具有聚合物涂层的漫射光的反射体

申请号 CN201080012947.4 申请日 2010-03-19 公开(公告)号 CN102625889B 公开(公告)日 2016-07-06
申请人 埃里克·威廉·赫恩·蒂特; 发明人 埃里克·威廉·赫恩·蒂特;
摘要 公开了一种漫射光的反射体,用于照明装置,包括 灯具 、发光 箱体 、显示器、发光 信号 、采光应用及类似的。该反射体包括光反射无纺物以及增加反射性的 聚合物 层。该反射体可被层叠至卷 钢 或 铝 ,并且可在金属卷材或片成型操作中被成型。该聚合物层可以容易地擦去来自金属成型操作的机油。
权利要求

1.一种漫射光的反射体,其包括单纤维丛丝薄膜-原纤片基底层,该单纤维丛丝薄膜-原纤片基底层包含平均厚度小于4微米的薄膜-原纤元件的三维整体网络和直径小于600nm的空隙空间,并且具有第一侧面和第二侧面,其中所述第一侧面适于接近光源;和施加到所述薄膜-原纤片基底层的所述第一侧面上的聚合物层,其中所述聚合物层包含高密度聚乙烯、低密度聚乙烯,以及选自二硫酸钡的组分。
2.如权利要求1所述的反射体,具有小于10%的光泽度。
3.如权利要求2所述的反射体,具有约5%的光泽度。
4.如权利要求1所述的反射体,具有在550纳米测量的从94%至97%的反射率。
5.如权利要求1所述的反射体,具有以5倍放大率测量的,从6.4微米至2.8微米的平均表面粗糙度。
6.如权利要求5所述的反射体,其中以5倍放大率测量的平均表面粗糙度为约3.5微米。
7.如权利要求1所述的反射体,具有以5倍放大率测量的小于1.0微米的粗糙度均匀度。
8.如权利要求7所述的反射体,其中以5倍放大率测量的粗糙度均匀度为约0.4微米。
9.如权利要求1-8中一个所述的反射体,具有150微米至1000微米的厚度。
10.如权利要求1-8中一个所述的反射体,其中所述聚合物层被挤出在所述薄膜-原纤片的所述第一侧面上。
11.如权利要求1-8中一个所述的反射体,其中所述聚合物层包括聚乙烯甲基丙烯酸酯共聚物混合物。
12.如权利要求1-8中一个所述的反射体,其中所述选自二氧化钛和硫酸钡的组分的含量为所述聚合物层的大于3重量%至20重量%。
13.如权利要求1-8中一个所述的反射体,更进一步包括靠近所述聚合物层的附加聚合物层。
14.如权利要求13所述的反射体,其中所述附加聚合物层包括乙烯甲基丙烯酸酯共聚物。
15.如权利要求1-8中一个所述的反射体,更进一步包括附加的单纤维丛丝薄膜-原纤片基底。
16.一种层压制品,其包括附着在片上的权利要求1-8中一个所述的反射体。
17.如权利要求16所述的层压制品,其中利用包含选自聚乙烯和甲基丙烯酸酯的组分的热熔粘合剂使所述反射体附着至所述钢或铝片上。
18.如权利要求17所述的层压制品,其中所述热熔粘合剂包括低密度聚乙烯。
19.如权利要求18所述的层压制品,其中所述热熔粘合剂是包括丙烯酸的环氧树脂
20.一种照明装置,包括权利要求16-19中一个所述的层压制品,其中所述照明装置选自灯具、发光标示以及采光反射体。
21.一种漫射光的反射体,包括单纤维丛丝薄膜-原纤片基底层,该单纤维丛丝薄膜-原纤片基底层包含平均厚度小于4微米的薄膜-原纤元件的三维整体网络和直径小于600nm的空隙空间,并且具有第一侧面和第二侧面,其中第一侧面适于靠近光源,和施加到所述薄膜-原纤片基底层的所述第一侧面上的聚合物层,以及
施加到所述薄膜-原纤片基底层的所述第二侧面上的不透明的遮蔽层,其中所述聚合物层包含高密度聚乙烯、低密度聚乙烯,以及选自二氧化钛和硫酸钡的组分。
22.如权利要求21所述的漫射光的反射体,其中所述不透明的遮蔽层包括炭黑
23.一种向植物提供漫射光的方法,其包括:
(a)提供单纤维丛丝薄膜-原纤片基底层,该单纤维丛丝薄膜-原纤片基底层包含平均厚度小于4微米的薄膜-原纤元件的三维整体网络和直径小于600nm的空隙空间,并且具有第一侧面和第二侧面,其中第一侧面适于靠近光源,和施加到所述薄膜-原纤片基底层的所述第一侧面上的聚合物层,以及施加到所述薄膜-原纤片基底层的所述第二侧面上的不透明的遮蔽层,其中所述聚合物层包含高密度聚乙烯、低密度聚乙烯,以及选自二氧化钛和硫酸钡的组分;以及
(b)将漫射光从所述单纤维丛丝薄膜-原纤片基底层定向至所述植物上。

说明书全文

具有聚合物涂层的漫射光的反射体

[0001] 本申请要求在2009年3月20日提交的临时申请No.61/210,674的优先权,其全部内容特别地通过引用被合并在本文中。

背景技术

发明领域
[0002] 本发明涉及一种聚合物涂敷的漫射光的反射体,其用于其中需要漫射光反射的光反射制品中,例如照明装置或类似物。
[0003] 相关技术说明
[0004] 反射体被用于许多类型的照明装置以使可用光线最大化,从而增加照明效率。最大化是通过使由灯产生的光在需要方向上的反射和重定向的组合,并且使反射体吸收的光线减到最少从而实现的。当照明装置设计包括光腔室(light cavity)(其中光线在作为可用光射出照明装置之前在空腔内被多次重定向)时这尤其重要。使用反射体的装置包括管状荧光灯以及发光二极管(LED)。
[0005] 管状荧光灯在围绕灯的360度发射光线,因此反射体重定向来自照明装置背部的光作为可用光。LED照明装置使用反射体以便混合、模糊或者漫射单个LED灯的个体(discrete)图像。该反射体通常由经涂覆金属或者高度抛光组成。期望的是使被反射体反射的光最大化并且使被反射体吸收的光减到最小,因为任何被吸收的光线都是不可用的,从而降低了装置的效率。
[0006] 另外,反射体被用于园艺应用中,以便在种植空间环境中使光分配并且最大化。由于自然和人造光源,例如LED、HID(高强度放电灯)以及管状荧光灯是从相对固定位置发射光,光的分布从天棚向下到目标植物的茎/树干是不均匀分布的。园林工人在种植空间环境中使用反射体来将该光线重定向回到目标植物上。将光分配到植物叶子侧面以及下面有助于目标的总体刺激作用并且促使叶子/果实健康的生长。让光线在叶子的下面反射还已知是防止霉菌、真菌害虫
[0007] 当入射光被表面反射时发生漫射反射,使得该反射光被随机地或者呈Lambertian方式地散射。相反,当入射光以与入射相同的角度被反射时发生镜面反射。镜面反射体已经被用于照明装置中以将光以受控或者聚焦分布的方式引出装置,并且提高整个装置效率。在其中要求低眩光和/或其中希望在一个尽可能宽阔区域中均匀分配光的情况下,漫射反射是优选的。白色、漫射反射体通常用于房间和办公室照明中以减少镜面眩光。
[0008] 该反射体表面包括由卷或铝制造的金属部件。卷钢或铝在连续卷材(coil)装置中用通常包含二光散射粒子的涂料进行涂敷,并且该涂层随后被固化。所得的卷材表面具有最多为约91%的反射率并且使金属成型为反射体或照明装置体。可替换的,粉末涂敷涂料在使金属成型之后被施加到照明装置以提供最多94%的表面反射率。
[0009] 由以商标名DuPontTM Tyvek 销售的闪纺高密度聚乙烯制造的单纤维丛丝薄膜-原纤片材料已知用作光反射材料。这种片状材料被认为具有高漫射反射率,因为其由折射指数为1.4的连续纤维制成,并且因为其包含平均直径不到600nm的空隙或孔。相对于许多其它已知的用于光反射体中的聚合物基片状材料,这种片状材料是优选的,因为其相对高平的漫反射率以及其在紫外光存在时的颜色稳定性
