高温成型用绝热膜和利用该绝热膜的真空绝热材料及其制备方法

申请号 CN201380044660.3 申请日 2013-07-12 公开(公告)号 CN104582958B 公开(公告)日 2017-03-08
申请人 到永HS株式会社; 发明人 金玎原;
摘要 本 发明 提出了一种绝热膜,该绝热膜具有 层压 结构而能够在高温下成型,本发明还涉及一种上述绝热膜包覆在芯材外侧的 真空 绝热材料 ,以及通 过热 熔接工序向芯材外侧包覆绝热膜的真空绝热材料的制备方法。本发明的绝热膜在高温下通过热熔接工序能够稳定地包覆在芯材的外侧。
权利要求

1.一种绝热膜,其特征在于,该绝热膜包括:第一薄膜层,该第一薄膜层选自聚对苯二甲酸乙二醇酯、聚二甲酸乙二醇酯和聚酰亚胺中的至少一种;第一阻挡层,该第一阻挡层通过第一粘接层层压在所述第一薄膜层的一面,所述第一粘接层选自聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物、环树脂苯酚树脂中的至少一种;以及热熔胶层,该热熔胶层层压在所述第一阻挡层的另一面,并且选自聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物、环氧树脂和苯酚树脂中的至少一种;
其中,在所述第一阻挡层与所述热熔胶层之间,通过第二粘接层还向所述第一阻挡层的另一面层压有第二薄膜层,所述第二粘接层选自聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物、环氧树脂和苯酚树脂中的至少一种,所述第二薄膜层选自聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯和聚酰亚胺中的至少一种。
2.根据权利要求1所述的绝热膜,其特征在于,所述第一薄膜层与所述第一粘接层之间还层压有选自玻璃纤维的绝热涂层。
3.根据权利要求1所述的绝热膜,其特征在于,在所述第二薄膜层与所述热熔胶层之间,通过第三粘接层还向所述第二薄膜层的另一面层压有第二阻挡层,所述第三粘接层选自聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物、环氧树脂和苯酚树脂中的至少一种。
4.一种真空绝热材料的制备方法,其特征在于,所述制备方法包括:
切割芯材的步骤;
将根据权利要求1-3中任一项所述的绝热膜作为外皮材料且分别设置在所述芯材的上部和下部,并向真空成型机移送的步骤;
对所述真空成型机的内部施加真空的步骤;
利用加热工具使所述外皮材料和所述芯材热熔接而成型真空绝热材料的步骤;
以及切割所述成型的真空绝热材料的外侧的步骤。
5.根据权利要求4所述的真空绝热材料的制备方法,其特征在于,所述芯材选自陶瓷纸、纺织陶瓷纤维、气相二氧化、聚泡沫、玻璃、气凝胶、无纺布、涤纶和岩棉板中的至少一种。
6.一种真空绝热材料,其特征在于,该真空绝热材料包括:
用于形成绝热层的芯材;
作为包覆在所述芯材外侧的外皮材料且形成为根据权利要求1-3中任一项所述的绝热膜的外皮材料。
7.根据权利要求6所述的真空绝热材料,其特征在于,所述芯材选自陶瓷纸、纺织陶瓷纤维、气相二氧化硅、聚氨酯泡沫、玻璃棉、气凝胶、无纺布、涤纶和岩棉板中的至少一种。

说明书全文

高温成型用绝热膜和利用该绝热膜的真空绝热材料及其制备

方法

技术领域

[0001] 本发明涉及一种绝热膜,更详细地,涉及一种能够进行热熔接成型的绝热膜、包括该绝热膜的真空绝热材料及利用该绝热膜并通过热熔接成型来制备真空绝热材料的方法。

