成型品及其制造方法

申请号 CN200780028433.6 申请日 2007-07-19 公开(公告)号 CN101495307B 公开(公告)日 2013-04-03
申请人 东丽株式会社; 发明人 土谷敦岐; 本间雅登;
摘要 本 发明 涉及一种由 纤维 增强 复合材料 (I)和热塑性 树脂 构件(II)构成的成型品,所述纤维增强复合材料(I)含有连续增强纤维及热固性基质树脂,所述热塑性树脂构件(II)通 过热 塑性树脂(A)与上述纤维增强复合材料(I)的至少一部分表面接合并一体化。上述热塑性树脂(A)与上述纤维增强复合材料(I)的接合面在上述成型品的厚度方向的截面上具有凹凸形状,并且上述热塑性树脂(A)在上述纤维增强复合材料(I)中的最大含浸厚度h为10μm以上。上述热塑性树脂(A)的拉伸断裂强度为25MPa以上,拉伸断裂伸长率为200%以上。上述纤维增强复合材料(I)与上述热塑性树脂构件(II)的接合部的冲击粘合强度为3,000J/m2以上。
权利要求

1.一种成型品,由纤维增强复合材料(I)和热塑性树脂构件(II)构成,所述纤维增强复合材料(I)含有连续增强纤维及热固性基质树脂,所述热塑性树脂构件(II)通过热塑性树脂(A)与所述纤维增强复合材料(I)的至少一部分表面接合并一体化,所述热塑性树脂(A)与所述纤维增强复合材料(I)的接合面在所述成型品的厚度方向的截面上具有凹凸形状,并且所述热塑性树脂(A)在所述纤维增强复合材料(I)中的最大含浸厚度h为10μm以上,所述热塑性树脂(A)的拉伸断裂强度为25MPa以上,拉伸断裂伸长率为200%以上,所述纤维增强复合材料(I)与所述热塑性树脂构件(II)的接合部的粘合强度在25℃下为
2
12MPa以上且冲击粘合强度为3,000J/m 以上,此外,所述纤维增强复合材料(I)的冲击强度为300J/m以上,所述热塑性树脂构件(II)的冲击强度为200J/m以上,并且,所述热塑性树脂(A)由聚酯树脂构成,其最小厚度为10μm至500μm。
2.如权利要求1所述的成型品,其中所述热塑性树脂(A)的拉伸断裂伸长率为350%以上。
3.如权利要求1所述的成型品,其中所述热塑性树脂构件(II)的冲击强度为300J/m以上。
4.如权利要求1所述的成型品,其中所述纤维增强复合材料(I)的冲击强度为500J/m以上。
5.如权利要求3所述的成型品,其中所述纤维增强复合材料(I)的冲击强度为500J/m以上。
6.如权利要求1所述的成型品,其中,所述热塑性树脂(A)由聚酯树脂构成,所述聚酯树脂由1种聚酯树脂或2种以上的聚酯树脂的混合物构成,所述聚酯树脂中的至少一种聚酯树脂为共聚聚酯,所述共聚聚酯的硬链段中包含聚对苯二甲酸乙二醇酯成分及聚对苯二甲酸丁二醇酯成分中的一种或两种成分,作为构成软链段的二醇成分,包含聚丁二醇成分。
7.如权利要求3所述的成型品,其中,所述热塑性树脂(A)由聚酯树脂构成,所述聚酯树脂由1种聚酯树脂或2种以上的聚酯树脂的混合物构成,所述聚酯树脂中的至少一种聚酯树脂为共聚聚酯,所述共聚聚酯的硬链段中包含聚对苯二甲酸乙二醇酯成分及聚对苯二甲酸丁二醇酯成分中的一种或两种成分,作为构成软链段的二醇成分,包含聚丁二醇成分。
8.如权利要求6所述的成型品,其中所述聚酯树脂中的至少一种聚酯树脂的一个末端或两个末端具有选自伯基、环基、羧基及酸酐基中的1种或2种官能团结构。
9.如权利要求7所述的成型品,其中所述聚酯树脂中的至少1种聚酯树脂的一个末端或两个末端具有选自伯氨基、环氧基、羧基及酸酐基的1种或2种官能团结构。
10.如权利要求6所述的成型品,其中所述聚酯树脂的玻璃化温度Tg满足式
0℃≤Tg≤80℃。
11.如权利要求7所述的成型品,其中所述聚酯树脂的玻璃化温度Tg满足式
0℃≤Tg≤80℃。
12.如权利 要求6所 述的成型 品,其中 所述聚 酯树脂 的熔点Tm满 足式120 ℃≤ Tm≤180 ℃,并且 在 温 度(Tm+10) ℃ 下的 熔 融 粘 度η1满 足 式
500Pa·s≤η1≤2,000Pa·s。
13.如权利 要求7所 述的成型 品,其中 所述聚 酯树脂 的熔点Tm满 足式120 ℃ ≤Tm≤160 ℃,并且 在 温 度(Tm+10) ℃ 下的 熔 融 粘 度η1满 足 式
500Pa·s≤η1≤2,000Pa·s。
14.如权利要求12所述的成型品,其中所述聚酯树脂在温度250℃下的熔融粘度η2为300Pa·s以下。
15.如权利要求1所述的成型品,其中所述热塑性树脂构件(II)为选自聚氯乙烯类弹性体、聚氨酯类弹性体、聚酯类弹性体、和聚酰胺类弹性体中的1种以上的树脂组合物。
16.如权利要求3所述的成型品,其中所述热塑性树脂构件(II)为选自聚氯乙烯类弹性体、聚氨酯类弹性体、聚酯类弹性体、和聚酰胺类弹性体中的1种以上的树脂组合物。
17.如权利要求1所述的成型品,其中,在所述纤维增强复合材料(I)的至少一部分表面或内部,具有扯裂强度为80N/mm以上的耐冲击层。
18.如权利要求1所述的成型品,其中所述热塑性树脂构件(II)的至少一部分由具有电波透过性的部位(III)构成。
19.如权利要求18所述的成型品,其中所述具有电波透过性的部位(III)的电场屏蔽性为0dB至15dB。
20.如权利要求18所述的成型品,其中所述具有电波透过性的部位(III)由被非导电性纤维增强的构件形成。
21.如权利要求20所述的成型品,其中所述具有电波透过性的部位(III)由被含量30重量%至70重量%的玻璃纤维增强的构件形成。
22.如权利要求1所述的成型品,其中所述纤维增强复合材料(I)的实际厚度为0.1mm至0.6mm。
23.如权利要求1所述的成型品,其中所述纤维增强复合材料(I)中的所述连续增强纤维为纤维。
24.如权利要求3所述的成型品,其中所述纤维增强复合材料(I)中的所述连续增强纤维为碳纤维
25.如权利要求1所述的成型品,其中所述纤维增强复合材料(I)中的所述热固性基质树脂为环氧树脂
26.如权利要求3所述的成型品,其中所述纤维增强复合材料(I)中的所述热固性基质树脂为环氧树脂。
27.如权利要求1所述的成型品,其中所述成型品用于电气·电子设备。
28.如权利要求1所述的成型品,其中所述成型品用于办公自动化设备。
29.如权利要求1所述的成型品,其中所述成型品用于家用电器
30.如权利要求1所述的成型品,其中所述成型品用于医疗设备。
31.如权利要求1所述的成型品,其中所述成型品用于个人电脑壳体或移动电话壳体。
32.如权利要求1所述的成型品,其中所述成型品具有框部,并且所述框部由所述热塑性树脂构件(II)形成,在所述框部的至少一部分配置有具有电波透过性的部位(III)。
33.如权利要求1所述的成型品,其中所述成型品用于汽车部件、飞机部件或建材。

说明书全文

成型品及其制造方法

技术领域

[0001] 本发明涉及成型品及其制造方法,是由纤维增强复合材料和热塑性树脂构件接合形成的成型品,改善了上述纤维增强复合材料和上述热塑性树脂构件之间的冲击粘合强度。

背景技术

[0002] 以热固性树脂作为基质树脂(matrix resin)的纤维增强复合材料是学特性及轻质性优异的材料。该纤维增强复合材料广泛用作以飞机和汽车等的结构构件为代表的各种成型品的结构构件。
[0003] 在要求薄壁性、轻质性及刚性的电气·电子设备、办公自动化设备、家用电器或医疗设备等中,比较小型且形状复杂的部件由将热塑性树脂进行注射成型得到的热塑性树脂构件形成,形状比较简单的部件由纤维增强复合材料形成,并逐渐应用将上述部件接合进行一体化而得到的成型品。
[0004] 随着纤维增强复合材料用途的扩大,要求的性能自然也根据用途发生变化。特别是移动电话或小型移动产品等要求耐冲击性,需要设计满足该要求的成型品。 [0005] 专利文献1及专利文献2中公开了耐冲击性优异的树脂框架组合件。该组合件为功能部件与热塑性树脂构件一体化形成的成型品。具体而言,专利文献1及专利文献2中记载了下述组合件及其组合方法,即用由来酰亚胺类或聚酸酯类聚合物/乙烯基类聚合物/橡胶状聚合物/增强纤维组成的树脂组合物制备框架构件,另外针对同样的树脂组合物使用金属等进行嵌件成型(insert molding),制备功能部件,接下来利用上述部件分别使用的树脂的热熔接将上述部件接合,组装成组合件。
