用于从气体物流过滤颗粒材料的过滤介质

申请号 CN201410453108.6 申请日 2005-12-28 公开(公告)号 CN104260445A 公开(公告)日 2015-01-07
申请人 纳幕尔杜邦公司; 发明人 H.S.林; H.苏; B.L.怀斯曼;
摘要 本 发明 涉及用于从气体物流过滤颗粒材料的过滤介质,提供了一种适用作空气过滤介质的复合非织造织物,其通过沉积由第一 聚合物 电喷而来的 纳米 纤维 的网幅到第一 支撑 网幅上形成,该第一支撑网幅包含比所述纳米纤维平均直径更大且由相容材料纺丝而成的纤维,在网幅之间没有 粘合剂 ,和将所述网幅 溶剂 粘合到一起。
权利要求

1.复合织物,包含溶剂粘合到第一支撑网幅上的电喷聚合物纳米纤维网幅,所述第一支撑网幅包含比所述纳米纤维平均直径大并由与所述纳米纤维相容的材料纺丝形成的纤维,在所述网幅之间没有粘合剂
2.权利要求1的复合织物,其中纳米纤维聚合物选自聚酰胺、聚酯、聚酯、聚偏二氟乙烯和聚乙烯醇,所述支撑网幅包含选自聚酰胺、聚酯、聚氨酯、聚偏二氟乙烯、聚乙烯醇、天然纤维和其组合的纤维。
3.权利要求2的复合织物,其中纳米纤维和支撑网幅纤维均为聚酰胺。
4.权利要求1的复合织物,其中支撑网幅为非织造网幅,选自纺粘纤维、熔喷纤维、梳理纤维、湿法成网纤维和其组合。
5.权利要求1的复合织物,其中纳米纤维网幅包含具有约200nm-500nm平均纤维直
2
径、至少2.5g/m 的单位重量的聚酰胺纳米纤维,且支撑网幅包含梳理聚酰胺纤维和梳理聚酯纤维的双层结构,其中纳米纤维网幅与梳理聚酰胺纤维层溶剂粘合。
6.权利要求1的复合织物,进一步包含第二支撑网幅,其包含比纳米纤维平均直径更大且由与所述纳米纤维相容的材料纺丝形成的纤维,所述第二支撑网幅溶剂粘合到所述纳米纤维网幅上,与第一支撑网幅相对。
7.形成复合织物的方法,包含将聚合物纳米纤维网幅和针对其的溶剂电喷到移动的包含更大纤维的支撑网幅上,该更大纤维由与所述纳米纤维聚合物相容的材料纺丝形成;和,对所述结合的网幅施加约4mm H2O-170mm H2O的真空以将所述纳米纤维网幅和所述支撑网幅溶剂粘合。
8.权利要求7的方法,其中施加的真空压力在约60mm H2O-170mm H2O,以形成溶剂粘合的纳米纤维网幅/支撑网幅复合织物。
9.权利要求7的方法,其中施加的真空压力在约4mm H2O-30mm H2O之间,且进一步包括沉积第二支撑网幅于所述纳米纤维网幅上以形成支撑网幅/纳米纤维网幅/支撑网幅式复合织物,该第二支撑网幅包含由与所述纳米纤维聚合物相容的材料纺丝形成的更大的纤维,并使所述复合织物经过凝固辊隙以使所述复合物溶剂粘合。
10.权利要求9的方法,进一步包括在真空下干燥溶剂粘合的复合织物以去除溶剂。

说明书全文

用于从气体物流过滤颗粒材料的过滤介质

[0001] 本申请是申请号为200580048815.6,申请日为2005年12月28日,发明名称为“用于从气体物流过滤颗粒材料的过滤介质”的中国专利申请的分案申请。

技术领域

[0002] 本发明涉及适用作空气过滤介质的复合非织造织物,用于从流体物流中过滤颗粒材料。

背景技术

[0003] 在对0.3微米颗粒过滤时执行效率小于99.97%的HVAC空气过滤器中通常采用的过滤介质是基于玻璃、纤维素或聚合物的。由该性能范围内介质制得的过滤器典型的被称作“ASHRAE过滤器”,因为American Society of Heating,Refrigerating and Air-Conditioning Engineer为在这些应用中的过滤介质的性能撰写标准。基于聚合物的过滤介质典型的为纺粘或熔喷非织造织物,与由湿法成网造纸方法制造的玻璃或纤维素介质相比,该非织造织物通常经过静电改善以在较低的压下降提供更高的过滤效率。
[0004] 静电改善的空气过滤介质和湿法成网工艺制造的介质,更具体的玻璃纤维的使用,目前有局限。静电处理的熔喷过滤介质,如美国专利4,874,659和4,178,157中描述的,起初性能还好,可是在使用过程中很快损失过滤效率,这是由于当介质开始捕获颗粒时带来粉尘负荷并且静电电荷由此变得绝缘。另外,由于有效的颗粒捕获是基于电荷的,所以这种过滤器的性能被空气湿度严重影响,产生电荷损耗。
