玻璃基板再生装置

申请号 CN200980130832.2 申请日 2009-07-31 公开(公告)号 CN102112244A 公开(公告)日 2011-06-29
申请人 凸版印刷株式会社; 发明人 濑川达弥; 浅井究; 中西俊介; 茅根博之; 铃木充;
摘要 玻璃 基板 再生装置(10)是对以大致 水 平 支撑 的状态由搬运装置搬运的基板进行再生处理的装置,朝向不良基板的搬运方向依次具备第1 碱 性液处理部(12)、酸性液处理部(14)以及第2碱性液处理部(16)。第1碱性液处理部(12)向从基板搬入部(11)所搬入的不良基板喷射碱性液,剥离最上层的 树脂 层。酸性液处理部(14)向由喷淋水洗部(13)淋洗完的不良基板喷射酸性液,剥离 中间层 的金属层。第2碱性液处理部(16)向由喷淋水洗部(15)淋洗完的不良基板喷射碱性液,剥离最下层的树脂层。根据玻璃基板再生装置(10),可在短时间内完成玻璃基板(2)的再生处理,亦可抑制玻璃基板(2)的损伤。
权利要求

1.一种玻璃基板再生装置,一面搬运在玻璃基板上形成有1层以上的、含有树脂及金属的任一种的层的不良基板,一面从上述不良基板再生上述玻璃基板,
该装置至少具有:
第1性液处理部,用碱性液处理上述不良基板,并将位于上述不良基板的表面的第1树脂层剥离;
第1酸性液处理部,设置于上述第1碱性液处理部的下游,用酸性液处理上述不良基板,并将位于上述不良基板的表面的金属膜剥离;
第2碱性液处理部,设置于上述酸性液处理部的下游,用碱性液处理上述不良基板,并将位于上述玻璃基板的表面的第2树脂层剥离。
2.如权利要求1所述的玻璃基板再生装置,还具有第2酸性液处理部,该第2酸性液处理部设置于上述第1碱性液处理部的上游,用酸性液处理上述不良基板,并将位于上述不良基板的表面的金属层剥离。
3.如权利要求1所述的玻璃基板再生装置,在上述第1及第2碱性液处理部的至少一方,串联地设置有利用上述碱性液处理上述基板的多个处理机构。
4.如权利要求1所述的玻璃基板再生装置,具有搬运机构,该搬运机构包括多个辊,该多个辊在各自的上端部支撑该不良基板的下表面,并且各个辊分别绕中心轴转动,从而搬运上述不良基板;
设置有刮刀,该刮刀配置在比上述辊的上述上端部靠下方的位置,并与上述辊的外表面接触而除去上述辊的表面上的液体。
5.如权利要求1所述的玻璃基板再生装置,还具有:
判断部,在将上述不良基板投入到上述玻璃基板再生装置中之前,该判断部检测上述不良基板上的多个点处的规定波长的光的透过率,并根据检测结果,判断在上述不良基板上是否有上述金属层;
分配部,在上述判断部判断为在上述不良基板上有上述金属层时,将上述不良基板投入到上述第1碱性液处理部中,而在上述判断部判断为在上述不良基板上无上述金属层时,将上述不良基板投入到上述第2碱性液处理部中。
6.如权利要求1所述的玻璃基板再生装置,还具有:
接触式表面形状测量部,对投入到上述第1酸性液处理部中的各个上述不良基板,测量位于表面的上述金属层的厚度;及
累计计算/判断部,将由上述接触式表面形状测量部所测量的金属层的厚度进行累计,算出累计膜厚,并根据所算出的累计膜厚,控制上述第1酸性液处理部所进行的处理时间及处理温度,在所算出的累计膜厚超过规定值时,使上述第1酸性液处理部的上游侧及下游侧的处理部停止。

说明书全文

玻璃基板再生装置

技术领域

[0001] 本发明涉及一种玻璃基板再生装置,其从液晶显示装置等所使用的彩色滤光器的制造工序中所产生的不良基板(未满足质量基准的基板)再生玻璃基板。

背景技术

[0002] 图15是表示彩色液晶显示装置所使用的彩色滤光器的一例的剖面图。
[0003] 彩色滤光器101具备有:玻璃基板2、形成于玻璃基板2上的黑阵列(BM)3、红色的着色像素(R像素)4R、绿色的着色像素(G像素)4G、蓝色的着色像素(B像素)4B(以下将RGB各像素总称为“着色像素4”)、ITO(铟化物,Indium Tin Oxide)等的透明电极5、光间隔片(PS)以及垂直取向部(VA)7。作为这种构造的彩色滤光器101的制造方法,已知光蚀刻法、印刷法以及喷墨法。
[0004] 图16是表示光蚀刻法的各工序的流程图
[0005] 首先,将BM形成于玻璃基板上(S101)。接着,清洁玻璃基板(S102),在玻璃基板上涂布RGB的任一种着色光阻剂,并进行预干燥(S103),之后为了使基板上的着色光阻剂干燥、硬化,而进行预烘焙(S104)。然后,使用光掩模将基板上的着色光阻剂进行曝光(S105),在进行显影处理后(S106),使已图形化的着色光阻剂硬化(S107)。重复进行上述S102~S107的处理直到在玻璃基板上形成R、G、B3色像素为止(S108)。然后,在着色像素上形成透明电极膜后(S109),在透明电极上形成PS、VA(S110)。经由以上的工序,而制造图15所示的彩色滤光器。
[0006] 此外,关于对玻璃基板上的BM的形成,例如可采用如下的方法,将金属薄膜形成于玻璃基板上,在金属薄膜上涂布光阻剂后,利用光蚀刻法进行曝光、显影、蚀刻,而形成BM形状的图形。或者,采用如下的方法,将黑色的光阻剂涂布于玻璃基板上,再利用光蚀刻法将此黑色的光阻剂进行曝光及显影,而形成具有BM形状的图形(所谓的树脂BM)。
[0007] 又,随着彩色滤光器用玻璃基板的大型化,而有回避采用由金属薄膜形成的BM的倾向。这是由于和使用铬等金属并利用真空装置形成金属薄膜相比,使用黑色的树脂光阻剂进行光蚀刻的方法在价格及环境两个方面更为有利。
[0008] 虽然要求上述彩色滤光器具有高的可靠性,但是如图16所示,其制造需要经过很多工序,在这过程中可能产生灰尘或树脂渣等异物的附着或混入、针孔、图形欠缺等缺陷。发生这种缺陷的基板是不满足质量基准的不良基板,会降低合格率。又,随着近年来的大画面液晶电视的普及,彩色滤光器用玻璃基板发生大型化,厚度1mm以下且一边的长度长达
1~2m的玻璃基板已经在使用。因为这种玻璃基板易破损,所以不良基板的废弃作业本身伴随着危险。
[0009] 因此,人们寻求一种能够将不满足质量基准的不良基板再生为玻璃基板的玻璃基板再生装置。由玻璃基板再生装置所再生的玻璃基板能够再投入到制造工序中。
[0010] 图17是表示彩色滤光器用玻璃基板的再生处理的流程图。
