的。这种方法也是不具有成本效益的,不能被用于连续的制备,并且可能会导致不良的环境问题。另一个方法是将特别配制的液体分散体涂覆到表面上,并且通过后续的干燥,形成纳米结构的超疏水性膜。为了利用这种方法,沉积的膜必须显示超疏水性表面的化学和物理的形态学特征。首先,配方需要至少一种低表面能(即疏水性)组分,例如全氟化的聚合物(例如,聚四氟乙烯),第二,所处理的表面必须具有粗糙的表面纹理,优选在几个长度级-微米级和纳米级粗糙度。尽管存在能够实现超疏水性表面的各种配制的分散体,但是这些分散体都没有显示为纯水基的。对于众多的安全、健康、经济和环境问题,同样重要的是当关于商业规模生产时,分散体是完全水基的,因为这将减少与有机溶剂的使用有关的问题。
[0004] 发明概述
[0005] 本发明涉及包含用组合物处理的基底的超疏水性表面,所述组合物包含:(a)疏水性组分,(b)纳米结构的颗粒,和(c)水。
[0006] 附图的简要说明
[0007] 图1显示了由于其小孔尺寸d和高疏水性(高接触角θ)导致的耐水渗透的非可湿性多孔基底。
[0008] 图2显示了水和水+异丙醇(IPA)混合物对疏水性熔喷基底(样品1)和亲水性纤维素基的基底(样品4)的渗透压(静水压),所述样品1和样品4两者都用水性氟化物分散体PMC(商品名Capstone ST-100,氟化丙烯酸共聚物,在水中20wt%,得自DuPont)涂覆。在这个配方中没有纳米结构的颗粒,其中每单位面积的涂层质量为>10g/m2。
[0009] 图3(a)显示了用染料染色用于荧光可视化的疏水性熔喷基底的三维共聚焦显微图像。
[0010] 图3(b)显示了疏水性熔喷基底的空隙率作为原始基底(未涂覆的,空心方形)和有疏水性涂层的同样的基底(空心圆形)的基底深度的函数。
[0011] 图3(c)显示了纺粘基底的空隙率作为原始基底(未涂覆的,空心方形)和有疏水性涂层的同样的基底(空心圆形)的基底深度的函数。
[0012] 图3(d)显示了 毛巾的空隙率作为原始基底(未涂覆的,空心方形)和有疏水性涂层的同样的基底(空心圆形)的基底深度的函数。
[0013] 图4(a)显示了固着接触角测量技术。涂层纹理是可见的。
[0014] 图4(b)显示了静止在涂覆的KC 基底上的水滴珠。
[0015] 图5(a)显示了用配方以涂层等级为13.7g/m2涂覆后的五种不同样品的静水压(hydrohead)。
[0016] 图5(b)显示了用配方以涂层等级为27.4g/m2涂覆后的五种不同样品的静水压。
[0017] 图6(a)和6(b)显示了两种不同样品的静水压。测试用两种探测液体进行。
[0018] 图7显示了用配方以涂层等级为78.4g/m2涂覆后的两种不同样品的静水压。
[0019] 图8显示了用配方以47g/m2的速度涂覆的两种样品的静水压。
[0020] 图9显示了用不同配方涂覆的两种样品的静水压。涂覆等级为水形成珠状所需的最小值,但是不保证可测量的水渗透压。
[0021] 发明的详细描述
[0022] 除非另外特别阐明,所有的百分比均为总组合物的重量百分比。除非另外特别阐明,所有的比率均为重量比。
[0023] 术语“超疏水性”是指表面非常有效地防水的性质。这种性质通过超过150°的水接触角来量化。
[0024] 如本文所使用,术语“疏水性”是指水接触角为约90°至约120°的表面防水的性质。
[0025] 如本文所使用,术语“亲水性”是指具有远低于90°的水接触角的表面。
[0026] 如本文所使用,术语“自动清洁的”是指在倾斜表面上水的滚动角小于10°的防水性质。
[0027] 如本文所使用,术语“无纺纤网”或“无纺织物”是指具有单个纤维或线结构的纤网,所述的单个纤维或线是互叠的,但并非以针织纤网中可识别的方式互叠。无纺纤网已由多种工艺成形,例如熔喷工艺、纺粘工艺、气流成网工艺、共成形工艺和粘合梳理纤网工艺。无纺纤网的基重通常以材料盎司每平方码(osy)或克每平方米(gsm)表示,并且纤维直径通常以微米表示,或者在短纤维的情况下,以旦尼尔表示。需要注意的是,要从osy转化为gsm,用33.91乘以osy。
[0028] 如本文所使用,术语“纺粘纤维”是指分子定向聚合材料的小直径纤维。纺粘纤维可以通过将熔融的热塑性材料作为纤维从多个细的、通常为圆形的喷丝头的毛细管中挤出,然后快速减小挤出纤维的直径来成形,例如在Appel等人的第4,340,563号美国专利、Dorschner等人的第3,692,618号美国专利、Matsuki等人的第3,802,817号美国专利、Kinney的第3,338,992号和第3,341,394号美国专利、Hartman的第3,502,763号美国专利、Dobo等人的第3,542,615号美国专利和Pike等人的第5,382,400号美国专利中的。当纺粘纤维沉积在收集表面上时通常不发粘,并且通常是连续的。纺粘纤维的直径通常为约10微米或更大。然而,可以通过各种方法来实现细纤维纺粘纤网(具有小于约10微米的平均纤维直径),所述方法包括但不限于在共同转让给Marmon等人的第6,200,669号美国专利和共同转让给Pike等人的第5,759,926号美国专利中所述的那些方法。
