耐火反光结构体

申请号 CN94193359.8 申请日 1994-09-08 公开(公告)号 CN1130890A 公开(公告)日 1996-09-11
申请人 瑞福赖克赛特公司; 发明人 大卫·C·马丁;
摘要 本 发明 涉及一种包括一组刚性反光元件的耐火反光结构体和制造该结构体的方法。该结构体由具有第一面和第二面的一组刚性反光元件形成。把透明的聚合 薄膜 附着在该组刚性反光元件的第一面。透明的耐火 聚合物 外层附着在透明的聚合薄膜上。阻燃层紧挨着该组刚性反光元件的第二面。耐火底层附着在阻燃层上。透明的聚合薄膜通过刚性反光元件组和阻燃层与耐火底层附着在一起。
权利要求

1. 一种具有一组元件的耐火反光结构体,包括:
   a)一组具有第一面和第二面的刚性反光元件;
   b)附着在刚性反光元件组的第一面上的透明聚合薄膜
   c)附着在透明聚合薄膜上的透明耐火聚合物外层;
   d)附着在刚性反光元件组的第二面上的阻燃层;和
   e)附着在阻燃层上的耐火底层。
2. 根据利要求1所述的反光结构体,其中,透明聚合薄膜通过刚性反光
   元件组和阻燃层而与耐火底层附着在一起。
3. 根据利要求2所述的反光结构体,其中,外层包括交联的聚甲酸
   乙酯膜。
4. 根据利要求3所述的反光结构体,其中,透明聚合薄膜是聚乙烯薄
   膜。
5. 根据利要求4所述的反光结构体,其中,乙烯是聚氯乙烯。
6. 根据利要求5所述的反光结构体,其中,聚氯乙烯含有着色剂
7. 根据利要求6所述的反光结构体,其中,着色剂是柠檬色的。
8. 根据利要求7所述的反光结构体,其中,该组刚性反光元件由选自硬
   的环丙烯酸酯,氨基甲酸乙酯,聚睛,取聚酸酯,聚酯,和聚
   烯的材料制成。
9. 根据利要求8所述的反光结构体,其中,该组刚性元件由共聚物制
   成。
10.根据利要求9所述的反光结构体,其中,阻燃层包括溴化的阻燃剂。
11.根据利要求10所述的反光结构体,其中,阻燃层包括混合物,溴化
   的阻燃剂,和粘合剂
12.根据利要求10所述的反光结构体,其中,耐火底层是聚酰胺膜。
13.根据利要求10所述的反光结构体,其中,耐火底层是玻璃纤维增强
   的乙烯树脂膜。
14.根据利要求1所述的反光结构体,其中,在刚性反光组的第二面上淀
   积金属以制成金属反射层,该金属可选自金,,和
15.根据利要求14所述的反光结构体,其中,金属反射层通过粘合剂连
   接到阻燃层上。
16.根据利要求1所述的反光结构体,其中,透明聚合薄膜和刚性反光元
   件组通过粘合剂附着在一起。
17.根据利要求1所述的反光结构体,其中,透明耐火聚合物外层的表
   面可以很容易地被清洗。
18.根据利要求1所述的反光结构体,其中,该结构体当被小滴喷淋
   时仍基本上保持所有的反光性。
19.一种耐火反光结构体,包括:
   a)一组具有第一面和第二面的刚性反光元件;
   b)附着在刚性反光元件组的第一面上的透明聚合薄膜;
   c)附着在透明聚合薄膜上的透明耐火聚合物外层;
   d)附着在刚性反光元件组的第二面上的第一阻燃层;
   e)附着在第一阻燃层上的第二阻燃层;
   g)附着在第二阻燃层上的第三阻燃层;以及
   h)附着在第三阻燃层上的耐火聚合物底层。
20.根据利要求19所述的反光结构体,其中,第一阻燃层包括含在橡胶
   基粘合剂膜中的溴化阻燃剂。
21.根据利要求20所述的反光结构体,其中,第二阻燃层包括聚氯乙烯膜
   中的防早燃添加剂。
22.根据利要求21所述的反光结构体,其中,第三阻燃层包括含在橡胶
   基粘合剂膜中的溴化阻燃剂。
23.一种反光结构体,该反光结构体具有透明聚合薄膜和具有第一面和第
   二面的一组刚性反光元件,其中透明聚合薄膜连接在该组刚性反光
   元件的第一面上,在该反光结构体的改进包括:
       附着在透明聚合薄膜上的透明耐火聚合物外层,附着在刚
       性反光元件组的第二面上的阻燃层,和附着在阻燃层上的
       耐火聚合物底层,因此,当该结构体被暴露在约500°F
       (260℃)下至少5分钟时,该透明耐火聚合物外层,阻燃
       层,和耐火底层足以抑制反光结构体被显著烧焦,熔化
       和着火。
24.一种形成耐火反光结构体的方法,包括下列步骤:
   a)提供透明耐火聚合物薄膜;
   b)把透明聚合薄膜贴到透明耐火聚合物薄膜上;
   c)在适当的模具中聚合一种可聚合物质以形成具有第一面和第二面的
     刚性元件的反光组;
   d)把反光组的第一面贴到透明聚合层上;
   e)提供耐火聚合物底层;
   f)把阻燃层贴到耐火聚合物底层上;和
   g)把阻燃层附着在反光组的第二面上,从而形成耐火反光结构体。
25.根据利要求24所述的方法,其中,在步骤g)之后,把底层的一部
   分通过反光组和耐火聚合物底层连接到透明聚合薄膜上。
26.根据利要求24所述的方法,其中,在步骤b)和步骤c)之间,把粘
   合剂涂层涂到透明聚合薄膜上。
27.根据利要求24所述的方法,其中,在步骤d)和步骤e)之间,把金
   属层加到反光组的第二面。
28.根据利要求26所述的方法,其中,在步骤f)和步骤g)之间,把
   粘合剂涂到金属喷涂层上。