[0005] 使用微型玻璃纤维和含微型玻璃纤维的混合物的过滤介质典型包含以织造或非织造结构排列的小直径玻璃纤维,其具有显著的抗化学腐蚀作用和相对小的气孔尺寸。这种玻璃纤维介质在下列美国专利中被公开:Smith等,美国专利2,797,163;Waggoner,美国专利3,228,825;Raczek,美国专利3,240,663;Young等,美国专利3,249,491;
Bodendorfet等,美国专利3,253,978;Adams,美国专利3,375,155;以及Pews等,美国专利
3,882,135。微型玻璃纤维和含微型玻璃纤维的混合物典型的相对易碎,因此在将其打褶时,破碎造成不期望的产率损失。破碎的微型玻璃纤维也可被含微型玻璃纤维的过滤器释放到空气中,如果该微型玻璃被吸入则产生潜在的健康危害。
[0006] 提供一种装置以达到ASHRAE平空气过滤,同时避免已知过滤介质的上述局限是将被期望的。

发明内容

[0007] 在第一实施方案中,本发明涉及复合织物,其包含电喷聚合物纳米纤维网幅(web),所述纳米纤维网幅经溶剂粘合到第一支撑网幅上,网幅之间没有粘合剂,所述第一支撑网幅包含平均直径比所述纳米纤维大并且由和所述纳米纤维相容的材料纺粘而成的纤维。
[0008] 另一个本发明的实施方案涉及形成复合织物的方法,包含电喷聚合物纳米纤维网幅和针对其的溶剂到移动的包含更大纤维的支撑网幅上,该更大纤维由与所述纳米纤维聚合物相容的材料纺粘而来;并对组合的网幅施加约4mm H2O~170mm H2O的真空压力以溶剂粘合纳米网幅和支撑网幅。
[0009] 具体地,本发明公开了例如以下方面的内容:
[0010] 1.复合织物,包含溶剂粘合到第一支撑网幅上的电喷聚合物纳米纤维网幅,所述第一支撑网幅包含比所述纳米纤维平均直径大并由与所述纳米纤维相容的材料纺丝形成的纤维,在所述网幅之间没有粘合剂。
[0011] 2.方面1的复合织物,其中纳米纤维聚合物选自聚酰胺、聚酯、聚酯、聚偏二氟乙烯和聚乙烯醇,所述支撑网幅包含选自聚酰胺、聚酯、聚氨酯、聚偏二氟乙烯、聚乙烯醇、天然纤维和其组合的纤维。
[0012] 3.方面1的复合织物,其中所述相容材料为聚合物的。
[0013] 4.方面2的复合织物,其中纳米纤维和支撑网幅纤维均为聚酰胺。
[0014] 5.方面3的复合织物,其中纳米纤维聚合物和所述支撑网幅的聚合物纤维是不同的聚合物。
[0015] 6.方面3的复合织物,其中所述支撑网幅包含不同聚合物纤维的组合。
[0016] 7.方面6的复合织物,其中支撑网幅包含多层不同的聚合物纤维。
[0017] 8.方面1的复合织物,其中支撑网幅为织造织物或非织造网幅。
[0018] 9.方面8的复合织物,其中支撑网幅为非织造网幅,选自纺粘纤维、熔喷纤维、梳理纤维、湿法成网纤维和其组合。
[0019] 10.方面1的复合织物,其中纳米纤维网幅包含具有约200nm-500nm平均纤维直2
径、至少约2.5g/m 的单位重量的聚酰胺纳米纤维,且支撑网幅包含至少一层纺粘纤维。
[0020] 11.方面1的复合织物,其中纳米纤维网幅包含具有约200nm-500nm平均纤维直2
径、至少2.5g/m 的单位重量的聚酰胺纳米纤维,且支撑网幅包含梳理聚酰胺纤维和梳理聚酯纤维的双层结构,其中纳米纤维网幅与梳理聚酰胺纤维层溶剂粘合。
[0021] 12.方面1的复合织物,进一步包含第二支撑网幅,其包含比纳米纤维平均直径更大且由与所述纳米纤维相容的材料纺丝形成的纤维,所述第二支撑网幅溶剂粘合到所述纳米纤维网幅上,与第一支撑网幅相对。
[0022] 13.方面12的复合织物,其中所述第一和第二支撑网幅在化学上相同。
[0023] 14.方面2的复合织物,其中所述纳米纤维为聚酰胺且支撑网幅包含PET和天然纤维的混合物。
[0024] 15.方面14的复合织物,其中所述天然纤维为纤维素。
[0025] 16.方面2的复合织物,其中所述纳米纤维为聚酰胺,支撑网幅纤维全是天然纤维。
[0026] 17.方面16的复合织物,其中所述天然纤维为纤维素。