[0029] 熔喷无纺纤网由熔喷纤维制备。如本文所使用,术语“熔喷纤维”是指通过以下步骤成形的纤维:将熔融的热塑性材料经过多个细的、通常为圆形的模具毛细管作为熔融的线或丝挤出进入会聚的高速、通常为热的气体(例如空气)流中,所述气体流使熔融的热塑性材料的丝变细以减小其直径,该直径可以减小至微纤维直径。随后,熔喷纤维由高速气体流携带,并沉积在收集表面上,形成随机分散的熔喷纤维的纤网。此种方法例如在Buntin的第3,849,241号美国专利中公开。熔喷纤维是连续的或非连续的微纤维,平均直径通常小于10微米(使用至少为10的样本量),并且当沉积在收集表面上时通常是发粘的。
[0030] 如本文所使用,术语“聚合物”通常包括但不限于均聚物;共聚物,例如嵌段、接枝、无规和交替共聚物;三元共聚物等;以及它们的共混物和改性物。此外,除非另外具体限制,术语“聚合物”应包括分子的所有可能的几何构型。这些构型包括但不限于全同立构、间同立构和随机对称。
[0031] 如本文所使用,术语“多组分纤维”是指由从分离型挤出机挤出但是纺在一起以形成一种纤维的至少两种聚合物成形的纤维或丝。多组分纤维有时也被称为“结合(conjugate)”或“双组份”纤维或丝。术语“双组分”是指有两种聚合组分制成所述纤维。所述聚合物通常彼此不同,但是如果各组分中的聚合物在一些物理性质(例如熔点、玻璃化转变温度软化点)上彼此不同,那么结合纤维可以由相同的聚合物制备。在所有情况下,所述聚合物被布置在穿过多组分纤维或丝的横截面大体上恒定定位的不同区域中,并沿着多组分纤维或丝的长度连续延伸。这样的多组分纤维的结构可以是,例如皮/芯布置,其中一种聚合物被另一种聚合物包围;并列式布置;馅饼式布置;或“海中岛”式布置。多组分纤维在Kaneko等人的第5,108,820号美国专利、Strack等人的第5,336,552号美国专利和Pike等人的第5,382,400号美国专利中有教导。对于双组分纤维或丝,聚合物可以以75/25、50/50、25/75或其它任意想要的比例存在。
[0032] 如本文所使用,术语“多成分纤维”是指由从相同的挤出机作为共混物或混合物挤出的至少两种聚合物成形的纤维。多成分纤维在穿过纤维的横截面相对恒定定位的不同区域中没有布置不同的聚合物组分,并且各种聚合物沿着整个纤维长度通常是不连续的,而是通常形成随机开始和结束的小纤维或原纤维。这种一般类型的纤维在例如Gessner的第5,108,827和第5,294,482号美国专利中论及。
[0033] 如本文所使用,术语“大体上连续的纤维”意指具有长度大于短纤维长度的纤维。该术语意在包括连续纤维例如纺粘纤维,和非连续但是具有大于约150毫米的限定长度的纤维。
[0034] 如本文所使用,术语“短纤维”是指长度通常在约0.5至约150毫米范围内的纤维。短纤维可以是纤维素纤维或非纤维素纤维。可以使用的一些合适的非纤维素纤维的实例包括但不限于,聚烯纤维、聚酯纤维、尼龙纤维、聚醋酸乙烯酯纤维及其混合物。纤维素短纤维包括,例如浆、热机械浆、合成纤维素纤维、改性纤维素纤维等。纤维素纤维可以得自二次或回收来源。合适的纤维素纤维来源的一些实例包括原木纤维,例如热机械的、漂白的和未漂白的软木和硬木浆。也可以使用可以得自办公垃圾、新闻用纸、皮纸料、纸板废料等的二次或回收纤维素纤维。此外,蔬菜纤维,例如尼拉麻、亚麻、乳草、花、改性棉花、棉花棉绒,也可以用作纤维素纤维。此外,也可以使用合成纤维素纤维例如人造丝和粘胶人造丝。改性纤维素纤维通常由纤维素的衍生物组成,所述纤维素的衍生物通过用合适的基团(例如羧基、烷基、乙酸根、硝酸根等)取代沿着链的羟基基团形成。
[0035] 如本文所使用,术语“浆”是指来自天然来源例如木质或非木质植物的纤维。木质植物包括,例如落叶树和针叶树。非木质植物包括,例如棉花、亚麻、细茎针草、乳草、稻草、黄麻、大麻和甘蔗渣。
[0036] 如本文所使用,“纸巾产品”意在包括面巾纸、湿纸巾、毛巾、手帕(hanks)、餐巾纸等。本发明一般对于纸巾产品和纸巾纸是有用的,所述纸巾产品和纸巾纸包括但不限于,常规毡压(felt-pressed)纸巾纸、高堆积模式致密的纸巾纸和高堆积未压实的纸巾纸。
[0037] 本发明涉及基底的表面,或当用包含疏水性组分、纳米结构的颗粒和水的配方处理时显示超疏水性特性的基底本身。超疏水性可以被应用于整个表面上,贯穿基底材料或在基底材料上形成图案,和/或直接穿透基底材料的z-向厚度。
[0038] 疏水性组分
[0039] 疏水性组分是可分散在水中形成本发明的超疏水性性质的基本元素的疏水性聚合物。通常,本发明的疏水性组分可以包括但不限于,氟化的或全氟化的聚合物。然而,由于低度的水可分散性,氟化的或全氟化的聚合物可能需要通过将共聚单体引入到它们的分子结构上来改性。合适的共聚单体包括但不限于,包含能够在水中离子化的官能团的乙烯不饱和单体。一个实例是乙烯不饱和羧酸,例如丙烯酸。通过平衡以下两个性质来确定在疏水性组分中的共聚单体中的量:疏水性和水可分散性。本发明的疏水性组分的一个实例是市售的改性的全氟化聚合物化合物,可作为水基的产品得自DuPont,商品名为ST-100。由于其低表面能,所述聚合物不仅有助于超疏水性,而且也可以充当粘合剂来将本发明的纳米结构的颗粒粘附到表面上。此外,可以修饰聚合物分子以含有在pH降低后变成带电的并且改变在液体分散体内的疏水性动学的基团,例如基。在这种情况下,聚合物可以通过局部相互作用稳定在水中。引入组合物的表面活性剂也可以充当聚合物的分散剂,从而也改变一些疏水性力学。