背景技术

[0002] 近来,广泛地使用真空绝热材料来代替如聚酯或泡沫聚苯乙烯等现有的绝热材料。通常,真空绝热材料具有向施加真空状态的芯材(core)的外侧包覆作为外皮材料的如气体或分透过率低的结构,由于隔热效果非常优异,因此最近对其的需求大大增加。
[0003] 通常,被用作真空绝热材料的外皮材料的绝热膜具有多层薄膜层压的结构,尤其普遍具有阻气性(gas barrier)优异的复合塑料的层压结构。现有的真空绝热材料是容纳作为芯材的塑料发泡体或无机物并对内部进行减压后,通过高频方式将绝热膜密封芯材的外侧而制造。但是,通过真空高频方式将绝热膜向芯材的外侧粘接的情况下,在将绝热膜向芯材的外侧包覆的过程中,尤其是将芯材的边缘部分向着中心包覆时,绝热膜不能完全与芯材粘接。由此,空气或水分会通过绝热膜进入而随着时间的推移导致真空度降低,从而存在不能维持绝热性的问题,尤其是在高湿度下绝热膜会产生变型等问题。
[0004] 此外,以往为了制造真空绝热材料而在密封绝热膜的过程中对芯材的表面和边部分进行成型时,会发生绝热膜的皱褶现象,从而发生产品不良的可能性大。

发明内容

[0005] 本发明要解决的技术问题
[0006] 本发明为了解决上述现有技术中存在的问题而提出,本发明的目的在于提供一种具有充分耐热性的绝热膜以及使用该绝热膜作为外皮材料的真空绝热材料。
[0007] 本发明的另一目的在于提供一种通过热熔接工序使具有充分耐热性的绝热膜包覆在芯材的外侧而容易加工且成型的真空绝热材料的制备方法。
[0008] 课题解决方案
[0009] 根据具有上述目的的本发明提供一种绝热膜,该绝热膜包括:第一薄膜层,该第一薄膜层选自聚对苯二甲酸乙二醇酯(PET)、聚二甲酸乙二醇酯(PEN)和聚酰亚胺(PI)中的至少一种;第一阻挡层,该第一阻挡层通过第一粘接层层压在所述第一薄膜层的一面,所述第一粘接层选自线型低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、流延聚丙烯(CPP)、聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物(EVA)、环树脂苯酚树脂中的至少一种;以及热熔胶层,该热熔胶层层压在所述第一阻挡层的另一面,并且选自线型低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、流延聚丙烯(CPP)、聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物(EVA)、环氧树脂和苯酚树脂中的至少一种。
[0010] 此时,所述第一薄膜层与所述第一粘接层之间还可以层压有选自玻璃纤维的绝热涂层。
[0011] 根据一个实施例,在所述第一阻挡层与所述热熔胶层之间,通过第二粘接层还向所述第一阻挡层的另一面层压有第二薄膜层,所述第二粘接层选自线型低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、流延聚丙烯(CPP)、聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物(EVA)、环氧树脂和苯酚树脂中的至少一种,所述第二薄膜层选自聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)和聚酰亚胺(PI)中的至少一种。
[0012] 根据另一个实施例,在所述第二薄膜层与所述热熔胶层之间,通过第三粘接层还向所述第二薄膜层的另一面层压有第二阻挡层,所述第三粘接层选自线型低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、流延聚丙烯(CPP)、聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物(EVA)、环氧树脂和苯酚树脂中的至少一种。
[0013] 此外,本发明提供一种真空绝热材料的制备方法,所述制备方法包括:切割芯材(core material)的步骤;将根据本发明提供的绝热膜作为外皮材料且分别设置在所述芯材的上部和下部,并向真空成型机移送的步骤;对所述真空成型机的内部施加真空的步骤;通过加热工具使所述外皮材料和所述芯材热熔接而成型真空绝热材料的步骤;以及切割所述成型的真空绝热材料的外侧的步骤。
[0014] 作为一例,所述芯材可选自陶瓷纸(ceramic paper)、纺织陶瓷纤维(cerakwool)、气相二氧化 聚氨酯泡沫、玻璃、气凝胶、无纺布、涤纶 和岩棉板中的至少一种。
[0015] 此外,本发明提供一种真空绝热材料,该真空绝热材料包括:用于形成绝热层的芯材;作为包覆在所述芯材外侧的外皮材料且形成为上述绝热膜的外皮材料。
[0016] 此时,所述芯材可以选自陶瓷纸、纺织陶瓷纤维、气相二氧化硅、聚氨酯泡沫、玻璃棉、气凝胶、无纺布、涤纶和岩棉板中的至少一种。
[0017] 有益效果
[0018] 本发明提出了一种具有充分耐热性的绝热膜,以及形成为该膜包覆在芯材外侧的真空绝热材料。
[0019] 由于绝热膜具有充分的耐热性,因此能够通过热熔接工序使其包覆在芯材的外侧,从而容易加工且成型而能够粘接在芯材上而成型。
[0020] 尤其是与现有的绝热膜不同,由于绝热膜是以同时完全粘接在芯材的外侧的形式包覆,因此空气或水分不能通过绝热膜进行渗透,从而能够维持高的真空状态。尤其是在高湿度下也能够防止绝热膜的变形,从而能够实现维持真空状态而发挥持续的绝热性能。
[0021] 此外,通过热熔接加工,能够向芯材的表面平滑地包覆绝热膜,从而消除了绝热膜在边缘区域皱褶的现象而能够降低不良率。附图说明
[0022] 图1为简略图示根据本发明的第一实施方式的绝热膜的层压结构的剖视图。
[0023] 图2为简略图示根据本发明的第二实施方式的绝热膜的层压结构的剖视图。
[0024] 图3为简略图示根据本发明的第三实施方式的绝热膜的层压结构的剖视图。
[0025] 图4为简略图示根据本发明的第四实施方式的绝热膜的层压结构的剖视图。
[0026] 图5为简略图示使用根据本发明制备的绝热膜并通过热熔接工序制备真空绝热材料的过程的图。
[0027] 图6为简略图示根据本发明在真空状态下进行热熔接的真空成型装置的图。
[0028] 图7a至图7c为简略图示根据本发明的绝热膜通过热熔接包覆在芯材的外侧而制备真空绝热材料的过程的图。
[0029] 图8a至图8e分别为对根据本发明制备的真空绝热材料的状态进行拍摄的照片。