[0027] 18.方面2的复合织物,其中所述纳米纤维为聚乙烯醇,所述支撑网幅包含聚乙烯醇纤维和人造丝纤维的混合物。
[0028] 19.形成复合织物的方法,包含将聚合物纳米纤维网幅和针对其的溶剂电喷到移动的包含更大纤维的支撑网幅上,该更大纤维由与所述纳米纤维聚合物相容的材料纺丝形成;和,对所述结合的网幅施加约4mm H2O-170mm H2O的真空压力以将所述纳米纤维网幅和所述支撑网幅溶剂粘合。
[0029] 20.方面19的方法,其中施加的真空压力在约60mm H2O-170mm H2O,以形成溶剂粘合的纳米纤维网幅/支撑网幅复合织物。
[0030] 21.方面19的方法,其中施加的真空压力在约4mm H2O-30mm H2O之间,且进一步包括沉积第二支撑网幅于所述纳米纤维网幅上以形成支撑网幅/纳米纤维网幅/支撑网幅式复合织物,该第二支撑网幅包含由与所述纳米纤维聚合物相容的材料纺丝形成的更大的纤维,并使所述复合织物经过凝固辊隙以使所述复合物溶剂粘合。
[0031] 22.方面21的方法,进一步包括在真空下干燥溶剂粘合的复合织物以去除溶剂。
[0032] 定义
[0033] 术语“纳米纤维”是指平均直径小于1000纳米的纤维。
[0034] 术语“过滤介质”或“介质”是指带颗粒的流体通过的材料或材料的集合(collection),伴随着至少暂时沉积颗粒材料在该介质内或上。
[0035] 术语“ASHRAE过滤器”是指任何适用于在取暖、通空调系统中从空气中过滤颗粒的过滤器。
[0036] 术语“SN结构”是指包含支撑或“纱布(scrim)”(S)层和纳米纤维(N)层的多层非织造材料。
[0037] 术语“SNS结构”是指包含夹在两个支撑层之间的纳米纤维层的多层非织造材料。附图说明
[0038] 图1是形成适用于本发明的纳米纤维的现有技术电喷设备的阐述。
[0039] 图2是用于生产本发明的SNS溶剂粘合织物的工艺生产线的阐述。

具体实施方式

[0040] 本发明涉及适用作过滤介质的复合非织造织物,包含至少一层纳米纤维层和至少一层纱布层。该纳米纤维层包括基本上连续的有机聚合物纳米纤维的集合,该纳米纤维具有小于约1μm或1000nm的直径。这种过滤介质可用于过滤应用以去除流体物流中的颗粒材料,特别的,从气体物流如空气中去除颗粒材料。
[0041] 适用于空气过滤应用(包括ASHRAE过滤和交通工具舱室空气过滤)的过滤介质可这样制得:通过铺设一个或多个纳米纤维层与纱布层以形成SNx结构,或将一个或多个纳米纤维层置于两个纱布层之间以形成SNxS结构,其中x至少为1。每个纳米纤维层具有至2 2
少约2.5g/m 的单位重量,纳米纤维层的总单位重量为约25g/m 或更多。
[0042] 在本发明的介质中,纳米纤维层的厚度小于约100μm;有利的纳米纤维层的厚度大于5μm且小于100μm。纳米纤维层的厚度可根据纳米纤维聚合物的密度变化。如果纳米纤维层的固体体积分数增加,如通过压延或在高真空下收集纳米纤维层,可使得纳米纤维层的厚度降低而基本上不降低效率或其他过滤性质。在恒定层厚下增加固态含量,降低了孔尺寸且提高过滤效率。
[0043] 本发明中的纳米纤维层可根据美国出版专利申请No.2004/0116028A1中公开的阻挡网幅来制作,在此该专利被引作参考。
[0044] 纳米纤维层由基本上连续的聚合物纤维制成,所述聚合物纤维具有小于1000nm的直径,有利的在约100nm和约700nm之间,或者甚至在约200nm和约650nm之间,或者甚至在约200nm和约500nm之间,或者甚至在约300nm和400nm之间。纳米纤维层的连续聚合物纤维可由电喷方法形成,该方法在PCT专利公开WO 03/080905A(对应美国专利系列号10/477,882,于2002年11月20提交)中公开,其在此处被引作参考。WO 03/080905A公开用于生产纳米纤维网幅的设备和方法,设备基本上如图1所阐述。方法包括从储存罐100将包括聚合物和溶剂的聚合物溶液物流进料到纺丝头102内的系列纺丝喷嘴104中,该纺丝头被施加高电压,聚合物溶液从该纺丝头排放。同时,任选在空气加热器108中被加热的压缩空气从置于纺丝喷嘴104旁边或外围的空气喷嘴106放出。通常向下引导空气作为喷吹气体物流,其包被和推进新排放的聚合物溶液并协助形成纤维网幅,该网幅在真空室114上的接地的多孔收集带110上被收集,真空室114的真空从空气鼓风机112的入口处施加。