[0040] 本发明的固体组分(即聚合物,纳米结构的颗粒)可以以按溶液重量计约1.0%至约3.0%的量存在。这样的量对于喷雾应用是合适的,其中在分散体中更高的浓度的聚合物和/或纳米结构的颗粒可以引起粘弹性行为,导致喷雾喷嘴的阻塞或不完全雾化和纤维形成,或显著增大分散体粘度从而堵塞喷嘴。应当注意的是,这个范围不是固定的并且它是所利用的材料和用于制备分散体的方法的函数。当使用更高量的聚合物时,表面结构是不太希望的,因为它缺乏适当的纹理以具有超疏水性。当使用更低量的聚合物时,粘合物是较少需要的,因为涂层更多地充当可去除的粉末涂层。此外,希望聚合物-颗粒重量比为约4:1或约
3:2,或约1:1,或约2:3,或约1:4,以使低表面能和希望的表面纹理之间的平衡最优化。
[0041] 非有机溶剂
[0042] 本发明用于处理表面的配方通过仔细选择合适的元素的组合来排除有机溶剂的使用,以赋予超疏水特性。优选地,非有机溶剂是水。可以使用任何类型的水;然而为了提高的性能可以在制造过程中选择使用去矿物质水或蒸馏水。水的使用有助于减少与制备商业规模的包含有机溶剂的配方相关的安全问题。例如,由于大多数有机溶剂的高挥发性和易燃性,排除组合物中的这种使用减少了生产安全危害。此外,排除有机溶剂所需的通设备和防火设备可以降低生产成本。除了这些材料的运输之外可以减少原材料成本作为利用非有机溶剂以实现本发明的增加的优势。此外,由于水被认为是自然资源,认为用包含水的溶剂作为其基液处理表面对于环境更健康和更好。本发明的用于处理表面的配方包含以分散体组合物重量计大于约95%、大于约98%或约99%的水。
[0043] 纳米结构的颗粒
[0044] 纳米结构的颗粒在此定义为显示重复特征尺寸<100nm的颗粒,用于本发明以实现希望的粗糙表面。颗粒可以来自以下类型:火成、疏水性和氧化锌、和未改性的以及有机改性的纳米粘土。尽管可以使用疏水性颗粒,然而希望的是本发明的颗粒是亲水性的。如果使用疏水性颗粒,该颗粒必须在被分散到水中之前用表面活性剂处理以防止结。当使用时,存在的表面活性剂的量必须被保持在低浓度以维持希望的超疏水性质。因此,在本发明中使用的表面活性剂以总组合物的重量计应当为从约0%、或从约0.25%、或从约1.0%至不多于约0.5%、或不多于约1.5%或不多于约2%。这样的表面活性剂可以是性质为非离子的、阳离子的或阴离子的。合适的阴离子表面活性剂可以包括但不限于,磺酸盐、羧酸盐和磷酸盐。合适的阳离子表面活性剂可以包括但不限于季铵盐。合适的非离子表面活性剂可以包括但不限于,含有环氧乙烷的嵌段共聚物和硅氧烷表面活性剂。
[0045] 其它成分
[0046] 粘合剂
[0047] 在本发明的配方中的疏水性聚合物起到充当疏水性组分和粘合剂的双重作用。与仅有氟化的聚合物相比,聚合物例如Dupont的 ST-100促进粘附,使得在组合物中另外的粘合剂是不需要的。如果使用其中需要另外的粘合剂的水可分散的疏水性聚合物,那么优选选自水可分散的丙烯酸类树脂、聚氨酯分散体、丙烯酸共聚物或丙烯酸聚合物前体(其可以在涂层固化后交联)的粘合剂。
[0048] 存在于本发明的配方中的粘合剂的量可以变化。可以包括按总分散体组合物的重量计有效量最高达约2.0%的粘合剂。
[0049] 稳定剂
[0050] 当其它成分加入到本发明的配方中后,可以另外用稳定剂处理配方以促进稳定的分散体的形成。所述稳定剂可以是表面活性剂、聚合物或其混合物。如果聚合物充当稳定剂,优选所述聚合物不同于先前所述的用于基础组合物中的疏水性组分。
[0051] 另外的稳定剂可以包括但不限于,阳离子表面活性剂,例如季铵盐;阴离子表面活性剂,例如磺酸盐、羧酸盐和磷酸盐;或非离子表面活性剂,例如含有环氧乙烷的嵌段共聚物和硅氧烷表面活性剂。表面活性剂可以是外部的或内部的。外部表面活性剂在分散体制备过程中不化学反应成基础聚合物。用于本文的外部表面活性剂的实例包括但不限于,十二烷基苯磺酸盐和十二烷基磺酸盐。内部表面活性剂是在分散体制备过程中化学反应成基础聚合物的表面活性剂。用于本文的内部表面活性剂的实例包括2,2-二羟甲基丙酸及其盐。
[0052] 在一些实施方案中,本发明的用于组合物中以处理表面的稳定剂按疏水性组分计,可以以大于0至约60%的量使用。例如,可以以基于疏水性组分的重量计约0.5%至约10%的量使用长链脂肪酸或其盐。在其它实施方案中,可以以基于疏水性组分重量计最高达约80%的量使用乙烯-丙烯酸或乙烯-甲基丙烯酸共聚物。在另外的实施方案中,可以以基于疏水性组分的重量计约0.01%至约60%的量使用磺酸盐。也可以包括其它弱酸,例如羧酸家族中的那些(例如,甲酸)以进一步稳定分散体。在包括甲酸的实施方案中,甲酸可以以由希望的分散体的pH确定的量存在,其中pH小于约6。