[0011] 对在PS、VA形成工序以后所产生的不良基板(具有和图15的彩色滤光器一样的叠层构造)进行再生时,首先,依次进行第1性液处理(S201)、刷洗(S202)以及喷淋洗(S203),剥离位于玻璃基板的最上层的PS、VA膜。接着,进行酸性液处理(S204)及喷淋水洗(S205),剥离中间层透明电极。然后,依次进行第2碱性液处理(S206)、刷洗(S207)以及喷淋水洗(S208),并将玻璃基板表面的BM、R像素、G像素、B像素剥离。然后,利用刷洗(S209)除去微量地残留于玻璃基板上的清洁残渣,通过除去水分而使玻璃基板变成干燥(S210)。
[0012] 图18是表示以往的玻璃基板再生装置的图。
[0013] 玻璃基板再生装置90进行用以剥离不良基板1表面的树脂膜(PS、VA、BM以及着色像素)的碱性液处理(图17的S201、S206),并具备有:储存槽91、92、喷嘴93、碱性液补充槽94、剥离液补充槽95以及回收盘96。
[0014] 在储存槽91中,储存已预先调整了各自的成分及浓度的处理液,包含碱性液及剥离液。藉由泵92经由配管97向喷嘴93供给储存槽91内的处理液,并从喷嘴93向不良基板1排出该处理液。利用未图示的清洁刷,和处理液的排出并行地清洁不良基板的表面,并将PS、VA等树脂膜剥离。不良基板1一边藉由未图示的搬运装置以一定速度在规定方向上搬运,一边接受藉由处理液及清洁刷的剥离处理。
[0015] 向不良基板1所排出的处理液及被剥离的树脂(例如PS、VA形成中所使用的树脂)从回收盘96经由配管100而回收到储存槽91中。所回收的树脂在储存槽91内沉淀后从配管102排出到外部。或者,亦可将过滤器设置于储存槽91内并使树脂分离。
[0016] 每隔一定时间地测量储存槽91内的碱性液浓度及剥离液浓度。在浓度不够时,从碱性液补充槽94及剥离液补充槽95分别经由配管98及配管99而向储存槽91补充碱性液及剥离液。
[0017] 除了上述的图17及图18所示的玻璃基板再生方法以外,人们还提出了几种方法。例如,在专利文献1中,记载了藉由将不良基板浸泡于包含有水溶性有机胺化合物和无机碱性金属化合物的水溶液中而再生玻璃基板的方法。在专利文献2中,记载了下述方法:在将不良基板浸泡于浓度98%的浓硫酸10分钟后水洗,并浸泡于加温至55℃的、包含有烷基二醇和乙二醇酯的碱性水溶液中,并根据需要而进行海绵摩擦(手擦)。在专利文献2中,记载了进行一次酸性液处理和二次酸性液处理而将ITO膜、RGB像素以及BM剥离的方法。
在专利文献4中,记载了利用两级处理而将RGB像素及BM剥离的方法,该两级处理包括以包含有无机酸的前处理液对不良基板进行前处理的工序、及以包含有碱性物质的剥离液对不良基板进行后处理的工序。
[0018] 现有技术文献
[0019] 专利文献
[0020] 专利文献1:日本特开2001-124916号公报
[0021] 专利文献2:日本特开平7-230081号公报
[0022] 专利文献3:日本特开2006-154752号公报
[0023] 专利文献4:日本特开2002-179438号公报
[0024] 专利文献5:日本特开2003-279915号公报
[0025] 专利文献6:日本特开2005-189679号公报
[0026] 在上述的图17中,虽然为了便于图示,而连续地记载了PS/VA剥离工序(第1碱性液处理)、透明电极剥离工序(酸性液处理)以及RGB像素/BM剥离工序(第2碱性液处理),但是因为这些各工序的处理时间相异,所以实际上,各工序是以独立的分批处理进行的。因而,在玻璃基板的再生处理上耗费很多时间。
[0027] 又,在专利文献1~4的处理方法中,因为需要将不良基板浸泡于处理液10分钟~2小时,所以具有玻璃基板受损的问题。又,因为最下层(玻璃基板表面)的树脂膜残渣残留,所以一般在剥离后进行研磨处理,亦具有处理工序数量增加的问题。

发明内容

[0028] 因而,本发明的目的在于提供一种玻璃基板再生装置,其不会损伤彩色滤光器用玻璃基板,并可在短时间内将其上的树脂膜及金属膜剥离。
[0029] 本发明涉及一种玻璃基板再生装置,其一面搬运在玻璃基板上形成有1层以上的、含有树脂及金属的任一种的层的不良基板,一面从不良基板再生玻璃基板。该玻璃基板再生装置具备有:第1碱性液处理部,用碱性液处理不良基板,并将位于不良基板的表面的第1树脂层剥离;第1酸性液处理部,设置于第1碱性液处理部的下游,用酸性液处理不良基板,并将位于不良基板的表面的金属膜剥离;以及第2碱性液处理部,设置于酸性液处理部的下游,用碱性液处理不良基板,并将位于玻璃基板的表面的第2树脂层剥离。
[0030] 发明效果
[0031] 根据本发明的玻璃基板再生装置,因为一面搬运基板一面依次进行剥离处理,所以可在短时间内再生玻璃基板。又,藉由处理时间变短,而可防止玻璃基板的损伤。附图说明
[0032] 图1A是表示在彩色滤光器制造工序所产生的不良基板的一例的剖面图。
[0033] 图1B是表示在彩色滤光器制造工序所产生的不良基板的其他的例子的剖面图。
[0034] 图1C是表示在彩色滤光器制造工序所产生的不良基板的其他的例子的剖面图。
[0035] 图1D是表示在彩色滤光器制造工序所产生的不良基板的其他的例子的剖面图。
[0036] 图1E是表示在彩色滤光器制造工序所产生的不良基板的其他的例子的剖面图。
[0037] 图2是表示本发明的第1实施方式的玻璃基板再生方法的流程图。
[0038] 图3是表示本发明的第1实施方式的玻璃基板再生装置的示意构成图。
[0039] 图4是表示本发明的第2实施方式的玻璃基板再生方法的流程图。
[0040] 图5A是表示本发明的第2实施方式的玻璃基板再生装置的示意构成图。
[0041] 图5B是表示本发明的第2实施方式的玻璃基板再生装置的其他的例子的图。
[0042] 图6是表示本发明的第2实施方式的玻璃基板再生装置的其他的例子的图。
[0043] 图7是表示本发明的第3实施方式的碱性液处理部的示意构成图。
[0044] 图8是表示本发明的第3实施方式的碱性液处理部的其他的例子的图。
[0045] 图9是表示本发明的第4实施方式的搬运装置的一部分的立体图。
[0046] 图10是图9的IX-IX线视图。
[0047] 图11是表示本发明的第5实施方式的玻璃基板再生装置的图。
[0048] 图12是表示图11所示的透过型光传感器的示意构成图。
[0049] 图13是表示本发明的第6实施方式的玻璃基板再生装置的图。
[0050] 图14是表示本发明的第6实施方式的蚀刻液管理部的其他的例子的图。
[0051] 图15是表示彩色液晶显示装置所使用的彩色滤光器的一例的剖面图。
[0052] 图16是表示光蚀刻法的各工序的流程图。