[0006] 但是,虽然公开了使功能部件及框架构件的耐冲击性优异的技术,却没有特别关注涉及功能部件与框架构件接合的技术。因此,功能部件与框架构件的接合强度不充分,视为一体化成型品时成型品的耐冲击性不能说充分。
[0007] 专利文献3中公开了可以与其他构件容易且牢固地熔接的纤维增强复合材料层合体,并记载了提高该层合体与形成框架构件等的热塑性树脂构件的接合强度的粘合技术以及利用该技术形成的一体化成型品。但是,专利文献3中记载的技术的目的主要是提高粘合性,特别是提高与聚酰胺树脂材料的粘合性,不能说一体化成型品的耐冲击性充分。 [0008] 专利文献1:特开平11-138641号公报
[0009] 专利文献2:特开平11-268130号公报
[0010] 专利文献3:WO2004/060658A1号公报

发明内容

[0011] 本发明的目的是提供一种将纤维增强复合材料与热塑性树脂构件接合并一体化形成的耐冲击性特别优异的成型品及其制造方法。
[0012] 为了实现上述目的,本发明的成型品如下所述。
[0013] 一种成型品,由纤维增强复合材料(I)和热塑性树脂构件(II)构成,所述纤维增强复合材料(I)含有连续增强纤维及热固性基质树脂,所述热塑性树脂构件(II)通过热塑性树脂(A)与该纤维增强复合材料(I)的至少一部分表面接合并一体化;上述热塑性树脂(A)与上述纤维增强复合材料(I)的接合面在上述成型品的厚度方向的截面上具有凹凸形状,并且上述热塑性树脂(A)在上述纤维增强复合材料(I)中的最大含浸厚度h为10μm以上,上述热塑性树脂(A)的拉伸断裂强度为25MPa以上,拉伸断裂伸长率为200%以上,上述纤维增强复合材料(I)与上述热塑性树脂构件(II)的接合部的冲击粘合强度为3000J/2
m 以上。
[0014] 上述热塑性树脂(A)的拉伸断裂伸长率优选为350%以上。上述热塑性构件(II)的冲击强度优选为200J/m以上,更优选为300J/m以上。上述纤维增强复合材料(I)的冲击强度优选为500J/m以上。上述热塑性树脂(A)的最小厚度t优选为10μm至500μm。 [0015] 优选上述热塑性树脂(A)由1种或2种以上的聚酯树脂构成,该聚酯树脂中的至少一种聚酯树脂为共聚聚酯,所述共聚聚酯的硬链段中包含聚对苯二甲酸乙二醇酯成分及聚对苯二甲酸丁二醇酯成分中的一种或两种成分,作为构成软链段的二醇成分,包含聚丁二醇成分。
[0016] 优选上述聚酯树脂中的至少一种聚酯树脂的一个末端或两个末端具有选自伯基、环基、羧基及酸酐基中的1种或2种官能团结构。
[0017] 优选上述聚酯树脂中的至少一种聚酯树脂的一个末端或两个末端具有选自伯氨基、环氧基和酸酐基中的一种或两种官能团结构。
[0018] 上述聚酯树脂的玻璃化温度Tg优选满足式0℃≤Tg≤80℃。
[0019] 优选上述聚酯树脂的熔点Tm满足式120℃≤Tm≤180℃,并且在温度(Tm+10)℃下的熔融粘度η1满足式500Pa·s≤η1≤2,000Pa·s。上述聚酯树脂的熔点Tm更优选满足式120℃≤Tm≤160℃。另外,上述聚酯树脂在温度250℃下的熔融粘度η2更优选为300Pa·s以下。
[0020] 上述热塑性树脂构件(II)优选为选自聚碳酸酯树脂、ABS树脂及热塑性弹性体树脂中的一种以上的树脂组合物。
[0021] 上述热塑性树脂构件(II)中的至少一部分优选由具有电波透过性的部位(III)构成。上述具有电波透过性的部位(III)的电场屏蔽性优选为0dB至15dB。上述具有电波透过性的部位(III)优选由被非导电性纤维增强的构件形成。上述具有电波透过性的部位(III)优选由被含量为30重量%至70重量%的玻璃纤维增强的构件形成。
[0022] 上述纤维增强复合材料(I)的实际厚度优选为0.1mm至0.6mm。上述纤维增强复合材料(I)中的上述连续增强纤维优选为碳纤维
[0023] 上述纤维增强复合材料(I)中的上述热固性基质树脂优选为环氧树脂。 [0024] 本发明的成型品优选用作电气·电子设备、办公自动化设备、家用电器、医疗设备、汽车部件、飞机部件或建材的成型品。另外,本发明的成型品优选用作个人电脑壳体或移动电话壳体的成型品。
[0025] 本发明的成型品中存在框部时,优选该框部由上述热塑性树脂构件(II)形成,并在上述热塑性树脂构件(II)的至少一部分配置有具有电波透过性的部位(III)。 [0026] 上述热塑性构件(II)的至少一部分配置有具有电波透过性的部位(III)的本发明的成型品的制造方法如下所述。
[0027] 所述成型品的制造方法包括下述工序:成型由电波透过性材料及热塑性树脂构成的上述具有电波透过性的部位(III)的工序;将上述纤维增强复合材料(I)及经上述工序成型的上述具有电波透过性的部位(III)插入模内的工序;以及对经上述工序插入上述模内的上述纤维增强复合材料(I)和上述具有电波透过性的部位(III),注射成型包括上述热塑性树脂构件(II)的其余部位(IV)的工序。
[0028] 上述具有电波透过性的部位(III)中的上述热塑性树脂与上述热塑性树脂构件(II)中的热塑性树脂优选为同种树脂。
[0029] 本发明所述的成型品是将含有连续增强纤维及热固性基质树脂的纤维增强复合材料(I)与热塑性树脂构件(II)牢固地接合并一体化得到的耐冲击性优异的成型品。由本发明所述的成型品成型得到的各种设备和部件,可以在所受机械载荷增大的使用环境下使用并且不易破损。特别是对于在室外频繁使用的笔记本个人电脑或移动电话等电气·电子设备,通过使用本发明所述的成型品形成其机体,可以显著降低破损频率附图说明
[0030] 图1为本发明成型品的一个实施方案在厚度方向上的模式截面图。
[0031] 图2为测定本发明成型品的冲击粘合强度时的试验片的模式斜视图。 [0032] 图3为测定本发明成型品的冲击粘合强度及粘合强度时的试验片的模式分解斜视图。
[0033] 图4为使用本发明成型品的个人电脑壳体之一例的斜视 图及其中一部分在厚度方向上的截面图。
[0034] 图5为测定本发明成型品的冲击粘合强度时的试验片的模式斜视图。 [0035] 图6为使用本发明成型品的移动电话壳体之一例的一部分的斜视图
[0036] 图7为沿着图6中的S1-S1箭头方向的截面图。
[0037] 符号说明
[0038] 1成型品
[0039] 2增强纤维
[0040] 2a存在于距离热塑性树脂构件(II)最近的位置的增强纤维
[0041] 2b存在于距离热塑性树脂构件(II)最远的位置的增强纤维
[0042] 3热固性基质树脂
[0043] 4接合面
[0044] 5接合部
[0045] 10粘合面积
[0046] 21试验片
[0047] 41个人电脑壳体用成型品
[0048] 51试验片
[0049] 52
[0050] 53测定用试验片
[0051] 61移动电话壳体
[0052] (I)纤维增强复合材料
[0053] (II)热塑性树脂构件
[0054] (A)热塑性树脂

具体实施方式

[0055] 使用实施例具体说明本发明的成型品。
[0056] 本发明成型品的实施方案之一例示于图1。图1中的成型品1由 含有连续增强纤维2及热固性基质树脂3的纤维增强复合材料(I),和通过热塑性树脂(A)与纤维增强复合材料(I)的至少一部分的表面接合并一体化的热塑性树脂构件(II)构成。
[0057] 热塑性树脂(A)含浸在纤维增强复合材料(I)的连续增强纤维2的间隙中,并与纤维增强复合材料(I)的热固性基质树脂3接合。即如图1所示,成型品1具有在热塑性树脂(A)的层中含有纤维增强复合材料(I)的一部分增强纤维2的结构。热塑性树脂(A)与纤维增强复合材料(I)的热固性基质树脂3的接合面4在成型品1的厚度方向的截面中具有凹凸形状。
