过滤袋、该过滤袋的可打褶过滤材料及其制造方法

申请号 CN200980142559.5 申请日 2009-10-26 公开(公告)号 CN102196851B 公开(公告)日 2014-11-12
申请人 瑟法BDH有限公司; 发明人 卢卡·帕伦特; 西尔万·维厄耶;
摘要 本 发明 涉及用于布袋式 除尘器 的过滤袋,为长形的并具有末端敞开的纵向空心中心,打褶的过滤壁围绕该空心中心。该打褶过滤壁具有毛毡,例如将PTFE 纤维 毡合在由金属制造的多孔可打褶网布上,其渗透率低于网布的渗透率。本发明还涉及一种低渗透率材料的膜,例如E-PTFE膜,覆合在过滤袋外侧上的 支撑 毛毡上。
权利要求

1.一种可打褶过滤材料,其特征在于,包括:
具有刺到可打褶金属网布上的聚四氟乙烯纤维的毛毡,所述金属网布的渗透率为
2 2
12mm水位标尺处至少20l/dm/min,密度为100~1000g/m,所述毛毡的密度为150~
2 2
1000g/m,而其渗透率高于所述金属网布的渗透率,为12mm水位标尺处介于20l/dm/min和
2
250l/dm/min之间;
层压在所述毛毡上的膜,所述膜由膨体聚四氟乙烯制成,其渗透率为12mm水位标尺处
2
3~75l/dm/min;
其中,所述过滤材料可以在室温下进行打褶,并能随后保持其褶状。
2.根据权利要求1所述的可打褶过滤材料,其特征在于:还包括尺寸小于10微米的催化剂颗粒,其中,至少一个颗粒存在于聚四氟乙烯纤维的表面上,至少一个颗粒嵌入聚四氟乙烯纤维内。
3.根据权利要求2所述的可打褶过滤材料,其特征在于:所述催化剂颗粒选自以物质:
,氧化,沸石,氧化,氧化钨,氧化,氧化钴,氧化镍,氧化铬,钯,镍,金,铂,和铑。
4.根据权利要求1所述的可打褶过滤材料,其特征在于:所述膜的渗透率为12mm水位
2
标尺处12~50l/dm/min。
5.根据权利要求1所述的可打褶过滤材料,其特征在于:所述膜直接层压在所述毛毡上。
6.根据权利要求1所述的可打褶过滤材料,其特征在于:所述膜通过粘合剂直接层压在所述毛毡上,所述粘合剂的抗逆特性至少相当于所述聚四氟乙烯纤维。
7.根据权利要求6所述的可打褶过滤材料,其特征在于:所述粘合剂为氟化乙烯丙烯共聚物(FEP)或六氟丙烯-四氟乙烯共聚物。
8.根据权利要求1所述的可打褶过滤材料,其特征在于:所述金属网布具有至少与聚四氟乙烯纤维相当的耐化学性和耐热性。
9.一种制造可打褶过滤材料的方法,其特征在于,包括:
将聚四氟乙烯纤维水刺到可打褶金属网布上,使所述聚四氟乙烯纤维形成毛毡,直到
2
毛毡密度达到150~1000g/m,且渗透率大于金属网布的渗透率、达到12mm水位标尺处介
2 2
于20l/dm/min和250l/dm/min之间,所述金属网布的渗透率为12mm水位标尺处至少20l/
2
dm2/min,密度为100~1000g/m ;
将膨体聚四氟乙烯膜层压到毡合过的聚四氟乙烯纤维表面上,所述膨体聚四氟乙烯膜
2
的渗透率为12mm水位标尺处3~75l/dm/min。
10.根据权利要求9所述的方法,其特征在于:所述层压还包括将溶剂液体悬浮液中的粘合剂涂敷在毡合过的聚四氟乙烯纤维表面上,然后蒸发掉溶剂,所转移的固体粘合剂的相对重量为1%~10%。
11.根据权利要求9所述的方法,其特征在于:所述层压直接在毡合过的聚四氟乙烯纤维表面上实现。
12.根据权利要求9所述的方法,其特征在于:包括在室温下对过滤材料进行打褶。
13.一种用于布袋式除尘器的打褶过滤袋,其特征在于:所述过滤袋为长形,并包括具有敞开末端的纵向空心中心,以及围绕该空心中心的打褶过滤壁,所述打褶过滤壁具有水刺到多孔可打褶金属网布上的聚四氟乙烯纤维的毛毡,所述金属网布的渗透率为12mm水
2 2 2
位标尺处至少20l/dm/min,密度为100~1000g/m,所述毛毡的密度为150~1000g/m,而
2 2
其渗透率高于所述金属网布的渗透率,为12mm水位标尺处介于20l/dm/min和250l/dm/min之间;所述过滤袋还包括膜,所述膜由膨体聚四氟乙烯制成,该膜的渗透率为12mm水位
2
标尺处3~75l/dm/min,且所述膜覆合在所述毛毡的朝着空心中心的外侧上,其中,所有的金属网布、毛毡和膜都能耐受除尘器的恶劣过滤环境。
14.根据权利要求13所述的过滤袋,其特征在于:所述金属网布由金属制成。
15.根据权利要求13所述的过滤袋,其特征在于:至少其中一颗催化剂颗粒存在于聚四氟乙烯纤维的表面,同时至少其中一颗催化剂颗粒嵌入聚四氟乙烯纤维内。
16.根据权利要求13或14所述的过滤袋,其特征在于:所述毛毡通过喷水法水刺到网布上。