[0053] 图17是表示彩色滤光器用玻璃基板的再生处理的流程图。
[0054] 图18是表示以往的玻璃基板再生装置的图。
[0055] 附图标记
[0056] 1...不良基板;2...玻璃基板;3...黑阵列(BM);4...着色像素;5...透明电极;6...光间隔片(PS);7...垂直取向部;8...金属膜;9...金属膜;10...璃基板再生装置;12...第1碱性液处理部;14...酸性液处理部;16...第2碱性液处理部;20...玻璃基板再生装置;22...第1酸性液处理部;24...第1碱性液处理部;26...第2酸性液处理部;28...第2碱性液处理部;40...碱性液处理单元;41...处理部;60...搬运装置;61...辊;62...刮刀;70...判断部;71...分配部;75...蚀刻液管理部;76...表面形状测量部;77...累计计算/判断部;81...蚀刻液供给排出部

具体实施方式

[0057] 图1A~图1E是表示在彩色滤光器制造工序所产生的不良基板的例子的剖面图。
[0058] 在此,不良基板是在光蚀刻法的各工序所产生的不满足质量基准的基板,意指在玻璃基板上形成有树脂膜(BM、R像素、G像素、B像素、PS、VA)及金属膜(透明电极)的一方或双方的状态的基板。
[0059] 图1A所示的不良基板1a是在PS、VA形成工序后的检查中所发现的,是在玻璃基板2上形成有BM3、RGB的着色像素4、由ITO等的金属膜所形成的透明电极5、PS6以及VA7的基板。
[0060] 又,在彩色滤光器的制造工艺中,使用检查中所发现的不良基板,来探索透明电极用金属膜的成膜条件。
[0061] 图1B所示的不良基板1b是使用图1A所示的不良基板来探索金属膜的成膜条件时、作为结果所产生的基板,在PS6、VA7上还具有ITO等金属膜8。
[0062] 图1C所示的不良基板1c是使用在金属膜的形成工序以后且在PS、VA形成工序之前所发现的不良基板来探索金属膜的成膜条件时、作为结果而产生的基板,在玻璃基板2的背面(与BM3及着色像素4的形成面相反侧的面)具有ITO等金属膜9。
[0063] 图1D所示的不良基板1d具有:形成于着色像素4上的覆膜保护层33和形成于玻璃基板2的背面的透明电极34。图1E所示的不良基板1e在图1D所示的不良基板1d的覆膜保护层33上还具有PS6及VA7。覆膜保护层33是为了使着色像素4上部平坦、或防止着色像素4中的成分流出、保护着色像素4的目的而设置的。
[0064] 此外,不良基板在光蚀刻法(图15)所示的任一工序都可能产生。因此,除了图1A~图1E所示的不良基板以外,亦存在在玻璃基板2上形成有BM3及着色像素4(R像素、G像素、B像素)的至少一种的不良基板,或在玻璃基板2上仅形成有BM3、着色像素4、以及透明电极5的不良基板。
[0065] 以下,根据需要,参照着图1A~图1E,说明各实施方式的玻璃基板再生装置。
[0066] (第1实施方式)
[0067] 图2是表示本发明的第1实施方式的玻璃基板再生方法的流程图。
[0068] 图2所示的玻璃基板再生方法适合从具有图1A的构造的不良基板1a再生玻璃基板。具体而言,本实施方式的玻璃基板再生方法,具备有:将最上层的树脂膜(PS6、VA7)剥离的第1碱性液处理工序(S11)、将中间层的金属膜(透明电极5)剥离的酸性液处理工序(S12)、以及将最下层的树脂膜(BM3、着色像素4)剥离的第2碱性液处理工序(S13)。这些各工序S11~S13,不是作为独立的分批处理来进行的,而是对由搬运装置所搬运的不良基板连续地进行的。此外,在第2碱性液处理工序(S13)以后,进行最终水洗处理工序(S14),而完成玻璃基板的再生。
[0069] 图3是表示本发明的第1实施方式的玻璃基板再生装置的图。
[0070] 玻璃基板再生装置10是对以大致水平支撑的状态由搬运装置所搬运的基板进行再生处理的装置,朝向不良基板的搬运方向依次具备有:第1碱性液处理部12、酸性液处理部14以及第2碱性液处理部16。
[0071] 又,在第1碱性液处理部12的上游,配置有基板搬入部11。紧跟在第1碱性液处理部12、酸性液处理部14以及第2碱性液处理部16之后,分别配置有喷淋水洗部13、15以及17。此外,在喷淋水洗部17的下游,依次配置最终水洗处理部18和玻璃基板搬出部19。
[0072] 第1碱性液处理部12向从基板搬入部11所搬入的不良基板喷射碱性液,将最上层的树脂层(图1A的PS6、VA7)剥离。喷淋水洗部13利用水洗而除去在第1碱性液处理部12中附着于不良基板表面的碱性液。
[0073] 酸性液处理部14向已由喷淋水洗部13淋洗的不良基板喷射酸性液,而将中间层的金属层(图1A的透明电极5)剥离。喷淋水洗部15利用水洗而除去在酸性液处理部中附着于不良基板表面的酸性液。
[0074] 第2碱性液处理部16向已由喷淋水洗部15淋洗的不良基板喷射碱性液,而将最下层的树脂层(图1A的BM3、着色像素4)剥离。喷淋水洗部17利用水洗来除去在第2碱性液处理部16中附着于不良基板表面的碱性液。
[0075] 已由喷淋水洗部17淋洗的玻璃基板2,由最终水洗处理部18再次水洗后,从玻璃基板搬出部19排出。
[0076] 在上述第1碱性液处理部12、酸性液处理部14以及第2碱性液处理部16中,可任意地设定处理液的排出压或液体温度、排出时间以及基板的搬运速度。藉由可变更这些项目,而即使因设计的变更等而改变了玻璃基板2上的各层(PS6、VA7、透明电极5、BM3、着色像素4)的材料或厚度的情况下,亦可设定剥离各层的最佳条件。又,在第1碱性液处理部12、酸性液处理部14以及第2碱性液处理部16中,根据需要而设置用以剥离基板上的层的刷子或海绵辊等。此外,在酸性液处理部14中,亦可向基板的双而排出酸性液。
[0077] (第1实施例)
[0078] 以下,作为第1实施例,表示使用图3所示的玻璃基板再生装置10时的具体处理条件。
[0079] 在碱性处理工序中所使用的碱性液及在酸性液处理工序中所使用的酸性液的成分例如下所示。
[0080] (1)碱性液(在第1碱性液处理部12及第2碱性液处理部16中使用):氢氧化8重量%
[0081] 单乙醇胺(monoethanolamine)12重量%
[0082] 二乙二醇单丁醚(butyl carbitol)15重量%
[0083] 苯甲基乙醇(benzyl alcohol)2重量%
[0084] 水63重量%
[0085] (2)酸性液(在酸性液处理部14中使用):