[0058] 接合面4具有凹凸形状意味着增强纤维2的一部分增强纤维在纵向上某些部分包埋在热塑性树脂(A)中,与该部分相连的其他部分包埋在热固性基质树脂3中。无法在图1所示的截面中观察到该状态,但通过观察与该截面成直方向的截面可以明确得知。 [0059] 该结构中增强纤维2产生固着效果来抑制热塑性树脂(A)与纤维增强复合材料(I)之间的剥离。结果,热塑性树脂(A)还产生抑制通过热塑性树脂(A)与纤维增强复合材料(I)接合并一体化的热塑性构件(II)与纤维增强复合材料(I)之间的剥离的效果。 [0060] 成型品1中为了提高热塑性树脂(A)的固着效果,使热塑性树脂(A)在纤维增强复合材料(I)中的最大含浸厚度h为10μm以上。成型品1中的该特征意味着热塑性树脂(A)与纤维增强复合材料(I)牢固地接合,即增强纤维表现牢固的固着效果。最大含浸厚度h较优选为20μm以上,更优选为30μm以上。最大含浸厚度h的上限值没有特别限定,
1,000μm左右时在实用方面也没有问题。
[0061] 成型品1中热塑性树脂(A)的拉伸断裂强度为25MPa以上。在成型品1中的该特征意味着热塑性树脂(A)作为粘合剂本身是牢固的。热塑性树脂(A)的拉伸断裂强度较优选为30MPa以上,更优选为35MPa以上。热塑性树脂(A)的拉伸断裂强度的上限值没有特别限定,如果考虑到为热塑性树脂(A),则100MPa左右时在实用上也没有问题。 [0062] 成型品1中热塑性树脂(A)的拉伸断裂伸长率为200%以上。成型品1中的该特征意味着热塑性树脂(A)吸收载重有效地发挥粘合剂的功能。热塑性树脂(A)的拉伸断裂伸长率较优选为300%以上,更优选为350%以上。热塑性树脂(A)的拉伸断裂伸长率的上限值没有特别限定,如果考虑到为热塑性树脂(A),则1,000%左右时在实用上也没有问题。
[0063] 成型品1中纤维增强复合材料(I)与热塑性树脂构件(II)的接合部5的冲击粘2
合强度为3,000J/m 以上。成型品1中的该特征意味着冲击成型品1时能够抑制接合部5的剥离。纤维增强复合材料(I)与热塑性树脂构件(II)的接合部5的冲击粘合强度较优
2 2
选为4,000J/m 以上,更优选为5,000J/m 以上。纤维增强复合材料(I)与热塑性树脂构件(II)的接合部5的冲击粘合强度的上限值没有特别限定,从发挥优异的冲击粘合强度的观
2
点考虑,30,000J/m 左右时在实用上也没有问题。
[0064] 成型品1中热塑性树脂构件(II)的冲击强度优选为200J/m以上。成型品1中的该特征意味着冲击成型品1时热塑性树脂构件(II)不破损,具有优异的耐冲击性。热塑性树脂构件(II)的冲击强度较优选为300J/m以上,更优选为500J/m以上。热塑性树脂构件(II)的冲击强度的上限值没有特别限定,考虑到为热塑性树脂构件(II),1,000J/m左右时在实用上也没有问题。
[0065] 热塑性树脂构件(II)与热塑性树脂(A)的边界不必清晰。例如,可以分别使用相同组成的热塑性树脂。
[0066] 成型品1中纤维增强复合材料(I)的冲击强度优选为300J/m以上。成型品1中的该特征意味着冲击成型品1时纤维增强复合材料(I)不破损,具有优异的耐冲击性。纤维增强复合材料(I)的冲击强度较优选为500J/m,更优选为700J/m以上。纤维增强复合材料(I)的冲击强度的上限值没有特别限定,3,000J/m左右时在实用上也没有问题。 [0067] 成型品1中热塑性树脂(A)的最小厚度t优选为10μm至500μm。 成型品1中的该特征意味着可以较好地确保通过热塑性树脂(A)与其他构件粘合的粘合层。热塑性树脂(A)的最小厚度t较优选为20μm至300μm,更优选为40μm至100μm。
[0068] 成型品1中纤维增强复合材料(I)与热塑性树脂构件(II)的粘合强度优选在25℃下为12MPa以上。成型品1中的该特征意味着成型品整体的耐冲击性被提高。纤维增强复合材料(I)与热塑性树脂构件(II)的粘合强度较优选为15MPa以上,更优选为20MPa以上。该粘合强度的上限值没有特别限定,40MPa左右时在实用上也没有问题。 [0069] 成型品1中的热塑性树脂(A)优选由1种或2种以上的聚酯树脂构成,该聚酯树脂中的至少1种聚酯树脂为共聚聚酯,所述共聚聚酯的硬链段中包含聚对苯二甲酸乙二醇酯成分及聚对苯二甲酸丁二醇酯成分中的一种或两种成分,作为构成软链段的二醇成分,包含聚丁二醇成分。
[0070] 所述共聚聚酯优选为下述共聚聚酯,即含有5重量%至80重量%的聚酯成分作为硬链段,所述聚酯成分由芳环型或脂环型环状二羧酸与下述结构式1表示的二醇形成;并含有20重量%至95重量%的聚酯成分作为软链段,所述聚酯成分由芳环型或碳原子数为2至10的亚烷基二羧酸和下述结构式1表示的二醇中R为直链烯化氧的二醇形成。 [0071] 结构式1:HO-R-OH
[0072] 此处,式中R为用CnH2n(n为2至10的整数)表示的具有直链或支链结构的亚烷基,或为用C2nH4nOn(n为1以上的整数)表示的直链烯化氧。
[0073] 聚酯树脂为2种以上的聚酯树脂的混合物时,优选至少1种聚酯树脂为上述结构的共聚聚酯。
[0074] 作为构成硬链段的芳环型二羧酸,有对苯二甲酸、间苯二甲酸、邻苯二甲酸、1,5-二甲酸、2,6-萘二甲酸、对苯二甲酸(p-phenylenedicarboxylic acid)、磺基间苯二甲酸钠(sodium sulfoisophthalate)等。
[0075] 作为构成硬链段的脂环型二羧酸,有1,4-环己烷二甲酸、1,3-环己烷二甲酸、1,2-环己烷二甲酸、4-甲基-1,2-环己烷二甲酸等。
[0076] 作为结构式1表示的二醇,有乙二醇、二甘醇、三甘醇、聚乙二醇、聚丁二醇、丙二醇、1,3-丙二醇、2-甲基-1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,9-壬二醇、1,10-癸二醇、新戊二醇、双酚A的环氧乙烷加成物及环氧丙烷加成物、1,4-环己烷二甲醇、三环癸烷二甲醇、二聚醇(dimerdiol)等。 [0077] 作为构成软链段的碳原子数为2至10的亚烷基二羧酸,有富马酸、马来酸、衣康酸、琥珀酸戊二酸己二酸、辛二酸、壬二酸、癸二酸、十二烷二酸、二聚酸等。 [0078] 作为硬链段的结构,优选含有作为工业上广泛使用的树脂成分的聚对苯二甲酸乙二醇酯成分、聚对苯二甲酸丁二醇酯成分中的一种或两种。作为含量,不论含有任意一种还是含有两种,其总和优选在10重量%至80重量%的范围内,更优选在20重量%至70重量%的范围内。
[0079] 作为二醇成分,为了使树脂具有柔软性,优选含有聚丁二醇。
[0080] 进而,从提高粘合性的观点来看,优选所述聚酯树脂的一个末端或两个末端具有选自伯氨基、环氧基及酸酐基中的1种或2种官能团结构。上述反应性官能团通过由化学反应形成的共价键以及由氢键或高极性产生的静电力来提高与各种材料的粘合性,故而优选使用。聚酯树脂为2种以上聚酯树脂的混合物时,优选至少1种以上的聚酯树脂具有上述末端结构。
[0081] 聚酯树脂可以单独使用,还可以含有其他添加剂成分等形成热塑性树脂组合物加以使用。作为添加剂,有无机填料、阻燃剂、导电性赋予剂、成核剂、紫外线吸收剂、抗氧化剂、阻尼材料、抗菌剂、防虫剂、除臭剂、着色防止剂、热稳定剂、脱模剂、防带电剂、增塑剂润滑剂着色剂、颜料、染料、起泡剂、消泡剂及偶联剂等。
[0082] 聚酯树脂的玻璃化温度Tg优选满足式0℃≤Tg≤80℃。通过使玻璃化温度Tg在该范围内,可抑制室温附近的分子运动,并且可作为 牢固的聚酯树脂显示出高粘合强度。玻璃化温度Tg较优选满足式10℃≤Tg≤80℃,更优选满足式25℃≤Tg≤80℃。 [0083] 此处,聚酯树脂为2种以上的混合物时等存在2个以上的玻璃化温度Tg的情况下,从评价室温附近的聚酯树脂的强度的观点来看,将其中最低的玻璃化温度Tg作为该聚酯树脂的玻璃化温度Tg。
[0084] 聚酯树脂的熔点Tm较优选满足式120℃≤Tm≤180℃,更优选满足式120℃≤Tm≤160℃。通过使熔点Tm在该范围内,不仅在室温附近显示出粘合强度,而且即使在超过80℃的高温状态下也能显示出优异的粘合强度。进而,通过使熔点Tm在该范围内,熔接时的温度不会变得极高,也不会发生使用时粘附物热解或热变形等问题,另外操作方面的负担也不大。