[0045] 通过电喷方法沉积的纳米纤维层总是夹带有大量的过程溶剂。在形成复合织物方法先前的实施方案中,例如在于2004年12月28提交并在此其被引作参考的美国临时申请60/639771中,在多数情况下纳米纤维层首先被沉积,然后在真空室114的帮助下,大多数被夹带的过程溶剂被去除之后才收集纳米纤维层成卷。然后通过粘合剂粘结,将纳米纤维层和纱布层手工结合以形成复合SN或SNS织物。
[0046] 已发现直接沉积电喷纳米纤维和过程溶剂于纱布层上,特别是含有由与纳米纤维聚合物相容材料制得的更大纤维的纱布层,允许直接原位粘结纳米纤维层和纱布,不需要在网幅之间另加单独的粘合剂。
[0047] 根据本发明,“相容”聚合物是能自由溶解于过程溶剂中的那些,或其中纱布聚合物至少部分溶解于过程溶剂或可用过程溶剂溶胀,或其中纳米纤维和纱布聚合物具有相关极性,该极性不会差异到导致在没有单独粘合剂的情况下聚合物彼此不粘合。本发明者相信本发明的“溶剂粘合”由于下文讨论的一系列溶剂/聚合物相互作用而发生。
[0048] 适于电喷的聚合物/溶剂结合在WO 03/080905A中公开,包括聚酰胺/甲酸。含有分离的与电喷纤维相容的聚合物纤维层的纱布的使用将被最优化以获得良好的溶剂粘合。在一个实施方案中,“相容”聚合物是指不同的聚合物纤维由具有基本相似化学组成的聚合物制得,即由单体的相似组合制得。例如,在具有针对两者任一的合适电喷溶剂下,尼龙-
6纤维与尼龙-6,6纤维可成功的溶剂粘合。化学相似的纤维聚合物不必要具有相同的分子量分布,所述单体的量不必要相同,所有单体也不必要完全一致。化学相似的聚合物在过程溶剂中的相对溶解度决定溶剂粘合的功效。
[0049] 根据本发明的溶剂粘合技术,纳米纤维聚合物可与纱布纤维聚合物化学不同,只要纱布纤维聚合物与纳米纤维聚合物相容即可,比如其中纱布纤维聚合物至少部分溶解于电喷溶剂中或可用电喷溶剂溶胀。如上所述,当纳米纤维和纱布纤维都由同种聚合物或能溶于同种溶剂的聚合物制得时,可在两层之间形成溶剂焊接粘结,此时聚合物纤维的相邻部分共同溶解(co-dissolve)于电喷溶剂中,该溶剂随后被去除。同样的,即便纱布聚合物不能自由溶解于过程溶剂中,只要其能被所述溶剂溶胀,就能获得合适的溶剂粘合。可替代的,即便当纱布纤维材料在电喷溶剂中不溶解或不溶胀,但是,由于在溶剂去除之前粘合在纱布纤维上的溶剂溶胀的纳米纤维的粘着性,可获得足够的“溶剂粘合”,只要这两种聚合物具有相容的相关极性,即在极性上不是过于差异。
[0050] 相应的,在这些情况下,纱布纤维可为聚合物;聚合物纤维和天然纤维的足额和,例如纤维素、人造丝、等;甚至所有天然纤维,只要粘性的、纺粘后未经任何加工的纳米纤维可成功地粘合在至少部分纱布纤维上即可。
[0051] 例如,根据本发明,在甲酸中电喷的聚酰胺纳米纤维可成功地溶剂粘合到聚酯纤维纱布上,即使在甲酸中聚酯仅是边沿溶解的(如果有溶解的话)。然而,在甲酸中电喷的聚酰胺纳米纤维不能充分粘合或粘结在聚丙烯纱布的纤维上,后者是高非极性的(见下文对比实施例B)。因此由相对极性的聚合物形成的纳米纤维与高非极性聚合物纱布纤维,如聚烯,在本发明的意义中,是不“相容”的。已发现电喷聚合物纳米纤维可成功地“溶剂粘合”到含有至少部分纤维是由天然材料如纤维素纤维、人造丝纤维、棉纤维等制得的纱布上。这种天然纤维材料在本发明的意义中是“相容的”。