[0086] 三氯化35重量%
[0087] 硝酸3重量%
[0088] 水62重量%
[0089] 表1
[0090]
[0091] 表1示出了下述结果:改变药液的排出条件(温度、排出时间),用“○:无残渣,×:有残渣”来评价剥离处理后的各层有无残渣。此时,第1及第2碱性液处理部中的碱性液的排出压力均设为0.1MPa,酸性液处理部中的酸性液的排出压力设为0.15MPa。此外,表中的向上的箭头“↑”表示和上一行的值相同。
[0092] 从条件9~13可知,第1碱性液处理部中的碱性液的排出压力为0.1MPa时,最上层的树脂层(PS、VA)在液体温度40℃、排出时间60秒以上的条件下、或液体温度30℃、排出时间90秒以上的条件下完全地被剥离,亦未产生残渣。又,虽然碱性液侵蚀玻璃基板,但是因为在本实施方式中于短时间内进行剥离处理,所以在玻璃基板上未看到碱性液的影响。
[0093] 从条件5~8可知,在酸性液的排出压力为0.15MPa时,中间层的金属膜(透明电极)在液体温度55℃、排出时间180秒以上的条件下、或液体温度65℃、排出时间150秒以上的条件下完全地被剥离,亦未产生残渣。
[0094] 从条件1~4可知,在第2碱性液处理部中的碱性液的排出压力为0.1MPa时,最下层的树脂层(BM、着色像素)在液体温度65℃、排出时间240秒以上的条件下完全地被剥离,亦未产生残渣。又,虽然碱性液侵蚀玻璃基板,但是因为在本实施方式中于短时间内进行剥离处理,所以在玻璃基板上未看到碱性液的影响。
[0095] (第2实施方式)
[0096] 图4是表示本发明的第2实施方式的玻璃基板再生方法的流程图。
[0097] 图4所示的玻璃基板再生方法不仅对图1A所示的不良基板1a可进行再生,亦可对图1B~图1E所示的不良基板1b~1e进行再生,是在第1实施方式的再生方法(图2)中进一步附加了第1酸性液处理工序(S21)的方法。
[0098] 更具体而言,本实施方式的玻璃基板再生方法具备有:用于剥离金属膜8的第1酸性液处理工序(S21),该金属膜8是探索金属膜的成膜条件时形成的;将最上层的树脂膜(PS6、VA7)剥离的第1碱性液处理工序(S22);将中间层的金属膜(透明电极5)及背面的金属膜9剥离的第2酸性液处理工序(S23);以及将最下层的树脂膜(BM3、着色像素4)剥离的第2碱性液处理工序(S24)。这些各工序S21~S24,不是作为独立的分批处理来进行,而是对由搬运装置所搬运的不良基板连续地进行。此外,在第2碱性液处理工序(S24)之后,进行最终水洗处理工序(S25)。
[0099] 图5A是表示本发明的第2实施方式的玻璃基板再生装置的示意结构图。
[0100] 玻璃基板再生装置20a是对以大致水平支撑的状态由搬运装置所搬运的基板进行再生处理的装置,朝向不良基板的搬运方向依次具备有:第1酸性液处理部22a、第1碱性液处理部24、第2酸性液处理部26以及第2碱性液处理部28。玻璃基板再生装置20a适合处理具有图1A及图1B所示的叠层构造的不良基板1a及1b。
[0101] 又,在第1酸性液处理部22a的上游配置有基板搬入部21。紧跟在第1酸性液处理部21、第1碱性液处理部24、第2酸性液处理部26以及第2碱性液处理部28之后,分别配置有喷淋水洗部23、25、27以及29。此外,在喷淋水洗部29的下游依次配置有最终水洗处理部30和玻璃基板搬出部31。
[0102] 第1酸性液处理部22a对从基板搬入部21所搬入的不良基板喷射酸性液,并将在探索成膜条件中所形成的金属膜8(图1B)剥离。喷淋水洗部23利用水洗而除去在第1酸性液处理部22a中附着于不良基板表面的酸性液。
[0103] 第1碱性液处理部24将最上层的树脂层(PS6、VA7)剥离。喷淋水洗部25利用水洗而除去在第1碱性液处理部24中附着于不良基板表面的碱性液。
[0104] 第2酸性液处理部26向已由喷淋水洗部25淋洗的不良基板的双面喷射酸性液,而将位于玻璃基板2的双面的金属层(透明电极5及金属膜9)剥离。喷淋水洗部27利用水洗而除去在第2酸性液处理部26中附着于不良基板表面的酸性液。
[0105] 第2碱性液处理部28向已由喷淋水洗部27淋洗的不良基板喷射碱性液,而将最下层的树脂层(BM3、着色像素4)剥离。喷淋水洗部29利用水洗而除去在第2碱性液处理部28中附着于不良基板表面的碱性液。
[0106] 已由喷淋水洗部29淋洗的玻璃基板2由最终水洗处理部30再次水洗后,从玻璃基板搬出部31排出。
[0107] 在上述第1酸性液处理部22a、第1碱性液处理部24、第2酸性液处理部26以及第2碱性液处理部28中,可任意地设定处理液的排出压力或液体温度、排出时间以及基板的搬运速度。藉由可变更这些项目,而即使在因设计变更等而改变玻璃基板2上的各层(PS6、VA7、透明电极5、BM3、着色像素4、金属膜8及9)的材料或厚度的情况下,亦可设定最适合各层剥离的条件。又,在该第1酸性液处理部22a、第1碱性液处理部24、第2酸性液处理部26以及第2碱性液处理部28中,根据需要而设置用以剥离基板上的层的刷子或海绵辊等。
[0108] 在利用本实施方式的玻璃基板再生装置20处理图1A及图1B所示的不良基板1a及1b的情况下,各层的剥离过程根据不良基板的叠层构造的不同而不同。
[0109] 在投入图1A所示的不良基板1a的情况下,在第1酸性液处理部22a中,不会剥离最上层的PS6及VA7,而将露出的透明电极5的一部分剥离。然后,和第1实施方式一样,在第1碱性液处理部24、第2酸性液处理部26以及第2碱性液处理部28中依次将各层剥离,而再生玻璃基板2。
[0110] 在投入图1B所示的不良基板1b的情况下,在第1酸性液处理部22a中,将为了探索金属膜的成膜条件而形成的金属膜8剥离。然后,和第1实施方式一样,在第1碱性液处理部24、第2酸性液处理部26以及第2碱性液处理部28中依次将各层剥离,再生玻璃基板2。
[0111] 此外,在第2酸性液处理部26中,虽然对不良基板的背面亦喷射药液,但是因为该溶液为酸性,所以对如图1A及图1B所示的、在背面裸露玻璃基板的不良基板无损害。
[0112] 图5B是表示本发明的第2实施方式的玻璃基板再生装置的其他的例子的图。
[0113] 玻璃基板再生装置20b设置有第1酸性液处理部22b,来取代玻璃基板再生装置20a(图5A)的第1酸性液处理部22a。第1酸性液处理部22b向从基板搬入部21所搬入的不良基板1的双面喷射酸性液,将金属膜剥离。玻璃基板再生装置20b不仅适合处理具有图1A及图1B所示的叠层构造的不良基板1a及1b,而且适合处理图1C~图1E所示的不良基板。