[0053] 另外的填充剂
[0054] 用于处理本发明的表面的组合物可以进一步包含一种或多种填充剂。组合物可以包含按疏水性组分的重量计约0.01至约600份,所述疏水性组分例如聚烯烃和稳定剂。在某些实施方案中,装载在组合物中的填充剂按疏水性组分的重量计可以为约0.01至约200份,所述疏水性组分例如聚烯烃和稳定剂。如果使用的话,这种填充剂材料优选为亲水性的。填充剂材料可以包括常规填充剂例如磨碎的玻璃、碳酸、三水合、滑石、三氧化锑、飞灰、粘土(例如膨润土高岭土),或其它已知的填充剂。未处理的粘土和滑石通常是天生亲水性的。
[0055] 基底
[0056] 可以处理本发明的基底使得其在材料的整个z-向厚度为超疏水性的并以一定的方式控制使得仅材料的某些区域是超疏水性的。可以设计这样的处理以控制材料的那些区域可以或不可以被潮湿渗透,从而控制液体可以流动的地点。
[0057] 本发明的合适的基底可以包括无纺织物、纺织织物、针织物或这些材料的层压材料。基底也可以是如本文所描述的纸巾或毛巾。适合形成这样的基底的材料和方法是本领域技术人员通常所熟知的。例如,可用于本发明的无纺织物的一些实例包括但不限于,纺粘纤网、熔喷纤网、粘合梳理纤网、气流成网纤网、共成形纤网、水刺无纺纤网、水力缠结纤网等。在各种情况下,至少一种用于制备无纺织物的纤维是含有纤维的热塑性材料。此外,无纺织物可以是热塑性纤维和天然纤维的组合,所述天然纤维例如,纤维素纤维(软木浆、硬木浆、热磨机械浆等)。通常,从成本和希望的性质的角度来看,本发明的基底是无纺织物。
[0058] 如果需要,无纺织物也可以使用本领域熟知的技术粘合以改善织物的耐久性、强度、手感、美感、纹理和/或其它性质。例如,无纺织物可以是热(例如图案粘合、通风干燥)、超声、胶粘和/或机械(例如针刺)粘合。例如,各种图案粘合技术描述于Hansen的第3,855,046号美国专利、Levy等人的第5,620,779号美国专利、Haynes等人的第5,962,112号美国专利、Sayovitz等人的第6,093,665号美国专利、Romano等人的第428,267号美国设计专利和Brown的第390,708号美国设计专利。
[0059] 无纺织物可以通过连续的缝合线或图案粘合。作为另外的实例,可以沿片的边缘或仅仅穿过邻近边缘的纤网的宽度或横向(cross-direction,CD)粘合无纺织物。也可以使用其它粘合技术,例如热粘合和乳胶浸渍的组合。供选择地和/或另外地,可以通过例如,喷雾或印刷将树脂、乳胶或粘合剂应用于无纺织物,并且干燥以提供希望的粘合。其它合适的粘合技术可能描述于Everhart等人的第5,284,703号美国专利、Anderson等人的第6,103,061号美国专利和Varona的第6,197,404号美国专利中。
[0060] 在另一个实施方案中,本发明的基底由含有单组份和/或多组分纤维的纺粘纤网形成。多组分纤维是由至少两种聚合物组分形成的纤维。这种纤维通常由单独的挤出机挤出但是纺在一起以形成一种纤维。尽管多组分纤维可以包括类似或相同的聚合材料的单独组分,但是各组分的聚合物通常彼此不同。单个组分通常布置在穿过纤维的横截面大体上恒定定位的不同区域中,并大体上沿着整个纤维的长度延伸。这样的纤维的结构可以是例如并列式布置、馅饼式布置或任意其它布置。
[0061] 当利用时,多组分纤维也可以是可分离的。在制造可分离的多组分纤维时,共同形成单一多组分纤维的单个片段是以使得一种或多种片段形成部分单一多组分纤维的外表面的方式沿着多组分纤维的纵向连续的。换言之,一种或多种片段是沿着多组分纤维的外周长暴露的。例如,可分离的多组分纤维和制备这种纤维的方法描述在Pike的第5,935,883号美国专利和Marmon等人的第6,200,669号美国专利中。
[0062] 本发明的基底还可以含有共成形材料(coform material)。术语“共成形材料”通常是指包含热塑性纤维和第二非热塑性材料的混合物或稳定的基质的复合材料。作为一个实例,共成形材料可以通过以下工艺制备,其中至少一个熔喷模头被设置在斜槽附近,当纤网形成时,通过所述斜槽将其它材料加入纤网。这样的其他材料可以包括但不限于,纤维有机材料例如木浆或非木浆例如棉、人造丝、再生纸、浆绒毛以及超吸收性颗粒、无机吸收性材料、经处理的聚合短纤维等。这样的共成形材料的一些实例描述于Anderson等人的第4,100,324号美国专利、Everhart等人的第5,284,703号美国专利和Georger等人的第5,350,
624号美国专利。
[0063] 此外,也可以由被赋予一种或多种表面纹理的材料来形成基底。例如,在一些实施方案中,可以由双纹理(dual-textured)纺粘或熔喷材料来形成基底,例如描述在Lamers等人的第4,659,609号美国专利和Win等人的第4,833,003号美国专利中。