具体实施方式

[0030] 本发明人为了解决现有技术中存在的问题,以适合采用热熔胶方式的热熔接方法来向芯材的外侧粘接绝热膜为基础,从而完成了本发明。下面,参照附图对本发明进行更加详细地说明。
[0031] 图1为简略图示根据本发明的第一实施方式的绝热膜的层压结构的剖视图。如图所示,根据本发明的第一实施方式的绝热膜100包括:选自高分子树脂的第一薄膜层110;粘接在第一薄膜层110的一面上的第一粘接层120;以及层压在第一阻挡层130的一面上的热熔胶层140。
[0032] 根据第一实施方式的绝热膜100利用以下材料,即,即使在高温例如在120~250℃,优选在200~250℃的温度下也不丧失基本物理性质的材料,从而形成为在向芯材的外侧包覆绝热膜的过程中能够利用热熔接成型。例如,可以使用玻璃化转变温度高的高分子树脂作为第一薄膜层110、第一粘接层120和热熔胶层140。从具体观察来看,第一薄膜层110对表面或粘接于绝热膜100内部的芯材从外部的冲击中起到保护的作用,可以由耐冲击性良好且在高温下不丧失物理性质的高分子树脂制成。例如,第一薄膜层可以为选自聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)和聚酰亚胺(PI)中的至少一种的高分子树脂,优选以4~350μm的厚度层压。如果第一薄膜层110的厚度不足上述范围,会因外部的冲击或刮伤而存在破损的可能性,如果超出上述范围,在制备后续的真空绝热材料时会存在问题。作为一例,制成第一薄膜层110的高分子树脂中,可以使用“ NX10(SKC)”、“ TK10(SKC)”、“ TK20(SKC)”、“ TK50(SKC)”作为聚对萘二甲酸乙二醇酯 (PEN),可以使用“TF70(SKC)”等作为聚酰亚
胺(PI),但本发明的第一薄膜层110并不仅限于这些特定的产品。
[0033] 此外,粘接在第一薄膜层110的一面上的第一粘接层120可以为选自线型低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、流延聚丙烯(CPP)、聚乙烯、聚对苯二甲酸乙二醇酯(PET)、聚丙烯(PP)、乙烯-乙酸乙烯共聚物(EVA)、改性环氧树脂等环氧树脂和改性苯酚树脂等苯酚树脂中的至少一种的高分子树脂,并且以1~100μm的厚度粘接。
[0034] 此外,以第一粘接层120为基准,与第一薄膜层110相对地进行层压的第一阻挡层130可以为气体阻挡层,可以使用箔,优选可以使用铝、氧化铝或硅胶等无机材料,并且优选以5~100μm的厚度层压。
[0035] 此外,在热熔接成型中绝热膜100向芯材的外侧包覆的过程中,层压在第一阻挡层130的一面上的热熔胶层140粘接在芯材的外部表面上,热熔胶层140可以使用密封性良好的高分子树脂。例如,热熔胶层140由选自线型低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、流延聚丙烯(CPP)、聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物(EVA)、环氧树脂和苯酚树脂中的至少一种的高分子树脂制成。例如,热熔胶层140可以以1~100μm的厚度,优选可以以3~100μm的厚度层压。如果热熔胶层140的厚度不足上述范围难以与芯材紧贴,如果超过上述范围,会降低最终制备的真空绝热材料的耐久性。在现有的真空绝热材料中使用的绝热膜的情况下采用了高频方式的粘接方法,但是包括第一实施方式的绝热膜100的本发明的绝热膜的情况下,由于形成有热熔胶层
140,从而能够稳定且迅速地包覆在芯材的外侧。