[0010] 其它已知的片或基于成卷优良塑料(roll-good plastic)的白色反射体包括多层PET薄膜,其填充有二氧化钛(TiO2)或硫酸钡,然后双轴拉伸以产生有助于光反射的微空隙,例如可以从Toray Plastics(美国)Inc.(North Kingstown,RI)获得的Lumirror 薄膜。另一个已知的反射体材料是反射性微孔泡沫聚合物片,例如反射性微孔泡沫聚酯片,其以MC-PET从Furukawa Electric Co.Ltd(日本东京)获得。另一个已知的反射体材料是通过使聚四氟乙烯(ePTFE)扩展以产生具有反射光的空隙的互缠原纤的高反射薄膜,例如可以从W.L.Gore & Associates Inc.(Newark,Delaware)获得的那些。
[0011] 在用于荧光办公室或一般照明装置的照明装置制造中,卷钢或铝通常用作装置外壳并且可能还作为放置在灯后面的反射体。外壳和/或反射体金属条从预涂金属片或卷材进行压制或辊压成型(roll-formed)。利用单个或连续冲模(对于更需要尺寸变化)完成压制。其它金属成型金属操作可包括冲压以形成线路孔(wire access holes)或压坑(knock-outs)、弯曲或计算机控制的切削。卷材涂料配方进行设计以承受许多可能的金属成型操作而不会断裂、裂纹或脱层。
[0012] 外壳用来保护灯、镇流器连接机构,并且可用作灯后面的反射面。在很多情况下,金属反射体被放置在外壳内的灯后面以提高光输出。阳极化处理的镜面铝反射体通常与高反射率涂覆的白铝一起的通常用于这一用途。
[0013] 使金属-单纤维丛丝薄膜-原纤片层压制品形成受到单纤维丛丝薄膜-原纤片的表面性质的限制。片的多孔性使其易受在成型过程中存在的机油的污染。材料的纤维性质呈现出与涂料美学上不同的表面并且还可会导致在冲压或切边上的碎片。

发明内容

[0014] 期望提供一种用于照明装置中的由卷钢或铝(coil steel or aluminum)形成的漫射光的反射体(diffuse light reflector),其将利用单纤维丛丝薄膜-原纤(plexifilamentary film-fibril)片的高漫射光反射率,同时避免片在这种应用中的限制。同样期望具有高漫射反射率(在总反射率),总反射率高于使用商业获得的单纤维丛丝薄膜-原纤片材料可能具有的总反射率。此外,在园艺应用中,期望具有漫射反射面以改善对于目标植物的光分配并且具有不透明的反射面以防止光从培育室逸出。
[0015] 在一个方面,公开了一种漫射光的反射体,其包括具有第一侧面和第二侧面的单纤维丛丝薄膜-原纤片基底(其中第一侧面适于靠近光源),以及在所述薄膜-原纤片的所述第一侧面上的聚合物层,其中该聚合物层是聚烯、聚酯、聚丙烯酸酯或其混合物。
[0016] 在另一个方面,公开了一种层压制品(laminate),其包括具有聚合物层的单纤维丛丝薄膜-原纤片基底,其附着在钢或铝片上。可以使用许多已知的技术来附着该层压制品,所述技术包括利用熔融粘合剂粘结,该粘合剂包含聚乙烯或甲基丙烯酸酯(包括低密度聚乙烯或丙烯酸)。
[0017] 在另一个方面,公开了一种照明装置,其包括层压制品,所述层压制品包含具有聚合物层的单纤维丛丝薄膜-原纤片基底,其附着在钢或铝片上。该照明装置可以包括灯具、发光标记以及采光反射体。
[0018] 在又一个方面,公开了一种漫射光的反射体,其包括具有第一侧面和第二侧面的单纤维丛丝薄膜-原纤片基底(其中第一侧面适于靠近光源),以及在所述薄膜-原纤片的第一侧面上的聚合物层,以及在所述薄膜-原纤片的所述第二侧面上的不透明的遮蔽层,其中该聚合物层是聚烯烃、聚酯、聚丙烯酸酯或其混合物。
[0019] 在又一个方面,公开了一种向植物提供漫射光的方法,其包括:(a)提供具有第一侧面和第二侧面的单纤维丛丝薄膜-原纤片基底,其中第一侧面适于靠近光源,以及在所述薄膜-原纤片的所述第一侧面上的聚合物层,以及在所述薄膜-原纤片的所述第二侧面上的不透明的遮蔽层,其中该聚合物层是聚烯烃、聚酯、聚丙烯酸酯或其混合物;以及(b)将漫射光从所述单纤维丛丝薄膜-原纤片定向至所述植物上。