[0085] 此处,在聚酯树脂为2种以上的混合物时等存在2个以上的熔点Tm的情况下,从在充分熔融聚酯树脂时进行粘合的观点来看,将最高熔点Tm作为该聚酯树脂的熔点Tm。 [0086] 聚酯树脂在温度(Tm+10)℃下、直径20mm的平行板产生的扭矩(torque)为0.005J时的熔融粘度η1优选满足式500Pa·s≤η1≤2,000Pa·s。在温度(Tm+10)℃下的熔融粘度η1在上述范围内时,粘合剂对粘附物的润湿铺展性及抑制粘合剂的流出均优异,可以同时满足加工性能和确保粘合强度。熔融粘度η1优选为600Pa·s至1,800Pa·s,较优选700Pa·s至1,600Pa·s。
[0087] 为了使熔融粘度η1在上述范围内,可以通过下述方法控制熔融粘度η1:调整聚酯树脂的分子量的方法;或使用2种以上的二羧酸与2种以上的二醇形成共聚聚酯,控制分子链的规则性,从而提高或降低结晶性等。例如,可以通过降低分子量来降低熔融粘度η1;可以将碳原子数多的二羧酸成分或碳原子数多的二醇成分等能显示柔软性的成分作为原料制备聚酯树脂来降低熔融粘度η1。
[0088] 对于熔融粘度η1而言,由于聚酯树脂为2种以上的混合物时无法得到2种熔融粘度η1的值,所以不用特别区分聚酯树脂的种类,直接测定混合物的粘度作为熔融粘度η1。
[0089] 聚酯树脂在温度250℃下、直径20mm的平行板产生的扭矩为0.005J时的熔融粘度η2优选为300Pa·s以下。通过使熔融粘度η2在该范围内,容易将聚酯树脂加压加工成片状,对将聚酯树脂作为粘合剂使用时的施工操作非常有利。熔融粘度η2的下限值没有特别限定,考虑到聚酯树脂为高分子量物质,熔融粘度η2通常为1Pa·s以上。熔融粘度η2优选为250Pa·s以下,较优选为200Pa·s以下。
[0090] 为了使熔融粘度η2在上述范围内,使用与上述调整熔融粘度η1的方法相同的方法。
[0091] 构成成型品1的热塑性树脂构件(II)优选由选自聚碳酸酯树脂、ABS树脂及热塑性弹性体树脂中的1种以上的树脂组合物构成。
[0092] 作为热塑性弹性体,有苯乙烯类弹性体、烯类弹性体、聚氯乙烯类弹性体、聚氨酯类弹性体、聚酯类弹性体、聚酰胺类弹性体等。
[0093] 从耐冲击性的观点考虑,较优选热塑性树脂构件(II)的构成树脂为聚碳酸酯树脂或聚碳酸酯树脂与ABS树脂的共混树脂(alloyresin)。
[0094] 为了提高耐冲击性,可以在上述树脂组合物中加入其他弹性体或橡胶成分。另外,根据成型品1的用途可以适当含有其他填料或添加剂。作为填料或添加剂,有无机填料、阻燃剂、导电性赋予剂、成核剂、紫外线吸收剂、抗氧化剂、阻尼材料、抗菌剂、防虫剂、除臭剂、着色防止剂、热稳定剂、脱模剂、防带电剂、增塑剂、润滑剂、着色剂、颜料、染料、起泡剂、消泡剂、偶联剂等。
[0095] 热塑性树脂构件(II)可以单独由热塑性树脂构成,从提高热塑性树脂构件(II)的强度、提高成型品1的力学特性的观点来看,热塑性树脂构件(II)可以含有增强纤维。作为增强纤维,有玻璃纤维、碳纤维、金属纤维、芳香族聚酰胺纤维、聚芳酰胺纤维、铝纤维、碳化纤维、纤维、玄武岩纤维等。单独或同时使用2种以上所述增强纤维。含有增强纤维时其纤维含量优选为5重量%至60重量%。
[0096] 使用聚碳酸酯树脂组合物、由聚碳酸酯树脂和ABS树脂形成的共混树脂组合物、热塑性弹性组合物中的任意一种作为热塑性树脂构件 (II)时,为了提高与纤维增强复合材料(I)的粘合性,热塑性树脂(A)优选为与所述树脂组合物的亲合性高的聚酯树脂。 [0097] 为了确保树脂自身的强度及流动性,构成热塑性树脂(A)的聚酯树脂的数均分子量优选为10,000至30,000。该数均分子量较优选为12,000至28,000,更优选为15,000至25,000。
[0098] 作为在构成成型品1的纤维增强复合材料(I)中的连续增强纤维2的形态,没有特别限定,有由多根增强纤维构成的增强纤维束、由该纤维束构成的布、多根增强纤维单向排列形成的增强纤维束(单向纤维束)、由该单向纤维束构成的单向布等,还有上述形态的组合、配置多层得到的层合体等。其中,从基材的生产率的观点考虑,优选使用布或单向纤维束。
[0099] 增强纤维束可以由相同形态的多根纤维构成,或者由不同形态的多根纤维构成。构成1个增强纤维束的增强纤维数通常为300至48,000,考虑到基材的制造,优选为300至
24,000,较优选为1,000至12,000。
[0100] 连续增强纤维2为至少在一个方向上连续10mm以上的连续增强纤维。增强纤维2无需在纤维增强复合材料(I)的长度方向的全长或纤维增强复合材料(I)的宽度方向的整个宽度上连续,可以在中途切断。
[0101] 作为使用的增强纤维2的纤维材料,有玻璃纤维、碳纤维、金属纤维、芳香族聚酰胺纤维、聚芳酰胺纤维、铝纤维、碳化硅纤维、硼纤维、玄武岩纤维等。可以单独使用上述纤维或同时使用其中的2种以上。可以对上述纤维材料进行表面处理。作为表面处理,有金属沉积处理、利用偶联剂的处理、利用上浆剂的处理以及添加剂的附着处理等。上述纤维材料中还包括具有导电性的纤维材料。作为纤维材料优选使用比重小、高强度、高弹性模量的碳纤维。
[0102] 在成型品1中纤维增强复合材料(I)的实际厚度优选为0.1mm至0.6mm。 [0103] 在成型品1中作为在纤维增强复合材料(I)中的热固性基质树 脂3,有不饱和聚酯、乙烯基酯、环氧、酚(可熔树脂型)、尿素·三聚氰胺、聚酰亚胺、双马来酰亚胺、氰酸酯等、上述树脂的共聚物、改性体以及混合其中的至少2种而得到的树脂。为了提高耐冲击性可以加入弹性体或橡胶成分。从成型品的力学特性的观点考虑,特别优选环氧树脂。进而,为了显示其优异的力学特性优选含有环氧树脂作为热固性基质树脂3的主成分,具体而言优选含有60重量%以上的环氧树脂。
[0104] 在成型品1中纤维增强复合材料(I)的至少一部分表面或内部优选具有扯裂强度为80N/mm以上的耐冲击层。由此进一步提高成型品1的耐冲击性。通过使纤维增强复合材料(I)的至少一部分表面或内部具有耐冲击层,抑制冲击时纤维增强复合材料(I)的破裂或者由冲击物贯穿纤维增强复合材料(I)导致的破损。耐冲击层的扯裂强度较优选为100N/mm以上,更优选为150N/mm以上。
[0105] 形成耐冲击层的材料没有特别限定,从轻质性及成型性的观点来看,材料优选为树脂。作为形成耐冲击层的树脂的例子,有耐冲击性聚酯树脂及耐冲击性聚酰胺树脂。 [0106] 在成型品1中优选热塑性树脂构件(II)的至少一部分由具有电波透过性的部位(III)构成。另外,该具有电波透过性的部位(III)的电场屏蔽性优选为0dB至15dB。 [0107] 上述具有电波透过性的部位(III)优选由被非导电性纤维增强的构件形成。另外,上述具有电波透过性的部位(III)优选由被含量为30重量%至70重量%的玻璃纤维增强的构件形成。
[0108] 成型品1优选具有框部,并且该框部由上述热塑性树脂构件(II)形成,在该框部的至少一部分配置有具有电波透过性的部位(III)。
[0109] 成型品1优选用于电气·电子设备、办公自动化设备、家用电器、医疗设备、汽车部件、飞机部件或建材。另外,成型品1优选用于个人电脑壳体或移动电话壳体。 [0110] 成型品1用于移动电话壳体等小型成型品时,是为了实现轻质化,成型品1的由热塑性树脂构件(II)形成的框部(II)优选在允许的 范围内较少。但是,前提是框部(II)可以充分粘合支持纤维增强复合材料(I)。为了满足上述条件,纤维增强复合材料(I)与框部(II)的接合部分的投影面积优选为纤维增强复合材料(I)的投影面积的5至75%。较优选为投影面积的10%至60%,更优选为投影面积的20%至50%。
[0111] 成型品1用作移动电话壳体时,优选纤维增强复合材料(I)小型且轻质,其最大投2 2 2
影面积优选为10,000mm 以下。较优选为8,000mm 以下,更优选为6,000mm 以下。 [0112] 在成型品1中通过热塑性树脂(A)使纤维增强复合材料(I)和热塑性树脂构件(II)一体化成型时,作为一体化成型的方法,优选使用热熔接、振动熔接、超音波熔接、激光熔接、嵌件注射成型(insertinjection molding)、嵌件上注射成型(outsert injection molding)等,考虑到成型周期,优选使用嵌件上注塑成型、嵌件成型。
[0113] 该说明书中所述各种特性值的测定方法如下所述。