[0064] 在本发明的一个特定的实施方案中,由水力缠结式无纺织物形成基底。水力缠结法(hydroentangling process)和含有各种不同纤维的组合的水力缠结复合材料纤网在本领域中是已知的。典型的水力缠结法利用水的高压喷射流来使纤维和/或丝缠结以形成高度缠结的加固的纤维结构,例如无纺织物。短长度纤维(staple length fiber)和连续的丝的水力缠结的无纺织物公开于例如,Evans的第3,494,821号美国专利和第4,144,370号美国专利中。连续丝无纺纤网和浆层的水力缠结式复合材料无纺织物公开于例如Everhart等人的第5,284,703号美国专利和Anderson等人的第6,315,864号美国专利中。
[0065] 这些无纺织物中,用短纤维与热塑性纤维缠结的水力缠结式无纺纤网是特别适合作为基底的。在一个水力缠结式无纺纤网的特别的实例中,短纤维与大体上连续的热塑性纤维水力缠结。所述短纤维可以是纤维素短纤维、非纤维素短纤维或其混合物。合适的非纤维素短纤维包括热塑性短纤维,例如聚烯烃短纤维、聚酯短纤维、尼龙短纤维、聚醋酸乙烯酯短纤维等或其混合物。合适的纤维素短纤维包括,例如浆、热机械浆、合成纤维素纤维、改性的纤维素纤维等。纤维素纤维可以得自二次或再生来源。一些合适的纤维素纤维来源的实例包括原木纤维,例如热机械的、漂白的和未漂白的软木和硬木浆。也可以使用可以得自办公垃圾、新闻用纸、牛皮纸料、纸板废料等的二次或回收纤维素纤维。此外,蔬菜纤维,例如马尼拉麻、亚麻、乳草、棉花、改性棉花、棉花棉绒,也可以用作纤维素纤维。此外,也可以使用合成纤维素纤维例如人造丝和粘胶人造丝。改性纤维素纤维通常由纤维素的衍生物组成,所述纤维素的衍生物通过用合适的基团(例如羧基、烷基、乙酸根、硝酸根等)取代沿着碳链的羟基基团形成。
[0066] 一种特别合适的水力缠结式无纺纤网是聚丙烯纺粘纤维的无纺纤网复合材料,所述无纺纤网复合材料是大体上连续的具有与纺粘纤维水力缠结的浆纤维的纤维。另一种特别合适的水力缠结的无纺纤网是聚丙烯纺粘纤维的无纺纤网复合材料,所述无纺纤网复合材料具有与纺粘纤维水力缠结的纤维素和非纤维素短纤维的混合物。
[0067] 本发明的基底可以单独由热塑性纤维制备或可以含有热塑性纤维和非热塑性纤维两者。通常,当基底含有热塑性纤维和非热塑性纤维两者时,所述热塑性纤维以基底重量计占约10%至约90%。在一个特别的实施方案中,基底含有按重量计约10%至约30%的热塑性纤维。
[0068] 通常,无纺基底将具有约17gsm(克每平方米)至约200gsm,更典型地,约33gsm至约200gsm的基重。实际基重可以高于200gsm,但是对于多数应用,基重将为33gsm至150gsm。
[0069] 构成至少一部分基底的热塑性材料或纤维可以基本上是任何热塑性聚合物。合适的热塑性聚合物包括聚烯烃、聚酯、聚酰胺、聚氨酯、聚氯乙烯、聚四氟乙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯、生物可降解聚合物例如聚乳酸、及其共聚物和共混物。合适的聚烯烃包括:聚乙烯,例如高密度聚乙烯、中密度聚乙烯、低密度聚乙烯和线性低密度聚乙烯;聚丙烯,例如全同立构的聚丙烯、间同立构的聚丙烯、全同立构的聚丙烯和无规立构的聚丙烯的共混物,及其共混物;聚丁烯,例如聚(1-丁烯)和聚(2-丁烯);聚戊烯,例如聚(1-戊烯)和聚(2-戊烯);聚(3-甲基-1-戊烯);聚(4-甲基-1-戊烯);及其共聚物和共混物。合适的共聚物包括由两种或多种不同的不饱和烯烃单体制备的无规共聚物和嵌段共聚物,例如乙烯/丙烯和乙烯/丁烯共聚物。合适的聚酰胺包括尼龙6、尼龙6/6、尼龙4/6、尼龙11、尼龙12、尼龙6/10、尼龙6/12、尼龙12/12、己内酰胺和氧化烷撑二胺共聚物等,以及其共混物和共聚物。
合适的聚酯包括聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酸丁二酯(polytetramethylene terephthalate)、聚对苯二甲酸环己-1,4-二甲酯(polycyclohexylene-1,4-dimethylene terephthalate)、和它们的间苯二酸酯共聚物,以及它们的共混物。根据本发明,这些热塑性聚合物可用于制备大体上连续的纤维和短纤维。
[0070] 在另一个实施方案中,基底可以是纸巾产品。所述纸巾产品可以是均质的或多层结构,并且由其制备的纸巾产品可以是单层或多层结构。纸巾产品希望地具有约10g/m2至约65g/m2的基重,并且密度为约0.6g/cc或更少。更希望地,基重将为约40g/m2或更少并且密度将为约0.3g/cc或更少。最希望地,密度将为约0.04g/cc至约0.2g/cc。除非另外特别指明,本文涉及的所有量和重量均按干基计。在纵向上的拉伸强度可以是约100至约5,000克每英寸宽度。在横向上的拉伸强度为约50克至约2,500克每英寸宽度。吸收能力典型地为约5克水每克纤维至约9克水每克纤维。