[0052] 合适的相容的聚合物/溶剂组合的实例包括但不局限于聚酰胺如尼龙-6、尼龙-6,6、尼龙-6,10于甲酸中,间-聚芳族酰胺于DMAc(二甲基乙酰胺)中和对-聚芳族酰胺于硫酸中,聚酯如PET(聚对苯二甲酸乙二醇酯)、PBT(聚对苯二甲酸丁二醇酯)和PPT(聚对苯二甲酸丙二醇酯)于三氟乙酸/二氯甲烷或N-甲基-2-吡咯烷(NMP)中,PAN(聚丙烯腈)于DMF(二甲基甲酰胺)或DMAc中,PVA(聚乙烯醇)于水中,聚氨酯于DMAc中,和PVdF于DMAc或DMF中。某些聚酰胺存在其他合适的溶剂选择,如HFIP(1,1,1,3,3,3-六氟异丙醇),其也溶解PET。聚合物溶解领域的技术人员将理解根据参考文献(如Allan F M Barton的CRC Handbook of Solubility Parameters and Other Cohesion Parameters)通过匹配溶解度参数,一系列合适的聚合物/溶剂电喷体系可以匹配纱布材料。
[0053] 可能具有相对粗糙表面的纱布层比具有平滑表面的纱布层(如平滑粘结纱布)将提供与纳米纤维层更好的粘结。
[0054] 因此,根据本发明,复合织物由溶剂粘合纳米纤维层到纱布上形成SN结构(图1)而制得,所述溶剂粘合是通过直接电喷纳米纤维层和夹带的过程溶剂到基本上连续的、由移动的收集带110支撑的纱布层上来进行。
[0055] 当溶剂粘合SN结构时,已经发现当在真空室收集器114上以大于约60mm H2O真空水平,如以约60mm H2O直至约170mm H2O,且有利的在约60mm H2O-约100mm H2O的真空水平,沉积纳米纤维/溶剂组合于支撑层上时,产生特别强劲的粘结。
[0056] 本发明的复合织物可通过在一次工序(single pass)中于纱布上形成纳米纤维层而制得,或使用多工序累积纳米纤维层至期望的厚度或单位重量,如在电喷方法中,来制得。电喷方法使得单位重量适用于空气过滤介质的纳米纤维层可以在一次工序中形成,这是因为比现有纳米纤维生产中已知的更高得聚合物溶液处理量是可能的。取决于聚合物溶2 2
液流速和收集带速度,可在一次工序中形成具有约2.5g/m 至甚至最高达25g/m 的单位重量的单层纳米纤维层。这种新方法在效率上的优势对于技术人员是显而易见的。通过根据本发明在一次工序中形成纳米纤维层,需要较少的操作,从而减少在最终过滤介质中引入缺陷的可能性,且使得纳米纤维层可以直接溶液粘结到纱布层上而不间断工艺流水线。当
2
然,本领域技术人员将理解在某些情况下,使用多个电喷束来接连沉积多个至少约2.5g/m
2
的纳米纤维层会有利,以累积总纳米纤维层单位重量至如约25g/m 或更多。为了改善纳米纤维平铺速率和由此的单层纳米纤维层的单位重量,纺丝条件的改变可在收集带速度、聚合物溶液流速中实现,甚至可以通过改变聚合物在溶液中的浓度来实现。
[0057] 在本发明的另一个实施方案中,SNS复合织物可在连续的操作中形成和粘结。在该实施方案中(图2),基本连续的支撑或纱布层122由供给辊121提供到移动的收集带110上,并被导入纺丝室120中,在一个或多个电喷束102下,以在适当的真空下沉积一层或多层含有溶剂的纳米纤维于移动的纱布上,从而形成SN结构123。真空室114的真空水平由真空吹风机112维持在约4mm H2O直至约30mm H2O,这样以协助纳米纤维层的收集,但不能太高以至于去除大量的过程溶剂。随后,第二纱布125,其可以与支撑纱布122相同或不同,由顶部纱布供给辊124提供并被引导通过第一张紧辊118,绕过凝固辊(consolidation roll)126,然后在凝固辊的轻压下沉积在纳米纤维层(一层或多层)上面,以形成多层SNS复合织物127。轻压作用是确保相邻织物层之间的完全接触以允许存留在纳米纤维层中的溶剂将不同层的纤维软化和焊接在一起。优选维持压力以确保层与层之间足够的接触和粘结,但不能太高以致于使各个纤维变形或显著降低织物的整体渗透率。接着,溶剂粘合的SNS复合织物127被引导通过另一个张紧辊118,而后通过第二真空室115,该真空室以更高的真空水平工作以去除剩余溶剂,然后复合织物卷绕在收卷辊130上。
[0058] 本领域的技术人员将理解,真空室114和真空室115的最优真空水平很大程度上取决于电喷和粘合工艺中使用的聚合物/溶剂组合。例如,在二个阶段其中之一或二者中,较易挥发的溶剂可能需要较低的真空以获得此文说明的溶剂粘合和去除功能。