[0036] 根据包括第一实施方式的本发明中,作为第一粘接层120和热熔胶层140,采用了冲击强度和韧性等物理性质良好的线型低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、流延聚丙烯(CPP)、聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)、聚丙烯(PP)、乙烯-乙酸乙烯共聚物(EVA)、环氧树脂及苯酚树脂等高分子树脂。由此,不仅能够提高绝热膜100的耐热性,而且还能够提高通过热熔接将绝热膜100包覆在芯材的外侧而生成的真空绝热材料的耐久性,并能够防止绝热膜100由外部冲击而导致破损。
[0037] 根据上述第一实施方式的绝热膜100的情况下,在高温的热熔接成型加工中也不会丧失基本的物理性质,同时包覆在芯材的外侧而能够用作真空绝热材料。但是,为了实现更加良好的绝热效果,还可以包含多个结构,图2为简略图示根据本发明的第二实施方式的绝热膜的层压结构的剖视图。在图2所示的绝热膜200的结构中的第一薄膜层210、第一粘接层220、第一阻挡层230及热熔胶层240与图1中说明的相同,因此,在此省略对其说明。为了进一步提高绝热效果,图2所示的绝热膜200在第一薄膜层210和第一粘接层220之间还层压有由玻璃纤维等绝热材料制成的绝热涂层250。只要是以用于对绝热膜赋予绝热效果为目的的情况下,对绝热涂层250的厚度没有特殊限制,例如可以以1~100μm的厚度成型。
[0038] 此外,在图1和图2中,提出了由一个薄膜层形成的绝热膜,但根据需要可以考虑包括两个以上薄膜层的复合绝热膜,图3为简略图示根据本发明的第三实施方式的绝热膜的层压结构的剖视图。在图3所示的绝热膜300的结构中,第一薄膜层310、第一粘接层320、第一阻挡层330及热熔胶层340与上述第一实施方式中说明的相同,因此,在此省略对其说明。
[0039] 根据第三实施方式的绝热膜300在第一阻挡层330与热熔胶层340之间通过第二粘接层322层压有第二薄膜层312。此时,第二粘接层322可以由线型低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、流延聚丙烯(CPP)、聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物(EVA)、环氧树脂及苯酚树脂制成,可以以与第一粘接层320实际相同的厚度夹在第一阻挡层330和第二薄膜层312之间。此外,第二薄膜层312可以选自聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)和聚酰亚胺(PI)中的至少一种,作为一例,优选以4~350μm的厚度层压。
[0040] 在如上所述的第三实施方式中由于包括两个薄膜层而能够使绝热效果极大化,而本发明的复合绝热膜并不仅限于两个薄膜层,当然也可以形成三个以上的由高分子树脂制成的薄膜层。此外,与第二实施方式相同,在第一薄膜层310与第一粘接层320之间及/或第二薄膜层312与第二粘接层322之间可以进一步包括由玻璃纤维制成的绝热涂层。
[0041] 另一方面,也可以考虑形成两个以上的高分子树脂薄膜层的同时,可以考虑形成两个以上的阻挡层的多层结构的复合绝热膜,图4为简略图示根据本发明的第四实施方式的绝热膜的层压结构的剖视图。与第三实施方式相比,第一薄膜层410、第一粘接层420、第一阻挡层430、第二粘接层422、第二薄膜层412及热熔胶层440为相同的组成部分,因此,在此省略对其进行详细说明。在根据本实施方式的多层结构的复合绝热膜400形成为,在第二薄膜层412与热熔胶层440之间通过第三粘接层424进一步层压有第二阻挡层432。