[0114] 在投入图1C所示的不良基板1c的情况下,在第1酸性液处理部22b中,向不良基板1c的双面喷射酸性液,而将表面的透明电极5和背面的金属膜9二者剥离。然后,在第1碱性液处理部28中将最下层的树脂层剥离,而再生玻璃基板2。
[0115] 在投入图1D及图1E所示的不良基板1d及1e的情况下,在第1酸性液处理部22b中,向不良基板1d的双面喷射酸性液,而将背面的透明电极34剥离。然后,在第1碱性液处理部28中将玻璃基板2上的树脂层(PS6、VA7、覆膜保护层33、BM3、着色像素4)剥离,而再生玻璃基板2。
[0116] 在图1C~图1E所示的构造中,在玻璃基板2的背面上直接形成有金属膜(ITO膜)。如果在此状态下最先进行碱性处理,则碱性处理液渗入金属膜的多孔状结晶的间隙中而侵蚀玻璃基板2。由于在玻璃基板2的背面上产生原来的玻璃表面部分和被侵蚀的部分,玻璃基板2的表面成为磨砂玻璃状,而无法再将玻璃基板2用作基材。因此,在图5B的装置中,首先,进行酸性液处理,将在玻璃基板2的表面上直接形成的金属膜剥离。在将不良基板1c~1e投入到第1酸性液处理部22a或22b中的情况下,虽然在第2碱性液处理部28中处理所再生的玻璃基板2(素玻璃的状态),但是因为该处理时间短,所以抑制了对玻璃基板2的侵蚀。
[0117] 又,在对图1C~图1E所示的构造的不良基板1c~1e进行再生的情况下,能以1次的酸性液处理和1次的碱性液处理来再生玻璃基板2。因此,亦可从基板搬入部21将不良基板1c~1e投入到第2酸性液处理部26中,而不是投入到第1酸性液处理部22a或22b中,另一方面,在将不良基板1c~1e直接投入到第2酸性液处理部26中的情况下,因为不进行不必要的碱性液处理,所以可将基板的侵蚀抑制到最小限度。
[0118] 又,在图5A及图5B的构成例中,虽然第2酸性液处理部26向不良基板的双面喷射酸性液,但是亦可如下所示地构成第2酸性液处理部。
[0119] 图6是表示本发明的第2实施方式的玻璃基板再生装置的其他的例子的图。
[0120] 图6所示的玻璃基板再生装置20c具备有:一对第2酸性液处理部26a及26b,配置于第1碱性液处理部24和第2碱性液处理部28之间,并仅向不良基板的一个面喷出酸性液;及一对喷淋水洗部27a及27b,配置于紧跟在各第2酸性液处理部26a及26b之后的位置。又,在喷淋水洗部27a与第2酸性液处理部26b之间、喷淋水洗部27b与第2碱性液处理部28之间,设置用以使不良基板的正反面翻转的未图示的翻转机构。即使如此地构成,亦和图4的装置一样,可将形成于玻璃基板的背面的金属膜9剥离。此外,在图6的例子中,亦可采用向不良基板的双面排出酸性液的第1酸性液处理部22b(图5B),来取代第1酸性液处理部22a。
[0121] 如以上的说明所示,若依据本实施方式的玻璃基板再生装置20a及20b,能够从各种不良基板来再生玻璃基板,而与不良基板的叠层构造无关。
[0122] (第2实施例)
[0123] 以下,作为第2实施例,示出了使用图5A的玻璃基板再生装置20a来处理具有图1B的叠层构造的不良基板时的具体的处理条件。此外,在第1及第2碱性液处理工序中所使用的碱性液及在第1及第2酸性液处理工序中所使用的酸性液与该第1实施例中所采用的一样。
[0124] 表2
[0125]
[0126] 表2示出了下述结果:改变药液的排出条件(温度、排出时间),并用“○:无残渣,×:有残渣”来评价剥离处理后的各层有无残渣。此时,第1及第2碱性液处理部中的碱性液的排出压力都设为0.1MPa,而第1及第2酸性液处理部中的排出压力设为0.15MPa。此外,表中的向上的箭头“↑”表示和上一行的值相同。
[0127] 从条件9~13可知,第1碱性液处理部中的碱性液的排出压力为0.1MPa时,最上层的树脂层(PS、VA)在液体温度40℃、排出时间60秒以上的条件下、或液体温度30℃、排出时间90秒以上的条件下完全地被剥离,亦未产生残渣。
[0128] 从条件5~8可知,第1及第2酸性液处理部中的酸性液的排出压力为0.15MPa时,透明电极及探索成膜条件用的金属膜,在液体温度55℃、排出时间180秒以上的条件下、或液体温度65℃、排出时间150秒以上的条件下完全地被剥离,亦未产生残渣。
[0129] 从条件1~4可知,第2碱性液处理部中的碱性液的排出压力为0.1MPa时,最下层的树脂层(BM、着色像素)在液体温度65℃、排出时间240秒以上的条件下完全地被剥离,亦未产生残渣。
[0130] (第3实施方式)
[0131] 图7是表示本发明的第3实施方式的碱性液处理单元的示意构成图。
[0132] 碱性液处理单元40a是用来为了从不良基板再生玻璃基板而将玻璃基板上的树脂层(PS6、VA7、BM3、着色像素4)剥离的装置。碱性液处理单元40a可作为上述第1及第2各实施方式的玻璃基板再生装置所具备的第1及第2碱性液处理部中的一方或双方来加以利用。
[0133] 碱性液处理单元40a具备有:沿着不良基板的搬运方向串联地配置、并可对不良基板独立地进行剥离处理的一对处理部41a与41b,碱性液补充槽42,剥离液补充槽43以及回收盘44a与44b。
[0134] 处理部41a包含有:储存处理液的储存槽45a、向不良基板排出处理液的喷嘴46a、经由配管47a向喷嘴46a供给储存槽45a内的处理液的泵48a以及擦洗并清洁基板表面的清洁刷(末图示)。处理部41b包含有:配置于处理部41a的下游并和设置于处理部41a中的储存槽一样的储存槽45b、喷嘴46b、经由配管47b而向喷嘴46b供给处理液的泵48b以及清洁刷(未图示)。
[0135] 在处理部41a中,储存槽45a内的处理液由泵48a向喷嘴46a供给,并从喷嘴46a向不良基板1的表面呈喷淋状排出。然后,利用未图示的清洁刷擦洗不良基板1的表面,藉此将树脂层的一部分剥离。从回收盘44a将不良基板1的清洁用处理液及剥离树脂经由配管49a回收到储存槽45a中。使剥离树脂在储存槽45a内沉淀后,从配管50a排出到外部。或者,亦可将过滤机构设置于配管49a的中途或储存槽45a内,除去处理液中的树脂。
[0136] 在处理部41b中亦一样,储存槽45b内的处理液由泵48b向喷嘴46b供给,并从喷嘴46b向不良基板1的表面呈喷淋状排出。利用未图示的清洁刷擦洗不良基板1的表面,藉此将残留的树脂层剥离。从回收盘44b将清洁所使用的处理液及剥离树脂经由配管49b而回收至储存槽45b。使剥离树脂在储存槽45b内沉淀后,从配管50b排出到外部。或者,亦可将过滤机构设置于配管49b的中途或储存槽45b内,除去处理液中的树脂。