说明书全文

发明所属技术领域

反光材料可用于多种安全目的。尤其是在可见度为至关重要的弱光条 件下的夜间,这些材料是很有用的。这一点对可见度要求很高的消防衣和 防护衣格外重要。然而,消防员所处的环境是极其苛刻的,在过热和高温 条件下尤为如此。许多反光材料都是塑料制成,塑料通常在212°F(100℃) 时就会变软。因此,这类反光材料中的塑料在高温时会软化并开始流动, 从而使该材料失去它的反光性。

与本发明相关的背景技术

消防衣和消防衣上的任何装饰都必须符合全国消防协会(NFPA)制定的 标准。NFPA最近提出了新的更加严格的标准。在题为“Standard on Protective Clothing For Structure Fire Fighting No.531”所提出的该标准要求 消防防护衣的外层材料通过一套试验室测试条件,包括阻燃性,耐热性, 荧光性,光度测定,和缝合强。在耐热性试验中,把试验材料放在500 °F(260℃)的强制对流加热器上至少5分钟。在试验过程中,材料不能熔 化,分解,或燃烧。在阻燃性试验中,将试验材料置于本生灯直焰中12秒 钟。在此时间内,试验材料烧焦必须少于4英寸(10cm),而处在火焰中 时,不能溜淌或熔化。此外,一旦火焰被关闭,试验材料的余焰时间必须 少于2秒钟。符合阻燃性(阻燃性的定义是,当被置于直焰中时的耐着火性) 和耐热性(耐热性的定义是,当被置于相当的热中时的耐熔化,耐分解,或 耐燃烧性)标准的结构体被认为是耐火结构体。

所提出的该标准还要求消防衣应该用325平方英寸(2097cm2)符合标 准的反光带装饰,该带用于形成环绕袖子的条带和用于衣服的底边。

一种类型的反光材料是由立方或棱镜反光体形成的,Stamm的美国 专利U.S3,712,706(公开于1973年1月23日)描述了这种反射体。通常, 棱镜是通过在金属板或其它适当材料的平滑表面上形成主要的染料而制备 的。为了形成立体角,在平板上刻出三组平行等距的相互交叉成60°角的V 形凹槽,然后用模具把立体角组开成在所需平滑的塑料表面。当凹槽的角 度为70度31分43.6秒时,两立体面的交叉所形成的角(V形角)是90°, 入射光被反射回光源