[0071] 常规压缩的纸巾产品和制备这样的产品的方法是本领域中所熟知的。纸巾产品通常通过将造纸配料(furnish)沉积在有孔成型网上来制备,所述成型网在本领域中通常被称为长网。一旦配料被沉积在成型网上,将称之为纤网。通过挤压纤网并在升高的温度下干燥将所述纤网脱水。根据上述方法制备纤网的特定的技术和典型的设备是本领域技术人员所熟知的。在典型的方法中,从加压的流浆箱提供低稠度的浆配料,所述流浆箱具有用于将浆配料的薄沉积物输送到长网上以形成湿纤网的开口。典型地,然后通过真空脱水将纤网脱水至纤维稠度为约7%至约25%(总纤网重量基)并进一步通过挤压操作干燥,其中所述纤网经受由相对的机械元件(例如圆柱形辊)产生的压力。然后所述脱水的纤网被本领域称为扬克式烘缸的蒸汽鼓装置进一步挤压并干燥。可以在扬克式烘缸通过挤压纤网的机械装置例如相对的圆柱形鼓来产生压力。可以使用多个扬克式烘缸鼓,借以在鼓间任选地产生另外的挤压。因为当纤维是湿的时整个纤网经受大量机械压缩力然后当整个纤网处于压缩状态时对其进行干燥,因此认为所形成的片是压实的。
[0072] 本发明的一个特别的实施方案是利用不起皱的(uncreped)通风干燥技术来形成纸巾产品。通风干燥可以增加纤网的体积和柔软度。这样的技术的实例公开于Cook等人的第5,048,589号美国专利、Sudall等人的第5,399,412号美国专利、Hermans等人的第5,510,001号美国专利、Ruqowski等人的第5,591,309号美国专利、Wendt等人的第6,017,417号美国专利和Liu等人的第6,432,270号美国专利。不起皱的通风干燥通常包括步骤:(1)形成纤维素纤维、水和任选地其它添加的配料;(2)将配料沉积在移动的有孔带(foraminous belt)上,借以在移动的有孔带的顶上形成纤维纤网;(3)使纤维纤网经受通风干燥以从纤维纤网去除水;以及(4)从移动的有孔带移出干燥的纤维纤网。
[0073] 制造
[0074] 常规的可扩展的方法,例如喷雾,可以用于在表面上施加超疏水性涂层。在一个实施方案中,使用亲水性纳米结构的填充剂(来自Sigma Aldrich的 PGV纳米粘土),它是没有有机改性的膨润土。作为疏水性组分,使用在水中20wt.%的氟化丙烯酸共聚物(PMC)的分散体,如得自DuPont的(商品名为 ST-100)。将亲水性纳米粘土加入水并超声处理直至产生稳定的悬浮液。可以利用探头声波仪在室温下进行超声处理(
750W,高强度超声处理器(High Intensity Ultrasonic Processor),30%振幅下
13mm直径尖端)。在这些设置下,形成稳定的15.5g纳米粘土-水悬浮液可能耗费约15至约
30min。纳米粘土在水中的浓度保持在总悬浮液的2wt.%以下以防止凝胶的形成,所述凝胶使得分散体太粘而不能喷雾。在室温下将稳定的粘土-水悬浮液置于机械搅拌下后,将水性PMC分散体滴加入悬浮液以产生最终的用于喷雾的分散体。在这样的实施方案中,在用于产生超疏水性涂层的最终的分散体中各组分的浓度将如下:95.5wt.%水、2.8%PMC、1.7%纳米粘土或97.5wt.%水、1.25%PMC、1.25%纳米粘土。可以使用喷枪喷雾器(Paasche VL siphon feed,0.55mm喷雾喷嘴)手工或通过将装置固定在工业流体分散机器人(industrial fluid dispensing robot,EFD,Ultra TT Series)上在相隔约15至约25cm处通过喷雾将涂层施加到纤维素基底上。在喷雾应用过程中也可以利用具有空气辅助的EFD喷嘴,因为这实现了极细的雾。建议用于EFD分散系统的最小喷嘴直径为约0.35mm。风扇协助塑造锥形喷雾成为椭圆形,椭圆形对于在线性移动的基底上产生连续均匀的涂层是有用的。对于喷枪,操作依赖于通过喷嘴的加压空气以虹吸进料所述颗粒分散体并也便于在喷嘴出口处的流体雾化。通过喷雾器所应用的压力降可以根据情况从约2.1至约3.4巴变化。
[0075] 当喷涂水基的分散体时一般地遇到的一些技术困难:第一个主要的问题是在雾化过程中不足的流体蒸发量以及分散体在涂覆的基底上的高润湿度,两者均由于当水最终蒸发时的接触线钉扎(line pinning)和所谓的“咖啡污点效应(coffee-stain effect)”导致不均匀的涂层。第二个主要的挑战是当与其它用于喷雾涂覆的溶剂相比时水的相对大的表面张力。水由于其高表面张力,在喷雾应用中倾向于形成不均匀膜,从而需要非常小心以确保获得均匀的涂层。这对于疏水性基底是特别关键的,在所述疏水性基底上水倾向于成珠并滚动。据观察,应用本发明的水性分散体的最佳方法是在雾化过程中产生极细液滴,并应用仅非常薄的涂层,以免浸透基底和重新定向在基底中键合的氢,这在干燥后将导致纤维素基底(例如纸巾)变硬。
[0076] 在另一个实施方案中,涂层首先喷铸在基底,例如标准纸板或其它纤维素基底上;使用多种喷雾通路以实现不同的涂层厚度。然后使喷雾的膜在烘箱中在80℃下经受干燥约
30分钟以去除全部过量的水。基底的大小可以为大约但不限于约7.5cm×9cm。一旦干燥,表征涂层的可湿性(即疏水性vs.亲水性)。可以在涂覆和干燥之前和之后在微量天平(LE26P)上称量基底以确定引起超疏水性所需的涂层最小水平。该“最小涂层”不严格意味着样品将耐液体渗透,而是意味着水滴将在表面成珠并无阻滚落。在涂覆之前或之后基底的液体排斥性可以通过确定液体渗透压的静水压设置(以液体的cm)来表征。