说明书全文

过滤袋、该过滤袋的可打褶过滤材料及其制造方法

技术领域

[0001] 本发明涉及一种用于过滤,尤其例如用于布袋式除尘器中打褶的“过滤袋”的可打褶材料或织物。

背景技术

[0002] 除尘器在工业烟尘中用于去除颗粒物。除尘器通常具有上百至上千个称为袋子的圆柱元件。这些袋子由多孔的过滤织物制成。当气流通过时,这些多孔的过滤织物收集颗粒物。在数分钟的操作后,颗粒物能够在表面上结成,而袋子通常用反向喷射来进行清洗。
[0003] 过滤织物的一个重要参数为过滤效率。袋子的过滤效率跟总表面积有关。一般来说,如果表面积增加,则通过织物的气体以及颗粒物的速率将会减小,这样便减小了不想要的颗粒物通过织物的可能性,以及减少了颗粒排放。此外,更高的表面积可以减小颗粒物在受到反向喷射时嵌入织物中的可能性。以此增加过滤器的寿命。同样,可以通过增加表面积,来增加除尘器的容量。因此,可能的话,通常设法来增加除尘器袋子的表面积。
[0004] 打褶的袋子一般比非打褶的袋子(例如,简单的圆筒袋子)具有更大的表面积。使用打褶袋子代替非打褶袋子是一种不需要增加除尘器系统大小而能增加表面积的一个方法。在许多情况下,使用打褶袋子代替非打褶袋子可以增加2~3倍的表面积。
[0005] 打褶袋子可以使用在打褶后仍能保持其形状的可打褶材料制成。打褶可以通过褶裥机器完成。某些褶裥机在室温下运作。
[0006] 可替代地,对于一些需要热硬化以保留其褶状的材料来说,使用具有加热叶片的褶裥机来折叠织物,并在打褶处保持压直到织物冷却至室温。以前,这种方法使用了可以进行热成型并具有相对小密度聚合物来实现。
[0007] 一某些自身不能热成型的材料可以通过加入热固性树脂实现。其中的一个例子是玻璃纤维毛毡浸渍树脂。叶片的温度将用作随后保持打褶形状的酚醛树脂定型。这种反应是不可逆的,褶状随后即使在高温下仍保持其形状。
[0008] 然而,即使说明了这种工艺,某些过滤材料仍然不可以通过已知方法进行打褶,因此就被认为是不可打褶。然而,具有某些理想的特点,至少其中一种这种“不可打褶”的过滤材料尽管不可以做成打褶的形式,但仍然在某些特定的应用中很受欢迎。由于打褶在过滤中的许多有点,仍然具有对这种“不可打褶”材料能成为打褶形式的强烈需要。这需要改进。