[0059] 有利的,纱布层是纺粘(SB)非织造层,但纱布层可以是梳理、湿法成网、熔喷或其他方法形成和凝固的非织造聚合物和/或天然纤维、和织造聚合物和/或天然纤维织物等的网幅。纱布层需要足够的刚度以维持褶裥和死褶。单个纱布层的刚度有利的至少在10g,如下面所述由织物手感测试仪所测量的。特高的刚度可通过用丙烯酸粘结梳理的或者湿法成网的、包含粗短纤维的纱布来获得。纱布层可以是多层织物,如梳理聚(对苯二甲酸乙二醇酯)(PET)纤维和梳理尼龙纤维层的叠层物,或其他这种多层织物。有利的,本发明的过滤介质具有至少45g的整体织物手感刚度和SNxS结构,其中至少两层纱布层贡献了刚度,纳米纤维层层数x至少是1。在SNS结构情况下,两层纱布层可相同,或可在单位重量、纤维组成或形成技术上不同。例如,支撑纱布可为纺粘聚酰胺非织造网幅,在其上沉积聚酰胺纳米纤维层,上层纱布可为由第三种聚合物制得的织造的、梳理的或纺粘的层,只要第三种聚合物与纳米纤维聚合物相容。另一种有利的层组合是电喷聚酰胺纳米纤维层与由PET纤维、纤维素纤维或甚至PET和纤维素纤维的混合物制得的湿法成网非织造纱布溶剂粘合。另一种有利的层组合是电喷聚乙烯醇纤维与PVA和人造丝纤维的复合湿法成网层粘结。
[0060] 本发明的复合织物可被构造成任何期望的过滤器形式,例如筒、平盘、罐、板、包和袋。在上述结构的内部,该介质基本上可被打褶、卷曲或置于支撑结构上。本发明的过滤介质实质上可用于任何传统的结构,包括平板过滤器、椭圆形过滤器、筒状过滤器、螺旋盘绕状过滤器结构,且可用于褶状的Z型过滤器、V-bank或其他包括该介质形成有用形状或轮廓的几何构造。有利的几何形态包括褶状的圆柱模式。
[0061] 过滤介质的最初压降(本文中还称为“压降”或“压力差”)有利地低于约30mmH2O,更有利的低于约24mmH2O。在使用期间,由于颗粒堵塞过滤器,所以过滤器的压降随时间增加。假设其他变量保持恒定,过滤器的压降越高,过滤器的寿命越短。当达到过滤器的选定极限压降时,过滤器典型地被确定为需要替换。极限压降随应用而变化。由于这种压力的积累是粉尘(或颗粒)负荷的结果,对于同等效率系统,较长寿命典型地直接与较高的负荷能力相关。效率是介质捕捉颗粒而非使颗粒通过的趋势。假设其他变量保持恒定,通常过滤介质从流体流动物流去除颗粒的效率越大,过滤介质将越迅速地达到“寿命”压力差。
[0062] 已发现本发明的溶剂粘合的复合织物提供不寻常的流体渗透率和效率的组合,与传统的用于空气过滤应用的湿法成网微型玻璃介质和美国临时申请60/639771中的粘合剂粘结的复合物二者相比。
[0063] 本发明的过滤介质具有至少约20%的效率,意指该介质能在以面速度5.33cm/秒流动的空气中过滤掉至少约20%的具0.3μm直径的颗粒。为了用于ASHRAE过滤器,有利的,本发明的介质能在以面速度5.33cm/秒流动的空气中过滤掉至少约30%至最高约99.97%的0.3μm的颗粒。
[0064] 假设其他变量保持恒定,过滤介质的空气渗透率越高,压降越低,从而过滤器寿命3
越长。有利的,本发明的过滤介质的Frazier(弗泽)空气渗透率至少为约0.91m/min/
2 3 2
m,典型的直到约48m/min/m。
[0065] 本发明的过滤介质有利的是基本上电中性,因此受到空气湿度的影响小很多,与上述美国专利4,874,659和4,178,157所公开的性能归功于与其相关的电荷的过滤器相比较而言。“基本上电中性”是指该介质不带可被检测到的电荷。
[0066] 测试方法
[0067] 过滤效率由从TSI Incorporated(St.Paul,Minnesota)商业化可得的Fractional Efficiency Filter Tester Model 3160决定。输入目标气溶胶颗粒的期望粒径到测试器的软件中,且设定期望的过滤器流速。使用32.4升/分钟的体积计量的气流速率和5.33cm/秒的面速度。测试自动连续进行直到过滤器进行了每种所选粒径的过滤。然后打印含有每种粒径的过滤器效率数据和压降的报告。在下列数据中报告的效率仅指0.3微米颗粒任务。
[0068] 压降由从TSI Incorporated(St.Paul,Minnesota)商业化可得的Fractional Efficiency Filter Tester Model 3160给出报告。测试条件在过滤效率测试方法中进行了描述。压降以毫米水柱报告,在本文中还称为mm H2O。