[0042] 此时,第三粘接层424选自线型低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、流延聚丙烯(CPP)、聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、乙烯-乙酸乙烯共聚物(EVA)、环氧树脂和苯酚树脂中的至少一种,并且可以以与第一粘接层420和第二粘接层422相同的厚度夹在第二薄膜层412与第二阻挡层432之间。此外,第二阻挡层432与第一阻挡层430同样地可以起到作为气体阻挡层的功能,并且可以以5~100μm的厚度层压。
[0043] 在如上所述的第四实施方式中,由于包括两个薄膜层而能够使绝热效果极大化。但是本发明的复合绝热膜并不仅限于两个薄膜层,当然也可以形成三个以上的由高分子树脂制成的薄膜层,并且可以形成三个以上的阻挡层。此外,与第二实施方式相同,在第一薄膜层410与第一粘接层420之间及/或第二薄膜层412与第二粘接层422之间可以进一步包括由玻璃纤维制成的绝热涂层。
[0044] 采用如第三实施方式和第四实施方式的层压有两个以上的薄膜层和/或两个以上的阻挡层的多层结构的复合绝热膜时,具有显然良好的耐热性,并且从拉伸和绝缘效果得到提高而能够使阻燃性极大化的方面考虑,可应用于特殊的领域,例如核力水力火力发电所的管道及其以外的涡轮发动机,并且还可以用于需要进行绝热的多个领域中。
[0045] 接着,对于将根据本发明的绝热膜向芯材的外侧进行包覆而制备真空绝热材料的工序进行观察。下面,例示性地说明了上述绝热膜中的根据第一实施方式的绝热膜100,但其他绝热膜也可以按照相同的工序包覆在芯材的外侧。图5为简略图示使用根据本发明制备的绝热膜并通过热熔接工序制备真空绝热材料的过程的图,图6为简略图示根据本发明在真空状态下进行热熔接的真空成型装置的图。此外,图7a至图7c为简略图示根据本发明的绝热膜通过热熔接包覆在芯材的外侧而制备真空绝热材料的过程的图。
[0046] 首先,采用切割工具将芯材( core)500切割为适当的大小,并对此进行一次加工S510而使切割面平滑,将一次加工后的芯材500放入干燥炉中进行干燥而使水分完全去除S520。用于以所需的大小切割芯材500的切割工具可以采用普通锯齿或利用水的喷水器(water-jet)。
[0047] 可以用于有关本发明的芯材500,可以使用用于制备现有的真空绝热材料时的任何芯材,例如,可以选自陶瓷纸、纺织陶瓷纤维、气相二氧化硅、聚氨酯泡沫、玻璃棉、气凝胶、无纺布、涤纶和岩棉板中的至少一种。优选地,可以使用陶瓷纸或、纺织陶瓷纤维、气凝胶、涤纶、岩棉板等阻燃性材料的情况下,能够免受火灾,不仅安全性良好并且作为对人体无害的成分,也可以符合环保的趋势。
[0048] 完成干燥工序的芯材500及另外准备的作为外皮材料的绝热膜100A、100B,例如可以以设置在成型模(成型托盘610)上部的状态下,通过带式输送机等移送方式移动至真空成型机600内部S530。如图6所示,首先在成型模600的上部设置第一绝热膜100A,然后在第一绝热膜100A的上部设置芯材500后,在芯材500的上部设置第二绝热膜100B,在此状态下可以移动至真空成型机600内部。此时,应该通过绝热膜100A、100B的热熔接层,使绝热膜100A、100B包覆在芯材500的外侧。为此,如图7a所示,设置第一绝热膜100A,以使得第一熔接层140A位于设置在芯材500下部的第一绝热膜100A的上部,设置第二绝热膜100A,以使得第二热熔接层140B位于设置在芯材500上部的第二绝热膜100B的下部。
[0049] 在设置绝热膜100A、100B和芯材500的工序中,第一绝热膜100A和第二绝热膜100B在长度方向上相比于芯材500延伸得长,因此在热熔接工序中通过所述绝热膜100A、100B,不仅能够包覆芯材500的上面和下面,而且还可以包覆外侧面。例如,第一绝热膜100A可以向成型架612的内侧设置,所述成型架612从成型模610的边缘向上突出,第二绝热膜100B的边缘设置为能够支撑在成型架612上。