发明内容

[0009] 如以下所说明,一种用膨体聚四氟乙烯(E-PTFE)膜覆合聚四氟乙烯(PTFE)毛毡的过滤材料,在传统上被认为是不可打褶的,现在通过与可打褶网布,特别是可打褶金属网布进行毡合,便可以进行打褶。许多金属在制成多孔薄板的情况下可打褶,且金属网布的可打褶性优先于毡合的PTFE以及E-PTFE膜的可打褶性。当使用金属网布时,通过力缠结法(水刺法)比针刺法更为适合。
[0010] 根据本发明的一个方面,提供了一种包含毛毡的可打褶过滤材料,该毛毡具有与2
可打褶金属网布毡合的PTFE纤维,该金属网布的渗透率为12mm水位标尺处至少20l/dm/
2 2
min,密度为100~1000g/m,而该毛毡具有150~1000g/m 的密度以及大于网布的、12mm水位标尺处介于20l/dm2/min和250l/dm2/min之间的渗透率,并具有层压在毛毡上的膜,
2
该膜由E-PTFE制成,并具有12mm水位标尺处3~75l/dm/min的渗透率,优选为12mm水
2
位标尺表处12~50l/dm/min;其中的过滤材料可以通过使用传统的褶裥机在室温下进行打褶,并能随后保持其褶状。
[0011] 根据本发明的一个方面,提供了一种制造可打褶过滤材料的方法,该可打褶过滤材料包括将PTFE纤维水刺到可打褶金属网布上,使所述聚四氟乙烯纤维形成毛毡,该金属2
网布具有至少可与PTFE纤维相比的抗逆特性,并具有在12mm水位标尺处至少20l/dm/min
2 2
的渗透率和100~1000g/m 的密度,直到毛毡的密度处于150~1000g/m 之间,其渗透率
2 2
大于网布的渗透率并在12mm水位标尺时达到介于20l/dm/min和250l/dm/min之间;并将E-PTFE膜层压到毡制的PTFE纤维表面上,该E-PTFE膜具有在12mm水位标尺时3~75l/
2 2
dm/min的渗透率,优选为12mm水位标尺处12~50l/dm/min。
[0012] 根据本发明的一个方面,提供了一种用于布袋式除尘器的打褶过滤袋,该过滤袋为伸长的,并包括一个具有敞开末端的纵向空心中心,以及横向围绕该空心中心的打褶过滤壁,该打褶过滤壁具有与多孔的可打褶的金属网布毡合的毛毡,所述金属网布的渗透率2 2
为12mm水位标尺处至少20l/dm/min,密度为100~1000g/m,所述毛毡的密度为150~
2 2
1000g/m,而其渗透率高于所述金属网布的渗透率,为12mm水位标尺处介于20l/dm/min和
2
250l/dm/min之间,并适用于过滤,该过滤袋还包括膜,所述膜由膨体聚四氟乙烯制成,该
2
膜的渗透率为12mm水位标尺处3~75l/dm/min,该膜朝着空心中心在毛毡的外部覆合该毛毡,其中所有的网布,毛毡,以及膜都能抵抗除尘器的粗糙过滤环境。
[0013] 根据本发明的另一个方面,提供了一种过滤织物结构,其在底部毛毡包含可打褶网布。该网布的可打褶性优先于过滤织物的剩余组分的可打褶性,以此使过滤织物具有可打褶性。这种结构,或其相关的生产方法使例如PTFE这种传统上认为不可打褶的材料可打褶。
[0014] 根据本发明的一个方面,提供了一种E-PTFE层压的PTFE毛毡。这种过滤织物通过将PTFE与可打褶的,耐热以及耐化学性的网布毡合,在至少大致保持PTFE耐热和耐化学性特性的同时可进行打褶。金属网布的可打褶性在结合上具有优先性,并使整个材料可打褶。
[0015] 在以下的说明部分中,“可打褶的”是在过滤可操作性的前提下进行理解,在正常使用或介绍使用的前提下可打褶过滤成分将在合理的使用期限保持其褶状。例如,具有涤纶网布的涤纶毛毡可以认为是不可打褶的织物,然而,与密度更大以及更硬的涤纶热压粘合时,可以认为是可打褶。附图说明
[0016] 在附图中,图1为具有可打褶网布的毛毡实施例片段透视图。