[0114] (1)热塑性树脂(A)的最大含浸厚度h:
[0115] 最大含浸厚度h被定义为如图1所示在位于热塑性树脂(A)层中的增强纤维2中,距离热塑性树脂构件(II)最近位置的增强纤维2a与距离热塑性树脂构件(II)最远位置的增强纤维2b之间的距离。从成型品中切割包含热塑性树脂(A)的大小为5mm×5mm的截面部分,制备试验片,用光学显微镜拍摄所得截面的图像,由得到的图像测量求得最大含浸厚度h。拍摄的放大倍数为300倍。需要说明的是,还可以使用扫描型电子显微镜(SEM)或透射型电子显微镜(TEM)代替光学显微镜。不能清晰地观察热塑性树脂(A)时,为了增强观察的对比度,可以根据需要将试验片染色
[0116] (2)热塑性树脂(A)的最小厚度t:
[0117] 热塑性树脂(A)的最小厚度t被定义为如图1所示在热塑性树脂构件(II)与纤维增强复合材料(I)之间存在的热塑性树脂(A)的厚度中的最小厚度。从成型品中切割包含热塑性树脂(A)的大小为5mm×5mm的截面部分,制备试验片,用光学显微镜拍摄所得截面 的图像,由得到的图像测量求得最小厚度t。拍摄的放大倍数为300倍。需要说明的是,还可以使用扫描型电子显微镜(SEM)或透射型电子显微镜(TEM)代替光学显微镜。不能清晰地观察热塑性树脂(A)时,为了增强观察的对比度,可以根据需要将试验片染色。 [0118] (3)热塑性树脂(A)的拉伸断裂强度:
[0119] 原则上从成型品1中切割ISO527规定的大小的试验片,按规定测定热塑性树脂(A)的拉伸断裂强度。无法由成型品1得到规定大小的试验片时,可以另外使用热塑性树脂(A)制备宽度5mm、长度20mm的膜,使用该膜作为试验片。
[0120] (4)热塑性树脂(A)的拉伸断裂伸长率:
[0121] 原则上从成型品1中切割ISO527规定的大小的试验片,按规定测定热塑性树脂(A)的拉伸断裂伸长率。无法由成型品1得到规定大小的试验片时,可以另外使用热塑性树脂(A)制备宽度5mm、长度20mm的膜,使用该膜作为试验片。
[0122] (5)纤维增强复合材料(I)与热塑性树脂构件(II)的接合部5的冲击粘合强度: [0123] 从成型品1中切割图2所示的纤维增强复合材料(I)与热塑性树脂构件(II)接合并一体化的部分,按ISO9653的规定测定纤维增强复合材料(I)与热塑性树脂构件(II)的接合部5的冲击粘合强度。
[0124] 使用的试验片21的大小示于图2。L1为热塑性树脂构件(II)的长度,W1为纤维增强复合材料(I)及热塑性树脂构件(II)的宽度,T1为热塑性树脂构件(II)的厚度。从能得到尽可能大尺寸的试验片的成型品1的部位切割试验片21。切割的试验片21的纤维增强复合材料(I)的厚度薄时,有时难以直接将其用于试验。此时,如图5所示,使用单组分型环氧粘合剂(住友3M株式会社制,EW2070)将切割的试验片51及铝板52接合,制备测定用试验片53。此时,使铝板52的厚度T3为20mm。
[0125] 在后述实施例中,使用图5所示形态的试验片,并使L1=3mm、 W1=3mm、T1=2mm、L2=40mm以及T3=20mm。
[0126] 设置试验片21或53,使锤击打热塑性树脂构件(II)侧,按ISO9653的规定进行试验。将用基于ISO9653的规定的测定方法测定的冲击吸收能除以粘合面积,作为冲击粘合强度。
[0127] 此时,确认试验后断裂试验片的纤维增强复合材料(I)与热塑性树脂构件(II)的接合部发生剥离,并确认能够准确测定冲击粘合强度。热塑性树脂构件(II)的母材破损等导致不能准确测定冲击粘合强度时,进行准备接合面积小的试验片等操作,并适当调整,以便能够准确评价冲击粘合强度。需要说明的是,在图2、图5中的试验片21、53的图示中,省略了介于纤维增强复合材料(I)与热塑性树脂构件(II)之间的热塑性树脂(A)的图示。 [0128] (6)纤维增强复合材料(I)与热塑性树脂构件(II)的粘合强度:
[0129] 从成型品1中切割图3所示的纤维增强复合材料(I)与热塑性树脂构件(II)接合并一体化的部分作为试验片31,原则上按ISO4587的规定测定纤维增强复合材料(I)与热塑性树脂构件(II)的粘合强度。
[0130] 在图3中,试验片31中的L3表示粘合部的长度,M表示纤维增强复合材料(I)及热塑性树脂构件(II)减去粘合部L3的长度后的长度,W2表示纤维增强复合材料(I)及热塑性树脂构件(II)的宽度,T2表示纤维增强复合材料(I)及热塑性树脂构件(II)的厚度。原则上使试验片31的大小为ISO4587规定的大小,但是无法由成型品1得到该大小的试验片时,从能得到尽可能大尺寸的试验片的成型品1的部位切割试验片加以使用。 [0131] 按ISO4587的规定,将得到的试验片31用于拉伸搭接剪切试验(lap shear tensile test)。将由此测定的粘合断裂载荷(bonding failureload)除以粘合面积10算出粘合强度。
[0132] 在后述实施例中,图3所示形态的试验片31为L3=3mm、M=20mm、W2=10mm以及T2=2mm。作为测定装置,使用“Instron”(注 册商标)5565型万能材料试验机(Instron·日本(株)制)。在环境温度可调节的试验室内,在25℃的环境温度下进行拉伸试验。试验开始前,将试验片31置于试验室内维持没有拉伸试验载荷的状态至少5分钟,另外在试验片31上配置热电偶,确认其与环境温度相等后,进行拉伸试验。以1.27mm/分钟的拉伸速度拉伸,进行拉伸试验,将其最大载荷除以粘合面积所得的值作为粘合强度。另外,试验片数量n为5,将其平均值作为粘合强度。
[0133] (7)纤维增强复合材料(I)的冲击强度(缺口悬臂梁冲击强度):
[0134] 原则上按ASTMD256的规定测定纤维增强复合材料(I)的冲击强度(缺口悬臂梁冲击强度)。但是,由成型品1得到的试验片的大小不足时,从能得到宽度、厚度及长度尽可能大的试验片的成型品1的部位切割试验片进行测定。
[0135] 在后述实施例中,从成型品1的纤维增强复合材料(I)部分,切割宽度10mm、长度64mm、厚度1mm的板状部件,加工成ASTMD256中记载的缺口形状,作为试验片。使用该试验片,按照ASTMD256中记载的方法进行冲击强度试验。试验片数量n为5,以其平均值作为缺口悬臂梁冲击强度。
[0136] (8)热塑性树脂构件(II)的冲击强度(缺口悬臂梁冲击强度):
[0137] 原则上按ASTMD256的规定测定热塑性树脂构件(II)的冲击强度(缺口悬臂梁冲击强度)。但是,由成型品1得到试验片的大小不足时,从能得到宽度、厚度及长度尽可能大的试验片的成型品1的部位切割试验片进行测定。需要说明的是,能够确定热塑性树脂构件(II)的材料时,优选使用该材料成型为ASTMD256中规定大小的试验片,使用该试验片进行测定。
[0138] 在后述实施例中,从成型品1的热塑性树脂构件(II)部分,切割宽度10mm、长度64mm、厚度1mm的板状部件,加工成ASTMD256中记载的缺口形状,作为试验片。使用该试验片,按照ASTMD256中记载的方法进行冲击强度试验。试验片数量n为5,将其平均值作 为缺口悬臂梁冲击强度。
[0139] (9)聚酯树脂的玻璃化温度Tg:
[0140] 按照ISO11357-2中记载的方法测定聚酯树脂的玻璃化温度Tg。在后述实施例中,使用Pyris 1 DSC(珀金埃尔默仪器有限公司制差示扫描量热计)作为差示扫描量热计进行测定。升温速度为10℃/分钟,以DSC曲线呈现阶梯状变化的部分的中间点作为玻璃化温度Tg。混合物等观测到多个Tg时,采用最低玻璃化温度Tg作为该组合物的玻璃化温度Tg。
[0141] (10)聚酯树脂的熔点Tm:
[0142] 使用差示扫描量热计(DSC)测定聚酯树脂的熔点Tm。在后述实施例中,在容量50μl的密闭型样品容器中填充1mg至5mg试样,以10℃/分钟的升温速度从30℃升温至
350℃,测定熔点Tm。使用Pyris 1 DSC(珀金埃尔默仪器有限公司制差示扫描量热计)作为差示扫描量热计。混合物等观测到多个熔点Tm时,采用最高熔点Tm作为该组合物的熔点Tm点。