[0069] 单位重量由ASTM D-3776确定,其在此被引作参考且以g/m2报告。
[0070] 厚度由ASTM D177-64确定,其在此被引作参考且以微米报告。
[0071] 纤维直径按下列方式决定。每个纳米纤维层样品取十个扫描电子显微镜(SEM)5000倍放大的图像。测量和记录这些照片中11个清晰可辨的纳米纤维的直径。不包括缺陷(即,纳米纤维的堆积、聚合物滴、纳米纤维的交叉)。计算每个样品的平均纤维直径。
[0072] 刚度用Thwing Albert Instrument Co.(费城,宾西法尼亚)生产的“织物手感测试仪”仪器测定。织物手感测试仪以克来测量当强迫材料标本进入边缘平行的槽时刮刀遇到的阻力。此为材料刚度的指示,其与材料的柔性成相反关系。刚度在材料的纵向(机器方向)和横向(横切机器方向)都被测量。
[0073] Frazier(弗雪泽)渗透率是多孔材料的空气渗透率的度量,以ft3/min/ft2单位报告。它测量在0.5英寸(12.7mm)水柱的压力差下空气流通过材料的体积。在真空体系上设置有孔隙来限制通过样品的空气流为可测量的量。孔隙的尺寸取决于材料的孔隙率。Frazier渗透率用设置有校准孔隙的Sherman W.Frazier Co.双压力计(dual manometer)
3 2 3 2
以ft/min/ft 单位测量,并转化成m/min/m 单位。
[0074] 实施例
[0075] 实施例1
[0076] 纳米纤维层由密度为1.14g/cc(由E.I.du Pont de Nemours and Company,Wilmington,Delaware可得)的尼龙-6,6聚合物在纯度为99%的甲酸(由KemiraOyj,Helsinki,Finland可得)中的24重量%溶液电喷制得。进料聚合物和溶剂到溶液混合罐,溶液被转移到储存罐,且通过齿轮计量加入具有纺丝喷嘴的电喷纺丝包,如PCT专利公开WO03/080905中所公开的。纺丝包0.75米宽,有76个纺丝喷嘴。该纺丝包处于室温,纺丝喷嘴内的溶液压力为10bar。纺丝头是电绝缘的,且被施加75kV的电压。通过空气喷3
嘴以7.5m/分钟的速率和660mm H2O的压力将温度为44℃的压缩空气注入到该纺丝包中。
从纺丝喷嘴出来的溶液进入处于大气压、65-70%的相对湿度和29℃的空气中。纳米纤维
3
形成方法的聚合物溶液处理量约为2cm/min/孔。形成的纤维在纺丝包出口下方310mm处平铺在以5-12m/分钟运动的多孔带上面的多孔纱布上。在多孔带下面产生100-170mm
2
H2O真空的真空室辅助纤维的平铺。用作纱布的是来自Kolon Company(S.Korea)的40g/m单位重量纺粘PET非织造材料(Finon C 3040)。纱布的纵向刚度为35g,横向刚度为55g。
[0077] 生产出的SN结构用TSI测试器3160测量不同颗粒尺寸的过滤效率和压降,结果在表1中给出。
[0078] 实施例2
[0079] 按照实施例1所述制成SN结构,但纳米纤维层具有更高的单位重量。制得的结构测量各种颗粒尺寸的过滤效率和压降,结果在表1中给出。
[0080] 表1
[0081]
[0082] *第一次测量/第二次测量
[0083] 实施例3
[0084] 具有SN结构的过滤介质按实施例1形成:沉积单位重量为约3g/m2的含溶剂的尼龙纳米纤维层于具有约70g/m2单位重量的FinonC3070纺粘PET纱布上。纳米纤维的平均直径约为400nm。在收集器真空压力60mm H2O下将纳米纤维网幅收集在纱布上,以形成复合SN织物,然后复合织物在110℃和真空压力20mm H2O通过干燥机。将复合织物打褶以形成褶状过滤介质。溶剂粘合方法产生纳米纤维网幅与纱布良好的粘结而不脱层,以及纳米纤维层的对手摩擦褶状介质的良好耐磨性。打褶前后过滤介质的压降和效率在表2中给出。
[0085] 实施例4