反光结构体的效率是对在由反光轴线散射的锥形体内返回的入射光量 的度量。棱镜结构的变形会影响效率。此外,立体角反光元件具有较低的 曲率,也就是,该元件将只是明亮地反射在它的反光轴附近的小角度范围 内照射到它上面的光。低曲率是由有三个相互垂直侧面的三面结构元件的 内在特性造成的。元件的排列使将被反射的光射入由这些面所确定的空 间,照射光的反射是由光从元件的一面到另一面的内部总反射形成。偏离 元件(它是由元件的面确定的内部空间的三分器)反射轴相当远的照射光以 小于它的临界角的角度照到面上,因此可以穿过表面不被反射。

关于结构件和立体角微棱镜操作的更详细情细情况可参见Rowland的 美国专利U.S.3,684,348(公布于1972年8月15日),这里该文引入作为 参考。Rowland的美国专利US3,689,346(1972年9月5日)也公开了制 作反光薄片的方法,这里也引入作为参考。U.S.3,689,346号专利公开的方 法讲述了在共同成形的模中形成立体角微棱镜。将棱镜附着到薄片上形成 复合结构体,在该结构复合体中立体角形成物从薄片的一面凸出。

本发明的目的

因此,需要一种可以被加热到约500°F(260℃)并保持5分种以上,而 不显著地减小其耐火特性的反光结构体。

本发明的技术方案

本发明涉及一种耐火反光结构体,该结构体包括一组具有第一面和第 二面的刚性反光元件。把透明的聚合薄膜附着在该组刚性反光元件的第一 面。透明的耐火聚合物外层附着在透明的聚合薄膜上。阻燃层紧挨着该组 刚性反光元件的第二面。耐火底层附着在阻燃层上。透明的聚合薄膜通过 刚性反光元件组和阻燃层与耐火底层附着在一起。

形成耐火反光结构体的方法包括提供透明耐火聚合物薄膜的步骤。透 明的聚合物薄膜被贴到透明的耐火聚合物薄膜上。可聚合的物质在适当的 模中聚合形成具有第一面和第二面的刚性反光元件组。该刚性反光组的第 一面贴到透明的聚合层上。阻燃层紧挨着刚性反光组的第二面,耐火底层 贴到阻燃层上,因此而形成耐火反光结构体。透明的聚合薄膜通过刚性反 光元件组和阻燃层与耐火底层附着在一起。

本发明的有益效果

本发明有许多优点。一个优点是传统的彩色透明乙烯基塑料可以用作 反光基质,而反光结构体可以符合所提到的500°F(260℃)的暴露要求, 而无熔化、滴淌、烧焦,或保持太多的热能以至使消防员遭受烧伤。反光结 构体的形状大大地减少了乙烯基热塑料的量,在500°F(260℃)的试验 中,使乙烯树脂在热中的暴露为最小。另一个优点是,带子暴露到425-450 °F(218-232℃)中以后,可以保持它的绝大部分反光性。此外,该结构体的 表面是抗溶剂和潮湿的,而且可以很容易地被清洗以除去烟灰和污物,而 结构体仍保持它的反光性。

附图的简要说明

图1A是本发明反光结构体的第一实施例的横断面视图。

图1B是本发明反光结构体的第一实施例的俯视图。

图2是具有反光涂层的本发明的反光结构体的第二实施例的横断面视 图。

图3是具有反光涂层的本发明的反光结构体的第三实施例横断面视 图。

图4A,图4B,图4C,图4D,图4E,图4F,和图4G是用形成本 发明的实施例的方法形成反光结构体的过程中位于不同点处的反光结构体 的横断面视图。

本发明的最佳实施例

本发明的方法和设备的更详细情况将参照附图进行更具体地描述,并 由权利要求限定。在不同图中出现的相同数值代表相同的元件。应该理解 的是,本发明的具体实施方案可以通过实施例来表示,但本发明并不局限 于这些实施例。本发明的主要特征可以用于各种不同的实施例,但并不偏 离本发明的范围。除非另有说明,所有的份数和百分数都是按重量计算 的。