[0020] 附图简要说明
[0021] 图1a和1b显示分别在5倍和20倍放大率下,约10%光泽度的Tyvek 1070D的表面粗糙度。
[0022] 图2a和2b显示分别在5倍和20倍放大率下,涂有Behr涂料的Tyvek 1070D的表面粗糙度。
[0023] 图3a和3b显示分别在5倍和20倍的放大率下,所公开的漫射光的反射体的一个面的表面粗糙度。
[0024] 图4a和4b显示分别在5倍和20倍放大率下,用丙烯酸粘结剂饱和的Tyvek 1070D的表面粗糙度。
[0025] 图5a和5b显示分别在5倍和20倍的放大率下,Toray E60L双轴拉伸PET的表面粗糙度。
[0026] 图6a和6b显示分别在5倍和20倍的放大率下,Furukawa Microcellular PET(MCPET)的表面粗糙度。
[0027] 发明的详细说明
[0028] 公开了一种漫射光的反射体,其包括具有第一侧面和第二侧面的单纤维丛丝薄膜-原纤片基底(其中第一侧被设计为靠近光源),以及在所述薄膜-原纤片的所述第一侧面上的聚合物层,其中该聚合物层是聚烯烃、聚酯、聚丙烯酸酯或其混合物。
[0029] 该基底是由闪纺聚合物制成的单纤维丛丝薄膜-原纤片。这样一种片由高密度聚乙烯形成并且可从E.I.du Pont de Nemours & Co.(Wilmington,Delaware)以DuPontTM Tyvek 购得。用于该片的原材料是稍微固结的闪纺聚乙烯单纤维丛丝薄膜-原纤片,其按照Steuber的美国专利号3,169,899的一般工艺制造。高密度聚乙烯是由聚乙烯在溶剂中的溶液进行闪纺。该溶液连续地被送至纺丝头组件。使该溶液在每个纺丝头组件穿过第一管口至压减退区域,然后穿过第二管口进入到周围的大气中。所得的薄膜-原纤股线通过有形状的旋转挡板被铺展和振动,被充静电然后被沉积在运送带上。纺丝头被隔开以在带上提供重叠、交叉沉积物以形成宽的毡状物(batt),其随后被稍微固结。这里使用的术语“单纤维丛丝”,表示一种股线,其特征为大量薄的、带状、具有不定长度的、平均厚度小于约4微米的、通常与股线的纵轴同延伸地排列的薄膜-原纤元件的三维整体网络。该薄膜-原纤元件在沿着股线的整个长度、宽度和厚度中以不规则间隔在不同的地点间歇地结合和分开以形成该三维网络。这种股线在Blades和White的美国专利3,081,519以及Anderson和Romano的美国专利3,227,794中被进一步详细地描述。
[0030] 该薄膜-原纤片具有两个侧面,其中一个侧面适于靠近光源。也就是说,该薄膜-原纤片被设计成安装到照明装置之中,在那里一个侧面或表面将面对光源并且将加入聚合物层。从光源发出的光从该表面被反射以被引导出照明装置从而提高装置的亮度和光分配。
[0031] 本发明的反射体中可包括多个薄膜-原纤片基底层,其可以提高反射率。可以使用粘合性层压(通过液体粘合剂涂层)和使用已知粘合剂(包括挤出在所述层间的聚乙烯/乙烯甲基丙烯酸(EMA)混合树脂)的层压或熔融聚合物层压将片粘结在一起。在双层薄膜-原纤片结构中,粘合剂可以被施用于该原纤片的与适于接近光源的侧面相对的侧面,其中所述聚合物层位于所述附加聚合物层上。