[0143] (11)聚酯树脂的熔融粘度η1:
[0144] 如下测定聚酯树脂的熔融粘度η1,使用动态粘弹性测定装置,使用直径20mm的平行板,在平行平板间的距离为1.0mm、测定频率为0.5Hz、产生扭矩为0.005J的条件下,在规定温度(温度(Tm+10)℃)下进行聚酯树脂成分的粘弹性测定,读取熔融粘度η1。在后述实施例中,使用3g聚酯树脂成分,使用TA Instruments Corp.制动态粘弹性测定装置ARES作为动态粘弹性测定装置进行测定。
[0145] (12)聚酯树脂的熔融粘度η2:
[0146] 如下测定聚酯树脂的熔融粘度η2,使用动态粘弹性测定装置,使用直径20mm的平行板,在平行平板间的间距为1.0mm、测定频率为0.5Hz、产生扭矩为0.005J的条件下,在规定温度(250℃)下进行聚酯树脂成分的粘弹性测定,读取熔融粘度η2。在后述实施例中,使用3g聚酯树脂成分,使用TA Instruments Corp.制动态粘弹性测定装置ARES作为动态粘弹性测定装置进行测定。
[0147] (13)聚酯树脂的数均分子量:
[0148] 采用凝胶渗透色谱(GPC)等通常的测定方法测定聚酯树脂的数均分子量。此处,聚酯树脂为2种以上的混合物等数均分子量不同、即数均分子量的分布为双分布等时,从评价聚酯树脂的强度的观点来看,取其中最低的数均分子量的值作为该聚酯树脂的数均分子量。在后述实施例中,使用WATERS公司制GPC-244作为凝胶渗透色谱(GPC)。 [0149] (14)耐冲击层的扯裂强度:
[0150] 原则上按照ISO6383-1的规定测定扯裂强度。但是,由纤维增强复合材料(I)得到的耐冲击层的试验片的大小不足时,从能得到具有尽可能大的宽度、厚度及长度的试验片的纤维增强复合材料(I)的耐冲击层部位切割试验片进行测定。需要说明的是,能够确定耐冲击层的材料时,优选使用该材料另外成型为ISO6383-1中规定大小的试验片,并使用该试验片进行测定。
[0151] (15)纤维增强复合材料(I)的贯穿试验(Penetration test):
[0152] 使用从纤维增强复合材料(I)中切割的一边长度为30mm至100mm的正方形试验片,在5mm至20mm的范围内以尽可能宽的夹具宽度固定支持其4边,使试验片不能移动。使具有直径16mm的半球形前端的重5kg的制锤(striker)从75cm高处落向试验片的一侧表面的中心部,冲击后确认在试验片上是否存在贯穿孔。在后述实施例中,将30mm×30mm大小的试验片的4边均以5mm的固定宽度固定,进行贯穿试验。
[0153] (16)电波透过性:
[0154] 根据Advantest法测定电波透过性。从移动电话壳体中切割正方形平板作为试验片。试验片的大小优选尽可能大。试验片的大小优选至少为20mm×20mm。无法确保试验片的大小时,可以切割相应的材质部分,通过热压成型等进行再成型,使其厚度与框架构件相同以后用于测定。由于热等导致变性或无法再成型时,可以分析该材料的组成,将同等组成的材料成型为试验片形状用于测定。
[0155] 在试验中使试验片为绝对干燥状态(含率0.1%以下),在四边涂布导电糊剂(藤仓化成株式会社制Dotite)并充分干燥导电糊剂。将试验片装入屏蔽箱中,使用光谱分析仪在1GHz的频率下测定电波屏蔽性(单位:dB)作为电磁波屏蔽性。电波屏蔽性越低电波透过性越优异。在后述实施例中使用20mm×20mm×厚度1mm的试验片。
[0156] (17)纤维增强复合材料(I)的弯曲弹性模量:
[0157] 从成型体1(移动电话壳体61)中切割纤维增强复合材料(I)。此时尽量避免棱部、铰接部、带有凹凸形状的部位,包含上述部位时,削切除去这些部位后用于试验。对于试验片的切割方向,从至少2个角度不同的方向切割得到试验片。优选为3个方向,更优选为4个方向。对于试验片各自的角度,从2个方向切割时优选分别相差90℃,从3个方向切割时,优选分别相差60℃,从4个方向切割时,优选分别相差45℃。
[0158] 试验片的大小优选按照ISO178的规定确定。在不能确保规定大小的试验片或不能确保试验片的必要个数等时,切割尽可能大的试验片用于测定。优选能至少确保宽度5mm、长度20mm左右的试验片。不能确保得到符合规格的试验片时,切割宽度、长度相对于规格缩小一定比例的大小的试验片,并使厚度为实际厚度。此时,相对试验片的长度成比例缩小来确定测定时的跨度(span)(支点间距离)。准备3至5片试验片用于测定。其他的测定条件基于ISO178的规定。
[0159] 在后述实施例中,从图6及7所示的移动电话壳体61的纤维增强复合材料(I)的部位,以0°方向及90°方向作为试验片的长度方向,切割宽度8mm、长度30mm的试验片。每个方向的试验片的片数各为3片。使用“Instron”(注册商标)5565型万能材料试验机(Instron·日本(株)制)作为测定装置。在环境温度可调节的试验室内,在25℃的环境温度下进行拉伸试验。试验开始前,将试验片在试验室内保持无拉伸试验载荷的状态至少
5分钟,另外在试验片上配置热电偶,确认与环境温度相同后进行弯曲试验。以1.27mm/分钟的压头速度(indenter speed)进行弯曲试验。由弯曲试验的结果算出试 验片的弯曲弹性模量。
[0160] 以下基于实施例更具体地说明本发明。下述实施例及比较例中所示的配合比例(%)除特别规定外均为基于重量%的值。
[0161] 制作在实施例中使用的单向碳纤维预浸料
[0162] (1)使用原料:
[0163] (a)环氧树脂
[0164] “Epikote(注册商标)”828、“Epikote(注册商标)”834、“Epikote(注册商标)”1001(以上均为双酚A型环氧树脂,日本环氧树脂(株)制)、“Epikote(注册商标)”154(以上为线型酚醛树脂型环氧树脂,日本环氧树脂(株)制)。
[0165] (b)固化
[0166] DICY7(双氰胺,日本环氧树脂(株)制)。
[0167] (c)固化促进剂
[0168] 3-(3,4-二氯苯基)-1,1-二甲基脲。
[0169] (d)热塑性树脂
[0170] “Vinylec(注册商标)”K(聚乙烯醇缩甲醛,Chisso Corp.制)。
[0171] (e)碳纤维
[0172] “Torayca(注册商标)”T700SC-12K-50C(拉伸强度4,900MPa,拉伸弹性模量235GPa,纤维比重1.80)(东丽(株)制)。
[0173] (2)含有环氧树脂的基质树脂的未固化树脂组合物(在本实施例中简称为环氧树脂组合物)的制备方法:
[0174] 将以下所示的原料按照以下所示的组成比和步骤用捏和机混合,得到均匀溶解有聚乙烯醇缩甲醛的环氧树脂组合物。
[0175] (a)环氧树脂组合物的原料(括号内的数字表示组成比)
[0176] “Epikote(注册商标)”828:(20)
[0177] “Epikote(注册商标)”834:(20)
[0178] “Epikote(注册商标)”1001:(25)
[0179] “Epikote(注册商标)”154:(35)
[0180] DICY7:(4)
[0181] 3-(3,4-二氯苯基)-1,1-二甲基脲:(5)
[0182] “Vinylec(注册商标)”K:(5)
[0183] (b)步骤
[0184] (b1)将各环氧树脂原料与聚乙烯醇缩甲醛一边加热至150℃至190℃一边搅拌1小时至3小时,使聚乙烯醇缩甲醛均匀溶解。
[0185] (b2)将树脂温度降温至55℃至65℃,加入DICY7和3-(3,4-二氯苯基)-1,1-二甲基脲,在该温度下捏和30分钟至40分钟后,从捏和机中取出,得到环氧树脂组合物。 [0186] (3)单向碳纤维预浸料的制备:
[0187] 使用逆辊涂布机将上述环氧树脂组合物涂布在脱模纸上,制备树脂膜。使树脂膜2
的每单位面积的环氧树脂组合物的涂布量为31g/m。
[0188] 接下来,在碳纤维“Torayca(注册商标)”T700SC-12K-50C(东丽株式会社制,拉伸强度4,900MPa,拉伸弹性模量230GPa)的两面层合上述树脂膜,加热加压使环氧树脂组合物含浸到碳纤维的间隙,制备单向预浸料,所述碳纤维单向排列成片状,使每单位面积的纤2