本发明的第一个实施例(如图1A的横断面视图所示)是反光结构体 10。反光结构体10由外层12形成,外层12特别具有包括在耐火聚合物中 的如下性质,即当被暴露在500°F(260℃)的热空气中至少五分钟时,没 有明显的烧焦、熔化或燃烧。此外,当外层12暴露在NFPA标准531所要 求的直焰中时,没有明显地烧伤。外层12为反光结构体10提供了耐磨、 耐尘土和耐溶剂的表面,它是可见光可穿透的,而且不降低或影响反射或 光学性能。由外层12所提供的表面上的烟灰,溶物,溶剂,油墨等等(包 括被认为在布上是洗不掉的物质)可以很容易地被清洗掉。典型的是,通 过用织物擦,用冲洗,或用中性皂和水洗,外层很容易被清洗。此外, 当被小水滴喷淋或烟雾覆盖时,外层12使反光结构体仍基本上保持它的所 有反光性。另外,外层12基本上消除了荧光颜料从反光结构体10的迁移 并减少了增塑的乙烯树脂所拥有的摩擦和粘着特性。

外层12由适当的聚合物组成,该聚合物是在比乙烯基塑料(交联和 化)高的温度下交联和碳化了的。另一方面,外层12可以是共聚物,这些 聚合物包括聚酰胺,聚酯,聚丙烯酸,聚甲酸乙酯,或其它用紫外线 处理的聚合和交连的涂层。聚合物大体上与包括在反光结构中的其它各层 一样易变曲。在优选的实施例中,聚合物是透明的聚氨基甲酸乙酯薄膜(由 Sancor公司制造的,商标为SancorTM815)。

外层12的厚度可以在约0.0001到0.0004英寸(0.00025到0.001cm)的 范围内。在优选的实施例中,该厚度是在约0.0002到0.0003英寸(0.0005 到0.0076cm)的范围内。所选择的厚度取决于制备方法,聚合物,以及反 光结构体所需要的耐火特性。 外层12和透明膜14附着在一起。透明膜14可以由透明的热塑性乙烯基塑 料膜组成,例如聚氯乙烯、聚偏二氯乙烯、氨基甲酸乙酯膜等,它们是可 延伸和易弯曲的。透明膜14是可见光可穿透的,而且可以是透明的或彩色 的。适当的颜色包括荧光橙、黄等。在优选的实施例中,透明膜是荧光柠 檬绿色。适当的透明膜14的例子是聚氯乙烯薄膜(由Renoliot公司制造的 商标为RenoliotTM HIW的系列产品)。外层12和透明膜14可通过许多适合 的技术连接起来的,如通过粘合剂声波焊接,直接铸塑到外层上等。

透明膜14的厚度可以在约0.003到0.02英寸(0.0076至0.051cm)的范 围内。在优选的实施例中,该厚度在约0.006至0.01英寸(0.015到0.025cm) 的范围内。所选择的厚度取决于制备方法,所选择的热塑性塑料,以及反 光结构体所要求的特性。

反光组16是包括反光立体角棱镜元件所组成的光学元件。其它反光组 包括菲涅透镜和玻璃球。反光组16具有第一面18和第二面20。反光组 16可由透明的聚合物形成,该聚合物选自多种刚性或硬的聚合物。这些聚 合物包括氨基甲酸乙酯,丙烯酸酯,硬的环丙烯酸酯等的聚合物。其他 聚合物包括聚碳酸酯,聚酯,聚睛,聚烯,丙烯酸化烷,和丙烯酸氨 基甲酸乙酯。反光组16通过适当的淀积方法连结起来,例如通过紫外光, 粘合剂,高频焊接,或电子束。聚合物最好被铸塑在小模中,以便形成一 组有单体或齐聚物的刚性反光元件,而聚合作用由紫外辐射引发。透明膜 14为反光组16提供了透明的基底,并提供了一个光滑的表面,使反光组 16被连接在该表面上。

在谷槽23处(在这里立体面的边22相交)反光组16非常薄,以至当非 常小的力作用在反光结构体10上时,不可延伸的棱镜组16就可能沿着谷 槽23龟裂和分开。这使反光结构体10相当易弯曲,而使反光组元件相对 透明膜14保持在与反光组16相连的适当位置,从而反射没有显著改变, 因此得以保持反光结构体10的反光性质。