[0032] 该聚合物层用作保护涂层,并且可以使用已知的技术而施用于基底,包括挤出、喷涂、吸收、浸涂以及辊涂(rolling)。该聚合物层被施加到薄膜-原纤片的适于接近光源的侧面上。用于该聚合物层中的合适的聚合物包括聚烯烃(包括低密度聚乙烯(LDPE)以及高密度聚乙烯(HDPE)),聚丙烯酸酯(包括聚乙烯/甲基丙烯酸酯共聚物),聚酯(包括聚对苯二酸乙二醇酯(PET)),及其混合物。该聚合物可以是新的(virgin),回收的,或其混合物。该聚合物层同样提供抗油和脂肪的特性。可替换地,乙烯甲基丙烯酸酯(EMA)或其它合适的较低熔点聚合物可作为粘结层被施于单纤维丛丝薄膜-原纤片与聚合物层(其随后被施加在EMA层之上)。例如该EMA粘结层可被挤出在基底与聚合物层之上,它们同时被共同挤出在上面或者先后在多次涂敷工艺中被挤出。合适的乙烯甲基丙烯酸酯共聚物包括ExxonMobil Chemical Company(休斯顿,得克萨斯)的Optema TC120,E.I.du Pont de Nemours & Co.(威明顿,特拉华)的Nucrel  1214,以及Arkema Inc.(费城,宾夕法尼亚)的Lotryl  18MA。
[0033] 该聚合物可任选地包括已知的聚合物添加剂,例如颜料、染料、紫外稳定剂、荧光增白剂、抗氧化剂、阻燃剂、抗生物剂及其混合物。
[0034] 该聚合物层同样可以包括二氧化钛或硫酸钡。二氧化钛或硫酸钡的浓度为这样的重量百分比,其提供在可在聚合物中的优良分散和聚合物在熔融挤出螺旋和模具中的良好挤出,该重量百分比包括按聚合物层的重量计最高到约20%,从约3%至约20%,从约5%至约20%,从约5%至约15%,和按聚合物层的重量计算从约10%到约20%。
[0035] 多个聚合物层可用于提高不透明度和反射能力。多个薄层涂层具有比一个厚层涂层更小的对反射性基底的热冲击。附加聚合物层可被施用于薄膜-原纤片的适于接近光源的侧面上,或在聚合物层上。
[0036] 该聚合物层为基底提供无光精整外形(matte-finish topograph),其造成与没有聚合物层的基底相比光泽水平更低以及反射体是更漫射的。光泽水平可以小于10%,包括小于9%,8%,7%,6%和5%。进一步,聚合物层使基底的反射率从小于约93%提高到大于约94%,包括约95%,96%和97%,其测量于550纳米。提供无光精整的一个方法在施用之后立即在聚合物层上使用消光冷却辊(matte chill roller)。例如,在聚合物层被挤出在薄膜-原纤片上之后,可以立即使用具有122.5的根据ASME Surface Roughness Metric JIS B 0601测量的平均粗糙度值的消光冷却辊。
[0037] 公开的漫射光的反射体可以具有为约6.4微米至约2.8微米,包括从约6.0微米至约3.0微米,从约5.5微米至约3.0微米,从约4.5微米至约3.0微米以及约3.5微米的平均(mean)粗糙度(Ra),其在5倍放大率时测量。更进一步,漫射光的反射体的平均表面粗糙度(即,粗糙度均匀度)的范围小于约1微米,包括小于约0.8微米,小于约0.6微米以及约0.4微米。低平均表面粗糙度值连同低粗糙度均匀度(roughness uniformity)有助于高反射率值和低光泽值。
[0038] 在薄膜-原纤片的与包含聚合物层的侧面相对的侧面上(即,薄膜-原纤片的背侧上),漫射光的反射体还可以具有不透明的遮蔽层(blackout layer)。该不透明的遮蔽层可以包含颜料,包括炭黑。在园艺应用中,该遮蔽层减少了光从培育室环境逃逸出至其它邻近的室或空间,引起不希望的生长或邻近干扰。更进一步,来自反射体的漫射光被定向至植物之上,从而增强了生长。
[0039] 可以使该反射体为完全熔融可再循环的,因为其可以由已知是有益于熔融再循环的热聚物以及添加剂组成。更进一步,着色剂可被添加至聚合物以给予基底非白色的颜色或色调