[0137] 在储存槽45a及45b中,储存着被预先调整至规定浓度的处理液,利用未图示的测量装置每隔一定时间地监视其内部的处理液浓度。在储存槽45a内的处理液浓度降低的情况下,从碱性液补充槽42及剥离液补充槽43经由配管51a及52,向储存槽45a补充碱性液及剥离液,而调整储存槽45a内的处理液浓度。另一方面,在储存槽45b内的处理液浓度降低的情况下,从碱性液补充槽42经由配管51b,向储存槽45b补充碱性液,而调整储存槽45b内的处理液浓度。
[0138] 又,亦可采用如下所示的结构来替代图7所示的碱性液处理单元40a。
[0139] 图8是表示本发明的第3实施方式的碱性液处理单元的其他的例子的图。
[0140] 碱性液处理单元40b中,相对于与图7所示的处理部一样的处理部41a及41b,分别设置有碱性液补充槽42a及42b、剥离液补充槽43a及43b。
[0141] 在图8所示的碱性液处理单元41b中,在储存槽45a及45b内的处理液浓度降低的情况下,从碱性液补充槽42a及42b经由配管51a及51b而向储存槽45a及45b供给碱性液。又,从剥离液补充槽43a及43b经由配管52a及52b,而向储存槽45a及45b供给剥离液。
[0142] 在图7及图8所示的碱性液处理单元40a及40b中,在处理部41a和处理部41b中,处理液的成分或浓度中的至少一个不同。具体而言,在图7的结构中,通过将剥离液仅混合到上游侧的处理部41a中所使用的处理液中,而使得处理部41a及41b中所使用的处理液的成分不同。又,亦可使下游侧的处理部41b中所使用的处理液所含的碱性液浓度比处理部41a的低(图7及图8),或使下游侧的处理部中所使用的处理液所含的剥离液浓度比处理部41a的低(图8)。
[0143] 若如此随着从上游往下游,使处理液的浓度(碱性液浓度、剥离液浓度)降低,则可有效地使用碱性液或剥离液。即,在应剥离的树脂量最多的碱性液处理的起始阶段,以浓度比较高的处理液强力地进行剥离处理,在随着剥离处理的进行而树脂量减少的后面的阶段,以低浓度的处理液进行剥离处理。结果,和使用一定浓度的处理液的情况相比,因为可减少碱性液及剥离液的用量,所以可降低玻璃基板再生所需的费用。又,藉由使处理液浓度逐渐降低,而可缩短玻璃基板曝露于高浓度处理液的时间,结果,可防止碱性成分对玻璃基板的损伤。
[0144] 此外,在上述的说明中,虽然示出了藉由来自喷嘴46a及46b的处理液的排出和清洁刷的擦取的组合来处理不良基板的例子,但是作为处理部41a及41b中的树脂层的剥离处理部,可采用任何结构。例如,亦可以规定压力向不良基板喷射处理液,在使树脂膜剥离某程度后,以海绵抹擦表面而进行清洁。又,亦可使用海绵辊来替代清洁刷。或者,使不良基板以浸泡于处理液中的状态搬运,然后,以高压向不良基板喷射处理液,而将树脂膜剥离、除去。
[0145] 又,在图7及图8的例子中,虽然说明了使用2个处理部41a及41b来构成碱性液处理单元的例子,但是只要多个处理部串联地配置即可,处理部的个数可以是2个以上的任意个。
[0146] (第3~第6实施例)
[0147] 以下,作为第3~第6实施例,示出了使用图7的碱性液处理单元40a的情况下(更详细而言,将图7的碱性液处理单元40a应用于图3所示的玻璃基板再生装置的第1碱性液处理部12及第2碱性液处理部16中的情况下)的具体处理条件。又,作为比较例,示出了使用图18所示的结构的玻璃基板再生装置的情况下的处理条件。此外,图18所示的喷嘴是将图7所示的喷嘴串联地连接起来的喷嘴。
[0148] 作为处理对象的基板,使用在由无碱玻璃形成的玻璃基板(尺寸:2160mm×2460mm、厚度:0.7mm)上形成有BM、着色像素、ITO透明电极、PS以及VA的基板(图1A)。
[0149] 碱性液的成分如下所示。又,在第1碱性液处理部12及第2碱性液处理部16中使用相同的处理液。
[0150] (1)处理液1(上游侧的处理部41a用):
[0151] 无机碱(氢氧化钾)11重量%
[0152] 有机碱(单乙醇胺、三乙醇胺)20重量%
[0153] 乙二醇醚28重量%
[0154] 苯甲基乙醇8重量%
[0155] 水33重量%
[0156] (2)处理液2(下游侧的处理部41b用):
[0157] 无机碱(氢氧化钾)11重量%
[0158] 水89重量%
[0159] 第1及第2碱性液处理部中的处理液的温度如下所示。
[0160] (1)第3实施例:55℃
[0161] (2)第4实施例:45℃
[0162] (3)第5实施例:60℃
[0163] (4)第6实施例:65℃
[0164] 又,第1碱性液处理部及第2碱性液处理部中的处理如下所示进行。一面从喷嘴以排出压力0.1MPa的喷淋方式排出上述温度的处理液,一面利用清洁刷将处理对象基板进行清洁,并将树脂层(PS、VA、BM、着色像素)剥离除去。将基板的搬运速度设为1000mm/分钟,将上游侧及下游侧的处理部的处理时间都设为90秒(总处理时间为180秒)。
[0165] (比较例)
[0166] 在比较例中,使用成分和上述处理液1相同的处理液。一面从喷嘴以排出压力0.1MPa的喷淋方式排出55℃的处理液,一面利用清洁刷清洁处理对象基板,而将PS、VA剥离、除去。将基板的搬运速度设为1000mm/分钟,将处理时间设为180秒。
[0167] 此外,在酸性液处理工序中,使用周知的处理装置或处理液将透明电极膜剥离、除去。
[0168] 关于在第3~6实施例及比较例中再生的玻璃基板,利用目视检查,确认残渣的附着或有无斑点,并根据元素分析而进行铟的检测、表面粗糙度的测量。在第1~4实施例及比较例任一例中再生的玻璃基板中,都未看到残渣的附着或斑点,未检测到铟。玻璃基板的表面粗糙度在第3~6实施例中为0.501nm,而在比较例中为0.544nm,都满足玻璃基板的质量基准。如此,在第3~6实施例中,将碱性液处理部分割成上游侧的处理部及下游侧的处理部两部分,虽然在下游侧的处理部使用碱性浓度低的处理液,但是已确认能够没有问题地再生玻璃基板。
[0169] (第4实施方式)
[0170] 图9是表示本发明的第4实施方式的搬运装置的一部分的立体图,图10是图9的IX-IX线视图。