反光立体角棱镜元件沿每个立体面的边22的长度在约为0.003到 0.006英寸(0.0076到0.015cm)的范围内。在一个实施例中,每个立体面 的边22的长度约为0.0049英寸(0.012cm)。

挨着反光组16的第二面的是阻燃层24,阻燃层24与反光组16之间 排列有空域25。空域25被认为是蔽开的密封区域,阻燃层24由适合的材 料组成,该材料具有足够的阻燃性以便降低反光结构件10的可燃性。通 常,阻燃层24是由载体基质组成的,譬如橡胶基粘合剂。优选的粘合剂是 Bostik 4050(由Bostik公司制造)和阻燃组合物(如溴化的阻燃化合物)。这 类溴化物质可使用Great Lakes公司制造的,商标为Great Lakes DE-83RTM 产品。在优选的实施例中,阻燃层由约60.23%的Bostik 4050,31.32%的 Great Lakes DE-83RTM和8.45%的二甲基苯组成。阻燃层的厚度可以在 0.0002到0.004英寸(0.0005至0.01cm)的范围内。在优选的实施例中, 该厚度在约0.002到0.0022英寸(0.0051至0.0056cm)的范围内。所选择 的厚度取决于制备方法,所选择的阻燃剂,载体基质(如橡胶粘合剂),和 反光结构体所要求的特性。

底层26是由耐火材料组成,该材料可以包括聚合物,比如聚酰胺或玻 璃纤维。其它适当的材料包括玻璃纤维增强的乙烯树脂网或编织物,层压 乙烯树脂或其它相似的支撑物。在优选实施例中,底层26是耐火的、玻璃 纤维增强的乙烯树脂网(由Cooley公司制造,型号为FT-12-U的产品)。

底层26的厚度可以在约为0.003至0.005英寸(0.0076到0.013cm)的 范围内,在优选的实施例中、该厚度约为0.004英寸(0.01cm),所选择的 厚度取决于制造方法,所选择的聚合物,和反光结构体所要求的特性。

底层26通过反光组16和阻燃层24在点27处与透明膜14连接在一 起。如图1B的反光结构体10的俯视图所示,网格图型28通过具有网格图 型镜像的模具在反光结构体10上形成。当压力作用于反光结构体10时, 该结构体被暴露在适当的能源中,如紫外线,热,或电子束。在透明膜14 和底层26之间未连接起来的反光结构体的部分在反光组16和阻燃层24之 间形成空域。在优选的实施例中,网格线的间隔约为半英寸(1.25cm)或1 英寸(2.5cm),线宽度约在16分之一到8分之一英寸(0.16-0.32cm)范围 内。与反光结构体10的其它部分相比,网格图案28的线31是明显不反光 的。

图2示意本发明的另一实施例。图2的结构体有许多与图1相同或相 似的元件,它们由相同的数字表示。

透明膜14与反光组16由透明粘合剂29粘合到透明膜14上。透明粘 合剂29提供一种粘合到透明膜14上的粘合涂层,同时提供交联粘接反光 组16。透明粘合剂对反光结构体10中的增塑剂有屏蔽作用,该增塑剂将 从耐非增塑剂的齐聚物,如透明膜14中移出。增塑剂可对反光组16的长 期光亮度稳定性产生不利影响。另外,反光组16可以一步直接地铸塑到 透明乙烯树脂膜14上。

如果用透明粘合剂29将阻燃层24粘合到反光组第二面20上,那么透 明粘合剂29可能使反光组16的第二面20的表面变潮,因此,破坏了空气 界面和消除了该组的反光能力。因此,将反光涂层33涂在第二面20的表 面。通常,通过喷,或金,或通过真空金属喷涂形成反光涂 层。另外,也可以使用金属漆,绝缘涂层,和其它镜面涂层。