具体实施方式

[0017] 仍然以非打褶形式使用的材料的一个例子为聚四氟乙烯(PTFE),至少部分由于其突出的耐热和耐化学性,使其在粗糙的环境下成为唯一可行的选择。仍然使用不打褶的PTFE基袋子的一个例子为灰化设施废弃物的除尘器。灰化废弃物通常包含在燃烧过程中释放腐蚀性化学物质,例如HCl,H2SO4,以及HF的塑料,PTFE因其能抵抗高温(大约150to260℃)与在废弃物灰化气态的副产物中的腐蚀性化学物质的结合而受到关注。在例如可容忍排放量很低的废弃物灰化应用中,PTFE织物可以通过膜覆合来获得更有效的过滤。为此可以使用多孔的膨胀的PTFE膜,层压到PTFE毛毡上。
[0018] 将具有PTFE网布的PTFE毛毡进行打褶的尝试失败,在打褶之后,褶状不能以满意的方式得到保持。此外,研究发现,在PTFE中加入树脂是无效的,其原因至少部分由于许多测试树脂在PTFE纤维上缺乏粘附性和润湿性
[0019] 考虑到当下人们对使用打褶袋子替代直筒袋子的巨大激励,而目前在应用除尘器的场合例如废物焚化设施中还只是继续使用不打褶的PTFE过滤袋子,这本身证明了前述材料的打褶形式的不可行性。
[0020] 通过以下所述,将会明白如何通过将纤维毡合在可打褶网布上使这种或其它材料成为可打褶。一种能使PFFE毛毡可打褶的可打褶网布为金属网布。
[0021] 图1展示了一个将PTFE毛毡水刺到金属网布上样品的实施例。在这个实施例中,该金属网布为方形的丝网。如图所示样品在底部以及左手侧落的切除部分所示,该金属网布夹在两层PTFE毛毡之间。事实上,在PTFE纤维水力缠结的过程中,纤维至于网布的一侧,并部分地穿过至另一侧。图中展示了该样品的右手侧为经过打褶的。E-PTFE膜(未图示)可以随后层压到具有金属网布的PTFE毛毡的表面上。PTFE毛毡可以当做E-PTFE膜的支撑层,该E-PTFE膜的渗透率大致低于毛毡的渗透率。在使用中,E-PTFE膜朝向过滤袋的外侧,并决定了过滤材料相对低的渗透率。毛毡可因此用于提供膜的缓冲支撑,并与金属网布结合提供了膜的机械抵抗性,该膜在使用中作为真是的“过滤器”,但事实上并不单独使用。实际上在许多应用中,如果膜与网布直接粘附而并非通过毛毡来支撑的话,在使用过程中通过网布传给E-PTFE膜的压力使得膜具有很短的使用寿命。该金属网布由于其更高的可打褶性在装配中占有优先性,其对过滤材料额外地提供可打褶性。
[0022] 毛毡可以用膨胀多孔的或非膨胀的PTFE纤维制成。毛毡可以通过喷水,一种通常称为水力缠结的方法,将纤维水刺在金属网布上来制成。水力缠结法可以避免或减少对金属网布造成的损害,如果使用传统的针刺制毡法就会对金属网布造成损害。毛毡可以具有2 2 2
150~1000g/m 的密度,优选为250~700g/m,以及在12mm水位标尺时20~250l/dm/
2
min的渗透率,例如,优选为高于100l/dm/min。
[0023] 金属网布可以由锌钢,不锈钢,铝合金黄铜,铜,铜基合金,镍,镍基合金或其它合适的金属或合金制成。只要该金属或合金需具有合适的可打褶性以及抵抗性,并具有足够的延展性来进行打褶而不会断裂。该金属可以为编织网,穿孔的金属板或可以用其它任何方法来产生具有合适孔的金属板。该材料的渗透率应该大于毛毡所需要的渗透2 2
率,优选为12mm水位标尺时至少20l/dm/min。金属网布的密度为100~1000g/m,例如优
2