[0077] 性能表征
[0078] 可以通过利用CCD相机的背光光学图像设置获得接触角值。对于动态接触角滞后测量(其标示自动清洁性质),CCD相机可以由高速相机,例如RedlakeTM Motion Pro代替,以准确捕获前进和后退接触角值。前进和后退接触角(即接触角滞后)之间的差异越低,表面的自动清洁性越高。可以根据ASTM F903–10通过增加静水柱压直到液体渗透样品来确定液体渗透压。可以通过利用CCD相机的光学图像设置来记录液体渗透。
[0079] 可以首先在纸板上测试复合材料涂层的可湿性,所述纸板被视为是代表一般类型的纤维素基底(有纹理的或无纹理的)的无纹理的亲水性纤维素基底。在涂层中以增加的浓度加入纳米粘土浓度直到观察到自动清洁行为。向复合材料涂层加入纳米粘土的目的是影响涂层的纹理。已知超疏水性和自动清洁行为受到两种机制的控制,即,表面粗糙度和表面能。也已显示,分层结构连同低表面能组对获得对超疏水性所必需的粗糙度提供极好的途径。纳米粘土具有有纳米级厚度和微米级长度的薄片结构,所述薄片结构当自组装时(通过静电相互作用)产生前述分层结构。在首先观察到自动清洁的地方的复合材料涂层中的纳米粘土浓度水平为最终复合材料涂层的约38wt.%(最终涂层的约62wt.%PMC)。当该复合材料涂层被喷铸到纸板上时,可以实现约146±3°的接触角(接近超疏水性),和约21±5°的接触角滞后。对于更加疏水性纳米结构的颗粒可能期望更低的滞后值,但是基于疏水性填充剂的水性分散体是非常难以实现的。
[0080] 当在超疏水性的情况下重点放在增加粗糙度和降低表面能,对于耐液体渗透进入基底,基底孔径和表面能是重要的因素。图1显示了耐水渗透的理想配置的多孔基底(均匀分布的相同直径d的直孔)。在该配置中,对于具有孔径d的疏水性基底的渗透所需的压力由Young-Laplace方程Δp=4γcosθ/d给出,其中γ是水表面张力,θ(θ>90°)是水和基底之间的接触角。多孔基底疏水性越强(即θ值越高),液体渗透压Δp越高。明显的是渗透压与孔径成反比(孔越细,引起水渗透所需的压力越高)。虽然孔大小可以被对多孔基底应用相对厚的涂层处理(其他疏水性配方)所影响,但是在涂覆后有效孔大小通常由涂层处理之前的基底的孔大小预先确定。应用涂层处理的一般目的是减小基底的表面能。在亲水性、基于纤维素的基底的情况下,涂层处理可能不产生围绕一些纤维的均匀的低表面能膜,所述纤维是亲水性的,可以吸收水以容易地产生0cm的液体渗透压值。加入涂层处理将给予一些可评估的耐水渗透性。通过液体渗透压(即“静水压”,其使用用于挑战表面的液体的cm测量)测量该方法的有效性。该压力越高,涂层方法越有效地赋予基底疏水性。自然地,液体渗透压取决于使用的液体(在Young-Laplace方程中的γ值)。由于醇具有比水更低的表面张力,因此水和醇的混合物导致了更低的渗透压。为了显示这个,图2显示了仅使用氟化物分散体(PMC)和无纳米结构的颗粒的涂层的水和水+IPA(9:1wt.)混合物的液体渗透压。明显地,两种样品的水+IPA混合物的渗透压比单独的水的渗透压更低(如预期的,由于混合物的较低的表面张力)。
[0081] 可以进行共聚焦显微镜观察以确定多孔基底的孔隙率。图3a显示了三维共聚焦图,而图3b显示了疏水性熔喷基底作为基底深度的函数的空隙率数据。空隙率值可以从不同的多孔基底深度处的共聚焦图获得。也可以在其他基底上进行共聚焦显微镜检查,但是已确定高密度基底可能压得太厚和密而不能准确测定它们的空隙率。对于疏水性熔喷基底,从图3b可见在基底中心附近空隙率为最小。简而言之,图3显示了通过应用涂层如何可能影响空隙率(和最终的孔大小)。明显地,涂层的基底具有更低的空隙率,即更小的孔,所述更低的空隙率转化成更高的所需的渗透压。实施例
[0082] 提供下列用于示例性的目的以便于理解本发明而不应当被解释为限制本发明到所述实例。
[0083] 材料:聚(偏二氟乙烯)(PVDF)微丸(Mw~530,000Da)在NMP中的溶液,PVDF粉末(标准大小231±66nm),2-氰基丙烯酸乙酯(ECA)单体,三氟乙酸(TFA),试剂乙醇和N-甲基-2-吡咯烷(NMP)全部得自Sigma Aldrich,USA。所用的颗粒填充剂为纳米粘土,即
1.31PS,其是用15-35wt.%硬脂胺和0.5-5wt.%氨基丙基三乙氧基硅烷表面改
性的蒙脱石粘土,得自Sigma Aldrich,USA。水性氟化物分散体,被称做PMC,具有商品名Capstone ST-100(氟化丙烯酸共聚物,在水中20wt.%)并且得自DuPont。
[0084] 喷雾应用:用单喷雾应用在固定距离为19cm处使用固定在自动工业分散机器人(EFD,Ultra TT Series)上的喷枪喷雾器(Paasche VL siphon feed,0.55mm喷雾喷嘴)将涂层喷铸在基底上。在烘箱中在80℃下干燥涂覆的基底30分钟,从而产生受到随后的结构和可湿性表征的涂层。
[0085] 基线有机基(Organic-Based)的复合材料涂层组合物(配方I):在样品上的干燥的复合材料涂层仅含有PVDF、PMC和纳米粘土。