图3示意本发明的另外一个实施例,图3的结构件有许多与图1相同 的元件,相同的元件用相同的数字表示。

如图1所述阻燃层24可由两层或多层组成。在图3中,该阻燃层由第 一层30(它附着到反光组16上),第二层32(它附着到第一层30上),和第 三层34(它附着到第二层32上)组成。第一层30由适当的物质组成,该物 质有足够的阻燃物以便降低反光结构体10的可燃性。第一层30可包括含 有与上面所述的阻燃层24相同的阻燃组合物的橡胶基粘合剂。第一层30 的厚度约在0.0004至0.0006英寸(0.001至0.0015cm)的范围内。在优选 实施例中,该厚度约为0.0007英寸(0.0018cm)。所选择的厚度取决于制造 方法,阻燃剂载体基质的结合,和反光结构体所要求的特性。

第二层32是热塑性塑料,该塑料为结构支持体提供植入其中的阻燃 剂。在该实施例中,热塑性塑料是含有壳牌石油公司发明的防早燃添加剂 的聚氨乙烯。第二层32的厚度约在0.005至0.015英寸(0.013到0.038cm) 和范围内,优选厚度约为0.01英寸(0.025cm)。

第三层34在组分和尺寸上同第一层30相似,在该实施例中,第三层 30包括含有溴化阻燃剂的Bostik4050橡胶基粘合剂,厚度约0.0007英寸 (0.0018cm)。

反光结构体通过本领域已知的方式可粘在适当的衣物上,如消防员的 外套或其它结构体如防火安全帽或贮气罐。例如,反光结构体可由粘合剂 来粘接,该粘合剂是耐增塑剂而且是热化的或对压力敏感的。另一方面, 它也可以缝到衣服上。

在图4A,图4B,图4C,图4D,图4E,图4F和图4G中,示出了 由本发明形成耐火反光结构体的方法在形成耐火反光结构体过程中的不同 点处的结构体。在图4A中,载体膜36被连接在外层12上,使外层12在 反光结构体的形在过程中稳定。该载体膜可以由聚酯、聚酰胺或其他任何 明显不延伸的聚合物制成。同时该载体膜通过适当的载体膜粘合剂38(如 由Dow化学公司制造的Q2-7406)粘到外层12的另一面上。载体膜36和 载体膜粘合剂38在形成反光结构体10时,通过适当的方式可从外层除 去。载体膜36在涂敷过程中有助于阻止伸展而在铸塑和脱膜时使反光结构 体10的定向敏感性减至最小。载体膜粘合剂可以是一种暂时粘合剂,在形 成反光结构体时,该粘合剂暴露在它所遭遇的温度下时对降解是热稳定 的。在一个实施例中,当使载体膜粘合剂进行180°脱皮试验时,载体膜粘 合剂强度约为180至200克的范围内。图4B的方法包括通过用粘合剂粘 合,超声波焊接,或通过直接铸塑到外层的方式将透明膜14粘附在外层 12上。

在图4C中,通过铸塑到透明膜14上形成反光组16。该反光组具有第 一面18和第二面20。反光体16由聚合物,如聚丙烯酸制成。反光组与图 1所示的形状和尺寸基本相同。另外,反光组16的第一面18通过适当的 淀积方法粘到透明膜14上。透明粘合剂29,如Bostik7650可用在透明 膜14和反光组16之间。

在图4D中,阻燃层24粘在底层26上形成底层结构。如果阻燃层24 是如上所述的橡胶基粘合剂阻燃层,那么它可以硫化。耐火聚合物底层26 如Cooley FT-12-U可以在230°F(110℃)下被热合到阻燃层上。

在图4E中,阻燃层24被放在与反光组16相邻的位置。在透明层14 未与底层26相附着的地方形成反光层16和阻燃层24之间的空域25。在 图4F中,透明层14和底层26在点27处粘结在一起,其方式是把它们放 置在有网格图案的模具中,通过加压和对点27加热、紫外线处理等形成粘 结。在透明层14未与底层26连接的地方形成反光组16和阻燃层24之间 空域25。在图4G中,载体膜36和载体膜粘合剂38可以通过剥离或其它

实施例1

耐火反光结构体10由SncorTM815制成的厚度为0.003英寸(0.007cm) 的硬聚胺基甲酸乙酯外层来制成。透明膜层连接在外层上。该膜由柠檬色 透明聚氯乙烯膜制成。该膜是厚度为0.006英寸(0.015cm)的RenoliotTM HIM。