维重量为125g/m。
[0189] 实施例1
[0190] (1)热塑性树脂(A)的制备:
[0191] 使用JSW制TEX-30α型双螺杆挤出机(螺杆直径30mm,模口直径(dies diameter)5mm,机筒温度200℃,转数150rpm),将共聚聚酯树脂(东丽杜邦株式会社制“Hytrel”(注册商标)2551,熔点164℃)和共聚聚酯树脂(东丽(株)制“Kemit”(注册商标)R248,熔点113℃)在充分捏和的状态下连续挤出形成小管(gut)状,冷却后,用切割机切成5mm长,得到聚酯树脂。将该聚酯树脂在温度200℃、压力50MPa的条件下加压成型,得到厚度60μm的膜。
[0192] (2)纤维增强复合材料(I)的制备以及热塑性树脂(A)和纤维增强复合材料(I)的层合体的制备:
[0193] 将上述准备的单向碳纤维预浸料切成规定大小(300mm×300mm),以沿着一边的方向作为0°方向,层合15片预浸 料,使纤维方向自下而上为0°、90°、0°……0°、90°、0°。该层合体用于形成纤维增强复合材料(I)。最后,将上述(1)中制备的热塑性树脂(A)的膜切割成与预浸料层合体同样的大小,并层合1片在层合得到的预浸料上。 [0194] 接下来,将该预浸料层合体置于压模内,一边施加1MPa的压力一边在160℃的温度下加热固化30分钟,进行加压成型,得到热塑性树脂(A)和纤维增强复合材料(I)的层合体。
[0195] (3)成型品的制备:
[0196] 将上述(2)中得到的热塑性树脂(A)和纤维增强复合材料(I)的层合体切割成规定大小(纤维增强复合材料(I)最表层的0°纤维方向的长度为280mm、最表层的90°纤维方向的长度为210mm的长方形)后,置于注射成型的嵌件模内。此时,使热塑性树脂(A)朝向粘合面进行配置。
[0197] 然后,将作为热塑性树脂构件(II)的聚碳酸酯树脂(日本GEP(株)制,lexan141R,缺口悬臂梁冲击强度760J/m)颗粒注射成型,使其与纤维增强复合材料(I)一体化,制造图4所示的个人电脑壳体用成型品41。需要说明的是,在图4中省略了热塑性树脂(A)的图示。
[0198] 在该成型品41中,从纤维增强复合材料(I)与热塑性树脂构件(II)一体化的部分切割用于测定冲击粘合强度及粘合强度的试验片。测定结果示于表1。
[0199] 实施例2
[0200] (1)热塑性树脂(A)的制备:
[0201] 将共聚聚酯树脂(东丽(株)制“Kemit”(注册商标)Q1500,熔点170℃)在温度200℃、压力50MPa的条件下加压成型,得到厚度为60μm的膜。
[0202] (2)纤维增强复合材料(I)的制备,以及热塑性树脂(A)和纤维增强复合材料(I)的层合体的制备:
[0203] 除使用在上述(1)中制备的热塑性树脂(A)的膜以外,与实施 例1同样操作,得到纤维增强复合材料(I),以及热塑性树脂(A)和纤维增强复合材料(I)的层合体。 [0204] (3)成型品的制备:
[0205] 除使用上述(2)中得到的纤维增强复合材料(I)和热塑性树脂(A)的层合体以外,与实施例1同样操作,制造图4所示的个人电脑壳体用成型品41。从该成型品41的纤维增强复合材料(I)和热塑性树脂构件(II)一体化的部分切割用于测定冲击粘合强度及粘合强度的试验片。测定结果示于表2。
[0206] 实施例3
[0207] (1)热塑性树脂(A)的制备:
[0208] 与实施例1同样操作制备热塑性树脂(A)。
[0209] (2)纤维增强复合材料(I)的制备以及热塑性树脂(A)和纤维增强复合材料(I)的层合体的制备:
[0210] 使用与实施例1同样的方法得到纤维增强复合材料(I),以及热塑性树脂(A)和纤维增强复合材料(I)的层合体。
[0211] (3)成型品的制备:
[0212] 除使用玻璃纤维/聚碳酸酯树脂(日本GEP(株)制,lexan 3414R。玻璃纤维40重量%,缺口悬臂梁冲击强度215J/m)的颗粒作为热塑性树脂构件(II)以外,与实施例1同样操作得到图4所示的个人电脑壳体用成型品41。从该成型品41的纤维增强复合材料(I)和热塑性树脂构件(II)一体化的部分切割用于评价冲击粘合强度及粘合强度的试验片。测定结果示于表3。
[0213] 实施例4
[0214] (1)热塑性树脂(A)的制备:
[0215] 与实施例1同样地制备热塑性树脂(A)。
[0216] (2)纤维增强复合材料(I)的制备,以及热塑性树脂(A)和纤维增强复合材料(I)的层合体的制备:
[0217] 将上述准备的单向碳纤维预浸料切割成规定大小(300mm×300mm),以沿一边的方向作为0°方向,层合15片预浸料, 使纤维方向自下而上为0°、90°、0°……0°、90°、0°。该层合体用于形成纤维增强复合材料(I)。将上述(1)中制备的热塑性树脂(A)的膜切割为与预浸料层合体同样的大小,并将1片层合在上述层合预浸料上。
[0218] 进而,将上述(1)中制备的热塑性树脂(A)的膜切割成与预浸料层合体同样的大小,在层合后的预浸料的相对侧的表面层合1片,并将聚酯树脂膜(东丽(株)制,“Lumirror”(注册商标)HT50,扯裂强度270N/mm,厚度100μm)切割成与预浸料层合体同样的大小,层合1片在其上作为耐冲击层。
[0219] 接下来,将该预浸料层合体置于压模内,一边施加1MPa的压力一边在160℃的温度下加热固化30分钟,进行加压成型,得到热塑性树脂(A)和纤维增强复合材料(I)的层合体。
[0220] (3)成型品的制备:
[0221] 除使用在上述(2)中得到的纤维增强复合材料(I)和热塑性树脂(A)的层合体以外,与实施例1同样操作,制造如图4所示的个人电脑壳体用成型品41。从该成型品41的纤维增强复合材料(I)和热塑性树脂构件(II)一体化的部分切割用于测定冲击粘合强度及粘合强度的试验片。另外,从纤维增强复合材料(I)的部分切割贯穿试验的测定用试验片。测定结果示于表4。
[0222] 比较例1
[0223] (1)热塑性树脂(A)的制备:
[0224] 与实施例1同样操作制备热塑性树脂(A)。
[0225] (2)纤维增强复合材料(I)的制备,以及热塑性树脂(A)和纤维增强复合材料(I)的层合体的制备:
[0226] 使用与实施例1同样的方法得到纤维增强复合材料(I),以及热塑性树脂(A)和纤维增强复合材料(I)的层合体。
[0227] (3)成型品的制备:
[0228] 除使用GF/聚碳酸酯树脂(日本GEP(株)制,lexan 3412R。GF20重量%,缺口悬臂梁冲击强度100J/m)颗粒作为热塑性树脂 构件(II)以外,与实施例1同样操作得到图4所示的个人电脑壳体用成型品。从该成型品的纤维增强复合材料(I)与热塑性树脂构件(II)一体化的部分切割用于评价冲击粘合强度及粘合强度的试验片。测定结果示于表5。
[0229] 比较例2
[0230] (1)热塑性树脂(A)的制备:
[0231] 与实施例1同样操作制备热塑性树脂(A)。
[0232] (2)纤维增强复合材料(I)的制备,以及热塑性树脂(A)和纤维增强复合材料(I)的层合体的制备:
[0233] 将上述准备的单向碳纤维预浸料切割成规定大小(300mm×300mm),以沿一边的方向作为0°方向,将15片预浸料层合,使纤维方向自下而上为0°、90°、0°……0°、90°、0°。该层合体用于形成纤维增强复合材料(I)。接下来,将该预浸料层合体置于压模内,一边施加1MPa的压力一边在160℃的温度下加热固化30分钟后,在该固化板上层合上述(1)中制备的热塑性树脂(A),在160℃的温度下加压成型1分钟,得到纤维增强复合材料(I)。 [0234] (3)成型品的制备:
[0235] 除使用上述(2)中得到的纤维增强复合材料(I)与热塑性树脂(A)的层合体以外,与实施例1同样操作,制造图4所示的个人电脑壳体用成型品。从该成型品的纤维增强复合材料(I)和热塑性树脂构件(II)一体化的部分切割用于测定冲击粘合强度及粘合强度的试验片。测定结果示于表6。
[0236] 比较例3
[0237] (1)热塑性树脂(A)的制备:
[0238] 将共聚聚酯树脂(东丽(株)制“Kemit”(注册商标)R99,熔点75℃)在温度120℃、压力50MPa的条件下加压成型,得到厚度为60μm的膜。
[0239] (2)纤维增强复合材料(I)的制备,以及热塑性树脂(A)和纤维增强复合材料(I)的层合体的制备:
[0240] 除使用上述(1)中制备的热塑性树脂(A)的膜以外,与实施例1同样操作,得到纤维增强复合材料(I),以及热塑性树脂(A)和纤维增强复合材料(I)的层合体。 [0241] (3)成型品的制备:
[0242] 除使用上述(2)中得到的纤维增强复合材料(I)和热塑性树脂(A)的层合体以外,与实施例1同样操作,制造图4所示的个人电脑壳体用成型品41。从该成型品41的纤维增强复合材料(I)和热塑性树脂构件(II)一体化的部分切割用于测定冲击粘合强度及粘合强度的试验片。测定结果示于表7。
[0243] 比较例4
[0244] (1)热塑性树脂(A)的制备:
[0245] 使用JSW制TEX-30α型双螺杆挤出机(螺杆直径30mm,模口直径5mm,机筒温度200℃,转数150rpm),将共聚聚酯树脂(东丽(株)制“Kemit”(注册商标)K1089,熔点
135℃)和共聚聚酯树脂(东丽(株)制″Kemit”(注册商标)R248,熔点113℃)在充分捏和的状态下连续挤出形成小管状,将其冷却后,使用切割机切成5mm长,得到聚酯树脂。
将该聚酯树脂在温度200℃、压力50MPa的条件下加压成型,得到厚度为60μm的膜。 [0246] (2)纤维增强复合材料(I)的制备,以及热塑性树脂(A)和纤维增强复合材料(I)的层合体的制备:
[0247] 除使用上述(1)中制备的热塑性树脂(A)的膜以外,与实施例1同样操作,得到纤维增强复合材料(I),以及热塑性树脂(A)和纤维增强复合材料(I)的层合体。 [0248] (3)成型品的制备:
[0249] 除使用上述(2)中得到的纤维增强复合材料(I)和热塑性树脂(A)的层合体以外,与实施例1同样操作,制造图4所示的个人电脑壳体用成型品41。从该成型品41的纤维增强复合材料(I)和热塑性树脂构件(II)一体化的部分切割用于测定冲击粘合强度及粘合强度的试验片。测定结果示于表8。
[0250] [表1]
[0251]
[0252] [表2]
[0253]
[0254] [表3]
[0255]
[0256] [表4]
[0257]
[0258] [表5]
[0259]
[0260] [表6]
[0261]
[0262] [表7]
[0263]
[0264] [表8]
[0265]
[0266] 如上所述,在实施例1至4中可制造耐冲击性优异的成型品,但在比较例1中热塑性树脂构件(II)的耐冲击性差,测定接合部的冲击粘合强度时热塑性树脂构件(II)引起母材破损,导致成型品的耐冲击性差。进而,在实施例4中由于纤维增强复合材料(I)具有耐冲击层,所以制造的成型品具有优异的耐贯穿性。
[0267] 另一方面,在比较例2中由于没有热塑性树脂(A)的最大含浸厚度h,导致纤维增强复合材料(I)与热塑性树脂构件(II)之间容易剥离,是耐冲击性极差的成型品。在比较例3中由于热塑性树脂(A)的拉伸断裂强度低,导致成型品的耐冲击性差。进而,在比较例4中由于热塑性树脂(A)的拉伸断裂伸长率低,导致成型品的耐冲击性差。在比较例1至4中制造的成型品难以用作需要非常高的耐冲击性的电气·电子设备壳体等。
[0268] 实施例5
[0269] (1)热塑性树脂(A)的制备:
[0270] 使用JSW制TEX-30α型双螺杆挤出机(螺杆直径30mm,模口直径5mm,机筒温度200℃,转数150rpm),将共聚聚酯树脂(东丽杜邦株式会社制“Hytrel”(注册商标)2551,熔点164℃)与共聚聚酯树脂(东丽(株)制“Kemit”(注册商标)R248,熔点113℃)在充分捏和的状态下连续挤出形成小管状,将其冷却后,用切割机切割成5mm长,得到聚酯树脂。将该聚酯树脂在温度200℃、压力50MPa的条件下加压成型得到膜。
[0271] (2)纤维增强复合材料(I)的制备:
[0272] 将上述准备的单向碳纤维预浸料切割成规定大小(300mm×300mm),以沿一边的方向作为0°方向,将3片预浸料层合,使纤维方向自下而上为0°、90°、0°。最后将上述(1)中制备的热塑性树脂(A)的膜切割成与预浸料层合体同样的大小,并层合1片在层合得到的预浸料上。
[0273] 接下来,将该预浸料层合体置于压模内,一边施加1MPa的压力一边在160℃的温度下加热固化30分钟,进行加压成型,得到纤维增 强复合材料(I)。
[0274] (3)移动电话壳体的制备:
[0275] 将上述(2)中得到的纤维增强复合材料(I)切割成规定的大小后置于注射成型的嵌件模内。此时,使纤维增强复合材料(I)的热塑性树脂(A)(热粘合用基材)面位于粘合面进行配置。作为热塑性树脂构件(框部)(II),将聚碳酸酯树脂(日本GEP(株)制,1cxan141R)的颗粒注射成型,并使其与纤维增强复合材料(I)一体化,制造如图6及7所示的移动电话壳体61。该移动电话壳体61的各种特性值的测定结果示于表9。
[0276] 实施例6
[0277] (1)热塑性树脂(A)的制备:
[0278] 与实施例2的(1)同样操作得到膜。
[0279] (2)纤维增强复合材料(I)的制备:
[0280] 与实施例2的(2)同样操作,得到纤维增强复合材料(I)。
[0281] (3)移动电话壳体的制备:
[0282] 除使用玻璃纤维/聚碳酸酯树脂(日本GEP(株)制,lexan 3414R,玻璃纤维40重量%)的颗粒作为热塑性树脂构件(框部)(II)以外,与实施例2同样操作,制造如图6及7所示的移动电话壳体61。该移动电话壳体61的各种特性值的测定结果示于表10。 [0283] 比较例5
[0284] (1)纤维增强复合材料(I)的制备:
[0285] 不使用热塑性树脂(A),将单向碳纤维预浸料切割成规定的大小(300mm×300mm),以沿一边的方向作为0°方向,层合9层预浸料,使纤维方向自上而下为0°、90°、0°、90°、0°、90°、0°、90°、0°,除此以外,与实施例2的(2)同样操作,得到纤维增强复合材料(I)。
[0286] (2)移动电话壳体的制备:
[0287] 作为热塑性树脂构件(框部)(II),将GF/聚碳酸酯树脂(日本GEP(株)制,lexan3412R,GF20重量%)的颗粒预先注射成型 为框架形状,使用单组分型环氧粘合剂(住友
3M株式会社制,EW2070),将上述(1)中得到的纤维增强复合材料(I)和框部(II)接合,制造如图6及7所示的移动电话壳体。该移动电话壳体的各种特性值的测定结果示于表11。 [0288] 比较例6
[0289] (1)纤维增强复合材料(I)的制备:
[0290] 除不使用热塑性树脂(A)以外,与实施例2的(2)同样操作得到纤维增强复合材料(I)。
[0291] (2)移动电话壳体的制备:
[0292] 作为热塑性树脂构件(框部)(II),将GF/聚碳酸酯树脂(日本GEP(株)制,lexan3412R。GF20重量%)的颗粒预先注射成型为框架形状。此时,使用与纤维增强复合2
材料(I)的接合部分面积为120mm 的模进行成型。使用单组分型环氧粘合剂(住友3M株式会社制,EW2070)将上述(1)中得到的纤维增强复合材料(I)和框部(II)接合,制造如图6及7中所示的移动电话壳体。该移动电话壳体的各种特性值的测定结果示于表12。 [0293] [表9]
[0294]
[0295] [表10]
[0296]
[0297] [表11]
[0298]
[0299] [表12]
[0300]
[0301] 如上所述,在实施例5至7中可制造壁薄且轻质性优异的移动电话壳体。但是,在比较例5中纤维增强复合材料(I)变厚,轻质性差,并且与内部部件发生干扰。在比较例6中由于接合部的比例小,为3%,移动电话壳体的框部(II)不能充分支持纤维增强复合材料(I),缺乏粘合稳定性以至于容易引起壳体变形。
[0302] 产业上的可利用性
[0303] 本发明的成型品优选用于要求耐冲击性的电气·电子设备、办公自动化设备、家用电器、医疗设备、汽车部件、飞机部件或建材。
QQ群二维码
意见反馈