[0086] 按照实施例3形成过滤介质,但纳米纤维层在80mm H2O的收集器真空压力下收集于纱布上。复合织物打褶成褶状过滤介质。溶剂粘合方法产生纳米纤维网幅与纱布好的粘结而不脱层,以及纳米纤维层对手摩擦褶状介质的良好耐磨性。打褶前后过滤介质的压降和效率在表2中给出。
[0087] 对比例A
[0088] 按照实施例3形成过滤介质,但纳米纤维层在40mm H2O的收集器真空压力下收集于纱布上。复合织物打褶成褶状过滤介质。溶剂粘合方法产生纳米纤维网幅与纱布好的粘结而不脱层,但纳米纤维层易被手摩擦褶状介质磨耗。打褶前后过滤介质的压降和效率在表2中给出。
[0089] 对比例B
[0090] 按照实施例3形成过滤介质,但纳米纤维层收集于纺粘PP纱布上。不存在粘结。
[0091] 实施例5
[0092] 过滤介质通过沉积含溶剂的、单位重量约为3g/m2的尼龙纳米纤维层于来自Kolon公司的Finon C 3070纺粘PET纱布上形成。在4mm H2O真空压力收集纳米纤维层于纱布上,并施加两层式梳理织物(HDK Industries,Inc.,格林维尔,南卡罗来纳州)的顶层纱布。梳理织物具有一层梳理尼龙纤维和一层梳理PET纤维。引导梳理尼龙纤维层与尼龙纳米纤维层接触以形成复合SNS织物。复合SNS织物经过凝固辊隙以使纳米纤维层与顶层和底层纱布层溶剂粘合。随后,溶剂粘合的复合物在90℃、20mm H2O真空压力经过干燥机。复合织物打褶成褶状过滤介质。溶剂粘合方法产生纳米纤维网幅与纱布好的粘结而在操作时不脱层,通过一起摩擦褶状介质的两层只有轻微的脱层。打褶前后过滤介质的压降和效率在表2中给出。
[0093] 实施例6
[0094] 按照实施例5所述形成过滤介质,但纳米纤维层的单位重量为5g/m2。复合织物打褶成褶状过滤介质。溶剂粘合方法产生纳米纤维网幅与纱布好的粘结而在操作时不脱层,一起摩擦褶状介质的两层没有脱层。打褶前后过滤介质的压降和效率在表2中给出。
[0095] 实施例7
[0096] 按照实施例5所述形成过滤介质,但底层纱布是Finon F 5070纺粘PET纱布且收集器真空压力为5mm H2O。复合织物打褶成褶状过滤介质。溶剂粘合方法产生纳米纤维网幅与纱布好的粘结而在操作时不脱层,通过一起摩擦褶状介质的两层只有轻微的脱层。打褶前后过滤介质的压降和效率在表2中给出。
[0097] 实施例8
[0098] 按照实施例7所述形成过滤介质,但收集器真空压力为10mm H2O。复合织物打褶成褶状过滤介质。溶剂粘合方法产生纳米纤维网幅与纱布好的粘结而在操作时不脱层,一起摩擦褶状介质的两层没有脱层。打褶前后过滤介质的压降和效率在表2中给出。
[0099] 实施例9
[0100] 按照实施例7所述形成过滤介质,但收集器真空压力为20mm H2O。复合织物打褶成褶状过滤介质。溶剂粘合方法产生纳米纤维网幅与纱布好的粘结而在操作时不脱层,通过一起摩擦褶状介质的两层只有轻微的脱层。打褶前后过滤介质的压降和效率在表2中给出。
[0101] 对比实施例C
[0102] 根据本发明通过沉积3g/m2的聚酰胺纳米纤维层于30g/m2的纺粘PET基底纱布2
(Finon C 3040)上形成过滤介质,预成形的70g/m 纺粘PET顶层纱布(Finon C 3040)经过粘合剂层压到纳米纤维层以形成SNS结构。打褶前后过滤介质的压降和效率在表2中给出。
[0103] 实施例10
[0104] 根据本发明的在线溶剂粘合方法,通过沉积3g/m2的聚酰胺纳米纤维层于70g/m22
的纺粘PET基底纱布(Finon C 3040)上形成过滤介质,并沉积30g/m 的纺粘PET顶层纱布(Finon C 3040)于纳米纤维层上,以形成SNS结构。打褶前后过滤介质的压降和效率在表
2中给出。
[0105] 表2
[0106]
[0107] 如上所述,在仅仅40mm H2O真空下沉积的对比例A的抗磨性不够,这和本发明的实施例3和4不同,后者显示出良好至好的耐磨性。使用高度非极性PP纺粘纱布的对比例B不能获得用作过滤介质的纱布和纳米纤维层的足够粘结。
[0108] 与根据本发明在线溶剂粘合层压方法形成的、同样SNS结构的实施例10相比,粘合剂层压的对比例C显示出降低的效率和升高的压降。
QQ群二维码
意见反馈