[0040] 该反射体可被附着在钢上,包括卷钢、铝或其它挠性物品上以产生可成型的反射面。可以使用任何已知的方法,例如用热熔粘合剂的粘结、层压或热压处理,而将反射体附着在卷钢或铝上。合适的粘合剂包括聚乙烯,例如低密度聚乙烯、基于热熔粘合剂的乙烯甲基丙烯酸酯共聚物(EMA),或包含丙烯酸类聚合物(例如甲基丙烯酸酯)的环氧树脂粘合剂。反射体和卷钢或铝片的层压制品随后可根据已知的加工进行成型以使层压制品形成希望形状。反射体-金属层压制品可以在金属成型操作中进行处理,例如压制、辊压以及冲压,而不让油浸入单纤维丛丝薄膜-原纤片的孔中,从而消除了在照明装置的生产期间对可去除保护膜覆盖层的需要。
[0041] 该照明装置是通过将反射体-金属层压制品施用至用于照明装置(如灯具、标示、采光应用等等)中的任意表面而形成。合适的表面包括但不局限于柔性平坦基底、刚性基底,例如照明装置外壳、卷钢或铝片、低成本的半柔性聚酯片或类似物。
[0042] 对相关领域技术人员而言显而易见的是,对本文描述的方法和应用的其它合适的修改和改进是明显的并且可以进行这些修改和改进而没有脱离本发明或其任意实施方案的范围。现在已详细地描述本发明,通过参考以下实施例其将被更清楚地理解本发明,这些实施例被包括在本文中仅仅是为了描述而不是意欲对本发明进行限制。实施例
[0043] 例1-5测量所公开的漫射光的反射体和多个不具有聚合物涂层的薄膜-原纤片的多个面的反射率。反射率测量通过使用Avantes Spectrocam分光光度计(可从Avantes Inc.,Broomfield,科罗拉多获得)用0°/45°测量几何(measuring geometry)(每ANSI/ISO 5.4)以及1.5×2毫米直径的测量孔径(measuring aperture)(其被校准至厂商匹配的白度标准)进行。输出是在每个波长的百分比反射率并且该测量的光谱范围为380纳米至750纳米(以5纳米为间隔)。对于每个样品,跨越10cm区域随机地取10个读数,并且求平均值以考虑涂层中的变化。在550纳米处的反射率被用于样品之间的比较。
[0044] 实施例1
[0045] 与按重量计算14%的TiO2颜料组合的低密度聚乙烯被挤出在Tyvek  1070D单纤维丛丝薄膜-原纤片之上以实现每平方米22克的涂层重量。挤出层穿过无光精整冷却辊(赋予无规微精整外形)。经涂覆片的总厚度测量为215微米。作为涂敷的结果,片的反射率由93.5%(未涂覆片)提高至96%(经涂覆片)。该涂层部分地模糊该片的纤维图形,产生更均匀的外形。在表面上的机油被容易地擦去,而没有可见污点。经涂覆片的样品在对流烘箱中被暴露于110℃下12小时并且遭受2%的反射率损失。另外的样品在对流烘箱中被暴露于80℃下12小时而没有反射损失。
[0046] 实施例2
[0047] 使按重量计算55%的低密度聚乙烯、33%的高密度聚乙烯和12%的TiO2颜料组合并且挤出在Tyvek  1070D单纤维丛丝薄膜-原纤片上以实现每平方米35克的涂层重量。挤出层通过无光精整冷却辊,赋予无规的微观精整外形。经涂覆片的总厚度被测量为228微米。作为结果反射率由93.5%提高至96.5%。如同实施例1中,该涂层部分地模糊该纤维图形以形成更均匀的外观,并且表面上的油容易地擦去而没有可见污点。经涂覆片在烘箱中被暴露于110℃下12小时而不降低反射率。
[0048] 实施例3
[0049] 与7%的TiO2组合的EMA树脂(Lotryl  20MA08)被挤出在来自实施例1的材料的相反侧(预先未涂覆的)上以实现每平方米22的涂层重量并且通过无光精整冷却辊以进行无光精整。全部片厚度被测量为218微米。经EMA涂敷侧的反射率被测量为94%。经EMA涂覆侧随后被施加到0.026″(0.66毫米)厚的未涂覆的冷轧钢(预热至80℃)上。层压制品面(未与金属粘结的侧)的反射率被测量为95.7%。
[0050] 实施例4