[0086] 水-有机基的复合材料涂层组合物(配方II):在样品上的干燥的复合材料涂层仅含有PVDF和PMC。
[0087] 纯水基的复合材料涂层组合物(配方III、IV和V):在样品上的干燥的复合材料涂层仅含有氟化的丙烯酸共聚物PMC(配方III)和纳米粘土(配方IV和V)。
[0088] 下表1列出了使用上述材料制备的超疏水性配方。
[0089] 表1:具有逐渐减少的有机溶剂含量的五种配方的超疏水性组合物
[0090]
[0091]
[0092] a:纳米粘土(:PMC+纳米粘土)的重量比为0.2、0.4、0.5、0.6和0.8。
[0093] 将配方I-IV喷雾在纸板基底(制备装运箱的标准纸板)上并测量涂覆的基底的水接触角(见图4)。在纸板基底上进行接触角(CA)测量,所述纸板基底不具有内在纹理,从而允许精确的CA测量。
[0094] 下表2列出了应用在纸板基底上的配方I-IV的接触角测试结果(需要精确的CA测量)。在接触角测试中使用水和水-醇(10%异丙醇)。
[0095] 表2:用两种单独的探测液体的涂层配方I-IV的接触角数据
[0096]配方 水接触角(度) 水-IPA接触角(度)
I 165±4 154±4
II 158±4 153±4
III 126±3 104±3
IV 146±3 135±3
[0097] 下表3列出了应用在标准的不含磨木浆(wood-free)的复印纸(High White牌)基底上的配方V的五种情况的接触角测试结果。该纸购自批发商。其为巴西制造,大小为8.5英寸乘以11英寸,大约78g每平方米基重。数据表明在纳米粘土/固体重量比为0.4下获得超疏水性涂层(即CA>150度)。当这个比率超过0.5,观察到CA显著减小。
[0098] 表3:应用在标准复印纸上的配方V的水接触角数据
[0099]
[0100] 下表4列出了用于喷雾实验的五种 基底材料。
[0101] 表4: 基底材料
[0102]
[0103]
[0104] 使用共聚焦显微镜来测量孔隙率并表征涂覆前全部基底材料的未涂覆和涂覆样品。仅配方I被应用于全部基底用于随后通过共聚焦显微镜的表征。
[0105] 检测方法描述:
[0106] 1.共聚焦显微镜:为了便于通过共聚焦显微镜(Zeiss LSM510)成像,全部样品用荧光染料(罗丹明610)涂覆。通过将染料溶解在水中来进行涂覆,将样品浸渍到染料溶液中,并允许样品在环境温度下干燥。通过利用“咖啡污点”效应,人们可以获得在要成像的基底上均匀的染料沉积。通过将共聚焦图像栈导入Matlab并通过标准图像分析和材料体积重建技术分析测量基底孔隙率(或空隙率)。图像首先经历阈值转换法然后随后通过计算无效像素的面积(即,孔隙率)将空隙率表征为进入基底深度的函数。
[0107] 2.液体渗透压:根据ASTM-F903–10进行液体渗透测量。
[0108] 结果:
[0109] 图3b-d显示了涂覆的SMS、纺粘和 毛巾在以27.4g/m2的比率应用配方I之前和之后的基底空隙率和z-向深度。(图3b显示了在应用配方I之前和之后的SMS基底空隙率。图3c显示了在应用配方I之前和之后的纺粘基底空隙率。图3d显示了在应用配方I之前和之后的 毛巾基底空隙率。)
[0110] 图5显示了在用配方I涂覆后表4中提到的五个样品的静水压。如所显示的,图5a显示了以13.7g/m2涂覆的效果,而图5b显示了以27.4g/m2涂覆的效果。
[0111] 图6a显示了在SMS(样品1)的水和水-醇静水压高度上的涂层水平效果,并且图6b显示了用配方I涂覆的 毛巾(样品4)表面。这些测试的每一个用两种探测液体进行。图7显示了配方II在涂覆的SMS(样品1)和 毛巾(样品4)的
水和水-醇静水压高度上的效果。以比率为78.4g/m2用配方II涂覆两种样品。
[0112] 图8显示了配方III在涂覆的SMS(样品1)和 毛巾(样品4)的水和水-醇静水压高度上的效果。以比率为47g/m2用配方III涂覆两种样品。
[0113] 图9显示了配方I-III和V在涂覆的SMS(样品1)和 毛巾(样品4)的水静水压高度上的效果。值得注意的是,应用于这些测试的涂层水平是可以获得水成珠的最小值。对于样品4上的配方I和V,没有静水压是可持续的(即,即使在施加零压力时水也渗透涂覆的基底)。在这种特别的情况下,样品1的涂层水平为0.78-1.1g/m2,而对于样品4涂层水平为1.43-1.65g/m(2 可变性是由于基底的非均匀性)。这些涂层比在图5中检查的那些薄的多,在图5中这些样品(1和4)都测得了更高的静水压。
[0114] 本文引用的所有文件均在相关的部分并入本文作为参考;任何文件的引用不解释为承认其是关于本发明的现有技术。在本文中术语的任何含义或定义与并入本文作为参考的文件中相同的术语的任何含义或定义相冲突时,将以在本文中指定的术语的含义或定义为准。
[0115] 尽管本发明说明和描述了特定的实施方案,对于本领域技术人员将显而易见的是可以进行各种其它的变化和修饰,而不背离本发明的精神和范围。因此所附权利要求意在覆盖在本发明范围内的所有这样的变化和修饰。
QQ群二维码
意见反馈