具有第一面和第二面的反光组是由透明的经紫外线处理的聚氨基甲酸 乙酯组成。棱镜外边长为0.0049英寸(0.012cm)。阻燃层放置在紧靠反光 组第二面的位置。

阻燃层由60.23%的橡胶基粘合剂Bostik 4050,31.32%的溴化的阻 燃剂Great Lakes DE-83RTM和8.45%的二甲苯组成。与反光组的第二面相 临的阻燃层的厚度为0.0022英寸(0.0056cm)。底层由玻璃纤维增强的乙烯 树脂膜Cooley FT-12-U组成,该层的厚度为0.01英寸(0.025cm)。

将尺寸为2×12英寸(5.1×30.5cm)的耐火反光结构的样品进行 试验以测定阻燃作用和在0和90°的取向上单位面积的比强度的反光性保 持情况。将柠檬色样品按照NFPA制定的关于Protective Clothing For Strcture Fire Fighting No.531的标准所提供的方法进行试验。该样品放置 在温度为325到500°F(163到260℃)范围内的不同温度的强制对流加热 器上五分钟后,对其进行试验以测定反光性。每个试验之后再进行下列试 验:色度,在抗拉伸中所保持的带强度(表示为未受热的对比样品的百分 数),滴淌,和表面粘性。结果列于表1。

                       表1

  温     度    单位面积比强度*  颜    色     强   度   °F    ℃                                     %   325    163      473×440        无变化        100   350    177      423×388       略微有色       100   375    191      260×220         有色         100   400    204       82×88          褐色         100   425    218       63×62         暗褐色        100   450    232       52×54          橙色         100   475    246       7×10         暗褐红色        90   500    260       1×3          红色/黑色       80 分别在0°和90°时所测定的单位面积的比强度(Candela/Lux/M2)

未检测出滴淌或表面粘性。余焰烧伤试验测定为1.4到1.8秒。测定 的烧伤量为1.5英寸(3.81cm)。没有余烬被检测出。烧焦长度是0.375英 寸(0.95cm)。

实施例2

将尺寸为2×12英寸(5.1×30.5cm)的耐火反光结构体的样品按照英 国火焰试验标准prEN 532(1993)用10秒钟的火焰作用时间进行试验以 测定燃烧性。对照prEn 496“Protective Clothing For Fire Fighters”(1992年 6月版)6.1节关于火焰蔓延的要求对该结果进行评定。对2×12英寸(5.1 ×30.5cm)的5个样品进行了试验。将反光样品在60℃下洗涤5个ISO 6330周期,然后,在试验之前用滚筒干燥。在325至500°F(163到260 ℃)的范围内的不同温度下,将该样品放在强制对流加热器上五分钟后,测 定该样品的荧光黑光活性。结果列于表2和表3中。

                 表2

   荧光性(在°F度下5分钟后测定)

温     度        黑  光  活  性

°F    ℃     敞开密封区域未受影响

325    163    敞开密封区域未受影响

350    177    敞开密封区域未受影响

375    191    敞开密封区域未受影响

400    204    敞开密封区域未受影响

425    218    敞开密封区域是高活性的

450    232    敞开密封区域是低活性的

475    246      用黑光可以检测到

500    260      用黑光检测不到

                   表3

   试    验                  样     品

                           1  2  3  4  5

  燃烧到边缘               无 无 无 无 无

    形成洞                 无 无 无 无 无

燃烧或熔融碎片             无 无 无 无 无

  余烬蔓延                 无 无 无 无 无

 余焰时间,秒              1.0 0  0  0  0

 余烬时间,秒               0  0  0  0  0

未发现燃烧到边缘、燃烧形成的洞、燃烧或熔融的碎片或余烬蔓延。 余焰烧伤试验测定为平均0.5秒。没有测定到余烬。

该样品符合英国的标准,该标准要求样品不能在顶边或侧边燃烧,不 能有空洞形成或不能有燃烧或熔融的碎片。余焰试验的平均值应小于或等 于2秒,余烬的平均值应小于或等于2秒。所有试验样品都符合英国标 准。

熟习本领域的技术人员将认识到或用不超出常规试验的方法确定出许 多与这里详细描述的本发明的具体实施例等效的方案。因此,在权利要求 范围内对这些等效方案进行限定。

QQ群二维码
意见反馈