[0051] 来自实施例3的经涂覆片通过将LDPE涂覆侧施加至0.026″(0.66毫米)厚的预热到120℃的经涂覆冷轧钢上而被层压至钢上,通过层压夹辊(laminating nip roll)并且利用室温水冷却。经涂覆片被充分地粘结到金属,这是因为当试图将片与金属上剥离时仅仅观察到内片分层。该层压制品能够承受0-T弯曲和球冲压试验(ball-punch test)而不会从金属层离。层压制品面(未与金属粘合的侧面)的反射率被测量为94.0%。
[0052] 实施例5
[0053] 通过挤出每平方米22克LDPE至第一层上,随后在冷却夹辊之前与第二层结合,使两层Tyvek  1070D单纤维丛丝薄膜-原纤片彼此相互层压。然后通过在每侧上挤出按重量计算55%的LDPE、33%的HDPE和12%的TiO2颜料的混合物以实现每平方米35克的涂层重量,使该双层层压制品在两侧进行外层涂覆(overcoated)。在挤出之后立即使该挤出层通过消光精整冷却辊以提供无光精整。总厚度被测量为483微米。片的反射率从未涂覆单层的93.5%提高至97.0%。
[0054] 实施例6
[0055] 与按重量计算6%的炭黑组合的按重量计算94%的LDPE被挤出至来自实施例3的片的背侧上以形成具有一侧白一侧黑的片。白色侧面的反射率被测量为95.5%。当将白色侧面完全地放置在216瓦的T5荧光照明装置进行测量,发现该片为完全地光阻隔或不透明的,并且从黑色侧面测量小于1坎德拉。
[0056] 实施例7-12测量了五个已知的漫射光的反射体和所公开的漫射光的反射体的一个面的光泽百分率、平均峰值表面粗糙度、均方根粗糙度以及平均表面粗糙度。利用NGL60,Novo Gloss Lite 60°,通过Rhopoint Instruments,使用每ASTM D2457的60°-8×15毫米椭圆孔径(aperture)来进行光泽测量。粗糙度值是在5倍放大率下10次测量值的平均值(平均数)。表面粗糙度测定使用Zygo NewView 7300进行。New View 7300使用非接触扫描白光和光学相位移干涉测量法以实现高度精确,三维表面高度测量值最多达到20毫米,高度分辩率≥0.1nm。图1-6分别显示实施例7-12的表面粗糙度,使用Zygo NewView 7300。下面的表1显示5倍放大率下的光泽百分率、PV、rms、Ra以及均匀度值。
[0057] 表1
[0058]
[0059] PV(峰值至谷值)是样品内最高和最低点之间的差值。PV亦称作Rt。当用于量化粗糙度时,PV是最大粗糙高度。PV是在数据集合中最坏情况点至点差距(PV is the worst case point-to-point error in the date set)。PV比较了表面上的两个极值点;因此,对于两个非常不同的表面有可能具有相同的PV值。
[0060] rms(Rq)是与中心线的均方根粗糙度偏差。这是计算平均粗糙度的方法,通过使每个值平方然后取平均数的平方根。rsm结果作为测试表面相对于参考物的高度(或深度)在数据集合中的所有数据点处的标准偏差进行计算。
[0061] Ra是平均(平均值)粗糙度值并且是与中心线偏移的算术平均值粗糙度。
[0062] 均匀度是Ra从高到低的范围。均匀度数字越低,表面粗糙度就越均匀。
[0063] 如表1所示,实施例9(其表示所公开的漫射光的反射体的一个面)具有比涂敷Tyvek(实施例8)以及丙烯酸饱和的Tyvek(实施例10)均匀得多的表面粗糙度。特别地,粗糙度均匀度小于1微米,这促成了在550纳米处的约94%或更大的反射率以及小于10%的光泽水平。
[0064] 以上已经通过参考所公开的漫射光的反射体、层压制品以及照明装置的不同方面描述了本发明。在阅读并且理解上述详细说明之后,对于其它将可以进行明显的修改和变更。旨在的是,本发明被理解是包括所有这类修改和变更,只要它们进入权利要求的范围之内。这里引用的所有专利和出版物将通过引用完全并入本文中。
QQ群二维码
意见反馈