[0171] 搬运装置60具备有:在各个上端部支撑不良基板1的下表面的多个辊61、及使各个辊61绕中心轴转动的驱动机构(未图示)。各个辊61按规定间隔配置成中心轴彼此平行,藉由驱动机构进行转动,从而各个中心轴朝向连续的方向(图9及图10的左右方向)搬运不良基板1。
[0172] 又,在比辊61的上端部靠下的下方,设置有刮刀62,其用以刮取附着于辊61上的液体62。刮刀62具有沿辊61的轴向延伸的长条板形,以其一边与辊61的外表面抵接的状态被固定。如图10所示,在刮刀62与辊61相接触的部分的下方,设置有液体接收部63,其用以接收由刮刀62所刮取而掉下的液体67。由液体接收部63所接收的液体67被储存于回收槽64。
[0173] 为了处理在辊61上移动的不良基板1,而从喷嘴65向不良基板1排出处理液66。包含有所排出的处理液及所剥离的各层的材料的液体绕至不良基板1的下表面,而附着于辊61上。
[0174] 亦如在上述第1及第2实施方式中所述,在本发明的玻璃基板再生装置中,不是采用将多个不良基板一起浸泡于处理液中的浸泡方式,而是采用一面逐片搬运不良基板一面依次进行处理的逐片搬运方式。在此逐片搬运方式中,存在着下述问题:在再生处理中所剥离的光阻剂或ITO等附着于辊61上之后,再次转印并固定到再生基板上,变成异物。因此,以往除了在水洗工序中需要对基板的双面喷射水并仔细地进行清洁以外,还需要以短的时间间隔清洁搬运装置,存在维护性不佳的问题。
[0175] 在本实施方式的搬运装置60中,因为刮刀62接触辊61的表面,所以随着辊61的转动而除去附着于辊61的表面的液体。结果,抑制了除去物再次附着于玻璃基板,而可防止某工序中的除去物被带入其他的工序。在利用逐片搬运方式进行的玻璃基板再生处理中,因为交替地进行酸处理及碱处理,虽然因某工序中的除去物和下一工序的处理液的混合,而有引起剥离能力的降低或析出物的产生的情况,但是依据本实施方式的搬运装置60,可防止这样的问题。又,因为可有效地回收由辊61所刮取的液体67,所以亦可提高搬运装置60的维护性或减轻过滤器的负担。此外,亦可大量地减少水洗时所使用的水量。
[0176] 此外,刮刀62的材质只要是和处理液不反应的材料即可,可利用弹性体或超高分子量聚乙烯、聚甲、聚四氟乙烯等。尤其,因为刮刀62是以压在辊61上的状态被固定,所以优选地使用耐磨性优良的材料。
[0177] 又,虽然亦可对全部的辊61设置刮刀62,但是效率高的是,以多发生液体绕入的部分为中心对一部分辊61进行设置。
[0178] 此外,在搬运装置60中,除了支撑基板的下表面的辊61以外,有时还设置从上压住所搬运的基板的上部辊。相对于此上部辊亦可同样地安装刮刀。如此构成时,因为可除去附着于上部辊的液体,所以可进一步提高在辊61上安装有刮刀62时所获得的效果。
[0179] (第5实施方式)
[0180] 图11是表示本发明的第5实施方式的玻璃基板再生装置的图,图12是表示图11所示的透过型光传感器的示意结构图。此外,在图11中,箭头表示基板的搬运方向。
[0181] 本实施方式的玻璃基板再生装置还具备有:判断不良基板上是否有透明电极的判断部70、根据判断部70的判断结果来分配不良基板的搬运目的地的分配部71。
[0182] 判断部70包含有透过型光传感器72,该传感器检测不良基板上的多个点处的规定波长的光的透过率。透过型光传感器72具有射出第1波长的光的光源73a、射出和第1波长不同的第2波长的光的光源73b、检测第1波长的光强度的光传感器74a以及检测第2波长的光强度的光传感器74b。判断部70使用透过型光传感器72,感测不良基板1中的素玻璃部分(未被BM及着色像素覆盖的部分)上的多个点的透过率并判断有无透明电极5。
[0183] 具体而言,作为第1波长及第2波长,使用蓝色区域的450nm及绿色区域的600nm。若将从这些波长的光源所射出并仅透过玻璃基板2的光的透过率设为100%,则透过透明电极5及玻璃基板2双方的光的透过率为92~95%。因此,若在不良基板1上的多个点检测此2个波长的透过率,可判断有无透明电极。
[0184] 在判断部70判断在不良基板上有透明电极的情况下,分配部71将不良基板投入第1碱性液处理部12中。因此,在此情况下,所投入的不良基板经由第1碱性液处理部12、酸性液处理部14以及第2碱性液处理部16依次剥离各层,再生玻璃基板。另一方面,在判断部70判断在不良基板上无透明电极的情况下,分配部71将不良基板投入到第2碱性液处理部16中。因此,在此情况下,所投入的不良基板只在第2碱性液处理部16中进行剥离处理,再生玻璃基板。
[0185] 如上所述,在彩色滤光器的制造工序中,产生具有各种叠层构造的不良基板。另一方面,玻璃基板再生处理的工序大致分成将树脂光阻剂剥离的碱性液处理、和将金属膜(透明电极)剥离的酸处理。虽然无金属膜的不良基板、即在玻璃基板上形成有BM、着色像素的一部分或全部的不良基板,只进行第2碱性液处理,就可再生玻璃基板,但是如果采用同样方式处理所有种类的基板,需要徒劳地进行本来所不必要的第1碱性液处理或酸性液处理。
[0186] 依据本实施方式的玻璃基板再生装置,可着眼于不良基板上有无透明电极来区分不良基板,有效地进行不需要酸性液处理的不良基板的再生处理。又,藉由对无透明电极的不良基板不进行不必要的酸性液处理,而可抑制从酸性液处理部向第2碱性液处理部不必要地带入酸性液。因而,可延迟第2碱性液处理部的处理液的劣化速度。
[0187] 此外,在本实施方式中,虽然说明了对第1实施方式的玻璃基板再生装置附加了判断部70及分配部71的例子,但是亦可对第2实施方式的玻璃基板再生装置同样地附加判断部70及分配部71。
[0188] (第6实施方式)
[0189] 图13是表示本发明的第6实施方式的玻璃基板再生装置的图。
[0190] 本实施方式的玻璃基板再生装置除了第1实施方式的玻璃基板再生装置10以外,还具备有蚀刻液管理部75a和蚀刻液供给排出部81。
[0191] 蚀刻液管理部75a包含有:用以测量不良基板表面的透明电极的膜厚的接触式表面形状测量部76、和算出所测量的膜厚的累计值的累计计算/判断部77。
[0192] 接触式表面形状测量部76以接触式的针扫描处理对象基板上的透明电极膜表面,再根据玻璃基板和透明电极膜表面的阶差,而测量透明电极膜的膜厚。此测量时的针压约3mg,扫描速度约50μm/sec。
[0193] 累计计算/判断部77将接触式表面形状测量部76所测量的各基板上的透明电极膜的膜厚累计计算,算出累计膜厚。累计计算/判断部77比较基准值(是预设的值)和所算出的累计膜厚,其中,基准值表示补充或者更换蚀刻液时的基准累计膜厚,并判断所算出的累计膜厚是否超过基准值。在所算出的累计膜厚超过基准值的情况下,累计计算/判断部77经由传送线路80向酸性液处理部14及蚀刻液供给排出部81指示蚀刻液的补充或更换。