选为300~700g/m。不同的已经种类金属的金属网布可以对化学制品以及温度具有抵抗性的特点,适合用于粗糙应用。
[0024] 毡制的支撑层可以层压膜之前用粘合剂进行处理,或省略使用粘合剂。毛毡的纤维可以在某些应用中以粘合方式作用。如果使用粘合剂,该粘合剂可以为氟化乙烯丙烯共聚物(FEP)或六氟丙烯-四氟乙烯共聚物,例如,或其它任何合适的粘合剂。该粘合剂可以配制为重量为25~50%浓度的液体悬浮液,并可以喷射至支撑层的选定侧上或通过滚筒转移至支撑层的选定侧上。该材料可以随后在大约120~240℃的烤箱内加热,以蒸发溶剂。蒸发之后,所转移的固体粘合剂可以代表1%~10%的相对重量(相对于织物的重量)。
[0025] 由商业可用的E-PTFE制成的膜优选地具有12mm水位标尺时3~75l/dm2/min的2
渗透率,更优选地,具有12mm水位标尺时12~50l/dm/min的渗透率,该膜可以在270℃下层压到具有粘合剂的一侧。
[0026] 值得注意的是在某些情况下,例如在焚烧炉应用PTFE毛毡时,一些催化剂的颗粒会沉积在PTFE纤维的表面或嵌入其内部。这在可打褶织物中是有利的,且一般不会影响其可打褶性。例如,某些催化剂帮助减少二恶英,杂茂或以及一氧化二氮从废弃灰化物中的排放。催化剂通常的体积小于PTFE纤维体积的20%。催化剂的实施例包括二氧化(TiO2),以及钴(以氧化物的形式存在)镍,白金以及钯,其它催化剂的实施例包括沸石,氧化铜,氧化钨,氧化铝,氧化铬,金,,铑等。如果使用催化剂,该催化剂的颗粒尺寸应该为小于10微米,但可以为任何合适的形状,例如球体状,板状,碎片状等。
[0027] 得到的可打褶过滤材料,或织物可以包括水刺到钢网布上的PTFE纤维,并被膜所覆合。这种织物可以通过使用传统的室温下运作的褶裥机进行打褶。可打褶金属网布的使用可以不需要使用加热的褶裥机叶片。以下提供这种典型的实施例:
[0028] 实施例1:
[0029] PTFE纤维通过水力缠结法水刺在400g/m2的不锈钢网布上。在缠结之后总密度为2 2
800g/m。在这个步骤中的材料其渗透率为大约200l/dm/min。所得到的毡制支撑材料用FEP颗粒悬浮液进行喷射,在150℃温度下干燥后加入大约25g/m的FEP颗粒。然后在FEP
2
颗粒温度上升至270℃时将膜层压在毛毡上。所得到的过滤材料具有825g/m 的密度,以及
12mm水位标尺时15~30l/dm2/min的渗透率,并在室温下为可打褶。
[0030] 实施例2
[0031] 颗粒尺寸小于10微米的二氧化钛颗粒与PTFE分散液混合。二氧化钛可以相当于体积的1~90%,优选为体积的25~85%,该糊状物经过挤压并压光以形成带,该带沿着长度裂开,膨胀,并用旋转针轮进行处理。这些具有催化剂在表面的纤维通过水力缠结法水2
刺到不锈钢316网布上。在缠结后总密度达到900g/m。E-PTFE膜直接层压到催化剂毛毡
2
的表面上,纤维用作粘合试剂。所得到的材料具有900g/m 的密度,12mm水位标尺时15~
30l/dm2/min的渗透率,并在室温下可打褶。
[0032] 上述实施例仅用于说明,替代性的实施例同样可以实施。例如,通过使用更多或更少的水刺PTFE,以及不同的E-PTFE膜可以得到更厚或更薄的织物。可打褶的金属网布可以用于除了PTFE外的其它材料。此外,其它除金属外的网布可以具有相似的可打褶性以及抵抗性。催化剂的使用为可选择的。本发明的保护范围通过以下权利要求说明。
QQ群二维码
意见反馈