[0194] 蚀刻液供给排出部81具备有经由配管并依次连接的过滤器82、泵83、转接槽84、电磁85以及流量计86。过滤器82经由配管89而和酸性液处理部14内的储存槽79连接。在流量计86上连接着蚀刻液供给排出用的配管87,在转接槽84上连接着废液排出用的配管88。
[0195] 在向酸性液处理部14供给蚀刻液时,将经由配管87所供给的蚀刻液暂时储存于转接槽84中后,使用泵83向储存槽79送出转接槽84内的蚀刻液。另一方面,在排出酸性液处理部14的蚀刻液时,将储存槽79内的蚀刻液暂时排出到转接槽84中后,经由配管88而从转接槽84排出到外部。
[0196] 作为用以剥离ITO等透明电极的蚀刻液,例如使用盐酸和硝酸的混合液、或三氯化铁与盐酸的混合液、或稀盐酸等酸性液。因为蚀刻液每进行剥离处理一次,浓度就会逐渐降低,所以需要在适当的时刻进行补充或更换。彩色滤光器制造工序中所产生的不良基板上的透明电极的膜厚一般约140nm。因此,若所有的不良基板的透明电极膜的膜厚是大致一定的值,藉由对投入到酸性液处理部中的不良基板的片数进行计数,而可计算出此蚀刻液的补充或更换的时期。
[0197] 可是,实际上,在处理对象基板中存在着透明电极的膜厚比一般的制造工序中所形成的厚度厚很多的基板。
[0198] 更详细而言,在因维修等而使用以形成透明电极膜的溅装置暂停后,再次使该装置运转时,事先使用探索成膜条件用的玻璃基板(以下称为“实验基板”)来确认成膜条件。此实验基板在为了探索成膜条件而被反复利用后,用于进行所叠层的透明电极膜的剥离处理,而再生玻璃基板。
[0199] 实验基板上的透明电极膜的厚度是一般的膜厚的数倍~数十倍。因此,如果将实验基板投入到酸性液处理部中,则不管投入片数的多少,蚀刻液的浓度迅速降低。结果,酸性液处理部的处理能力降低,有可能产生透明电极膜的除去不良。
[0200] 因此,本实施方式的玻璃基板再生装置利用蚀刻液管理部75a,根据投入到酸性液处理部中的基板上所形成的透明电极膜的实际厚度,来管理蚀刻液的浓度降低程度,并在适当的时刻进行蚀刻液的补充或更换。
[0201] 某一定量的蚀刻液(具有规定的成分)可剥离的透明电极膜的最大量(体积)是大致一定的。因此,在处理对象基板及透明电极膜的面积一定的情况下,若已知透明电极膜的面积和蚀刻液的成分及量,就能以透明电极膜的厚度来表达蚀刻液的蚀刻能力(基准值)。因此,藉由累计计算/判断部77对表面形状测量部76所测量的厚度进行累计,而可掌握蚀刻液的补充及更换的适当时刻。
[0202] 又,为了即使在玻璃基板的尺寸不是一定的情况下、也能够管理蚀刻液,亦可采用如下的结构。
[0203] 图14是表示本发明的第6实施方式的蚀刻液管理部的其他的例子的图。
[0204] 蚀刻液管理部75b除了图13所示的蚀刻液管理部75a的结构以外,还具备有面积测量部78。面积测量部78测量所投入的基板的面积,并向累计计算/判断部77输出所测量的面积。此外,在藉由面积测量部78所进行的面积测量中,可利用公知的各种方法,如对相机所拍摄的图像进行解析并算出面积的方法等。
[0205] 累计计算/判断部77算出,将接触式表面形状测量部76所测量的某基板上的透明电极膜的厚度乘以由面积测量部78所测量的该某基板的面积的值。累计计算/判断部77将通过乘法所得的值(相当于体积)进行累计,而求得累计值。又,累计计算/判断部
77使用可剥离的透明电极膜的最大量(与透明电极膜的膜厚和面积相乘的值相对应),来作为表示蚀刻液的补充或更换时期的基准的值。在判断为所算出的累计值超过此基准值的情况下,累计计算/判断部77经由传送线路80,向酸性液处理部14及蚀刻液供给排出部
81指示蚀刻液的补充或更换。
[0206] 若使用图14的蚀刻液管理部75b来构成玻璃基板再生装置,则即使在投入到酸性液处理部14中的不良基板或实验基板的尺寸发生变化的情况下,亦可确实地判断蚀刻液的补充或更换的时期。
[0207] 此外,优选的是,在上述图13及图14的结构的基础上,还如下所示地构成酸性液处理部14。
[0208] 一般,随着蚀刻液的浓度降低,蚀刻所需的时间变长。另一方面,藉由提高蚀刻液的温度而提高蚀刻的反应性
[0209] 因此,将升温装置设置于酸性液处理部14的任一个位置,而根据蚀刻液的浓度降低程度使液体温度阶段性地上升。蚀刻液的浓度降低程度根据所剥离的透明电极膜的量(体积)来定义,并设定分段的多个临界值和与各个临界值对应的液体温度。然后,累计计算/判断部77判断所求得的累计值是否超过所设定的临界值,在判断为所求得的累计值超过某临界值的情况下,累计计算/判断部77指示酸性液处理部14,使蚀刻液的温度上升至与该某临界值相对应的液体温度为止。
[0210] 作为一个例子,如图13的结构所示,在利用累计膜厚来管理蚀刻液的情况下,如以下的表3所示,设定多个累计膜厚值(临界值)和与其对应的液体温度。每当由累计计算/判断部77所算出的累计膜厚超过各临界值时,使液体温度上升,从而能够使处理时间保持一定,并且可有效地用完浓度降低的蚀刻液。
[0211] 表3
[0212]处理阶段 累计膜厚 液体温度 处理时间
初期 ~30×103nm 55℃ 180秒
中期 30×103nm~60×103nm 60℃ 180秒
末期 60×103nm~ 65℃ 180秒
[0213] 此外,如图14的结构所示,在利用膜厚和基板面积的乘积的累计值来管理蚀刻液的情况下,可将相当于所剥离的透明电极膜的量的值(对应于透明电极膜的膜厚和面积的乘积的值)设为临界值,来替代累计膜厚。
[0214] 又,优选的是,在所算出的累计值超过规定的基准值的情况下,蚀刻液管理部75a及75b使位于酸性液处理部14的上游及下游的各处理部停止动作。在此情况下,在更换储存槽79内的蚀刻液时,可防止从上游的装置搬来基板,或将未完成酸性液处理的基板搬至下游的装置。
[0215] 此外,上述的各实施方式的构成可任意地组合。即,可将任意个第3实施方式的碱性液处理单元、第4实施方式的搬运装置、第5实施方式的分配机构、第6实施方式的蚀刻液(酸性液)管理机构与第1及第2实施方式的玻璃基板再生装置自由地组合。
[0217] 本发明可用于玻璃基板再生装置,其从液晶显示装置等的彩色滤光器制造工序中所产生的不良基板再生玻璃基板。
QQ群二维码
意见反馈