[0050] 在上述设置状态下,使用连接于真空成型机600的真空620,向设置有芯材500和绝热膜100A、100B的真空成型机600的内部提供真空状态S540。作为成型真空绝热材料的步骤中的真空状态可以大约为10-4托以下(约0.01Pa以下),而用于施加这种高真空的真空泵620可以选择使用旋转泵、增压泵及扩散泵。
[0051] 接着,使用真空成型机600中形成的加热器630向真空成型机600内部供给热,从而进行热熔接成型,以使得绝热膜100A、100B能够包覆在芯材500的外侧S550。加热器630的温度可以调至180~250℃,通过由加热器630所提供的热,使得绝热膜100A、100B通过热熔接成型而包覆在芯材500的外侧。即,如图7b所示,分别设置在芯材500的上部和下部的绝热膜100A、100B中,粘接形成在芯材500上的热熔接层140A、140B进行收缩并熔融,从而不仅使绝热膜100A、100B包覆在芯材500的上面和下面,而且在芯材500的两侧面也被绝热膜100A、
100B包覆,从而成型真空绝热材料。作为加热器630可以列举出热线,但本发明并不限定于此。
[0052] 现有的真空绝热材料所使用的绝热膜,在真空后通过高频方式使绝热膜包覆在芯材的外侧,由此存在与芯材之间的粘接力的问题,但本发明是通过热熔接方式同时将绝热膜和芯材粘接,从而能够提高芯材与绝热膜之间的粘接力和粘接保持力,由此能够保持非常良好的真空状态,并且在防止由湿度等产生的膜变形方面也能够维持显著的性能。
[0053] 将完成热熔接并一次加工后的真空绝热材料熟化预定时间直至冷却为止,以使得绝热膜100A、100B能够与芯材500完全粘接S570,然后将成型的真空绝热材料引出至真空成型机600的外部,并从成型架620中取出后,使用刀刃等切割工具切割真空绝热材料的外侧边缘。由此,如图7c所示,能够制备出绝热膜100A、100B包覆在芯材500的外侧的真空绝热材料700。在现有的真空绝热材料的成型方式中,包覆在芯材的外侧的绝热膜进行包覆、切割的过程中,特别是成型产品的边角部分时,会发生膜的皱褶现象,从而使得不良率高,但本发明所述的采用热熔接方式的状态下进行切割时,能够实现光滑的表面处理,并能够去除边角部分的皱褶现象,从而具有显著降低不良率的优点。完成最后切割后的真空绝热材料以适当的大小包装在盒子中S580,从而能够完成真空绝热材料的制备工序。
[0054] 下面,通过例示性的实施例来对本发明进行说明,但本发明并不仅限于下述实施例。
[0055] 实施例1绝热膜的制备
[0056] 使用层压机在以25μm厚度成型的聚萘二甲酸乙二醇酯(SKC, NX10)的第一薄膜层的背面涂覆环氧类树脂热熔胶粘接剂,从而形成5μm厚的第一粘接层。使用层压机在第一薄膜层的底面以15μm的厚度层压由铝箔制成的第一阻挡层,然后将20μm厚的改性环氧类树脂热熔胶粘接剂涂覆在第一阻挡层的底面。
[0057] 实施例2绝热膜的制备
[0058] 除了在第一薄膜层与第一粘接层之间进一步层压20μm厚的玻璃纤维之外,重复上述实施例1的步骤,从而制备绝热膜。
[0059] 实施例3绝热膜的制备
[0060] 除了在第一阻挡层与热熔胶层之间涂覆环氧类树脂热熔胶粘接剂,从而形成15μm厚度的第二粘接层,并且进一步形成以100μm厚度成型的聚萘二甲酸乙二醇酯(SKC,NX10)的第二薄膜层之外,重复实施例1的步骤,从而制备绝热膜。
[0061] 实施例4绝热膜的制备
[0062] 除了在第二薄膜层与热熔胶层之间涂覆环氧类树脂热熔胶粘接剂而形成15μm厚度的第三粘接层,并且进一步层压30μm厚的第二阻挡层之外,重复实施例3的步骤,从而制备绝热膜。
[0063] 实施例5真空绝热材料的制备
[0064] 将分别在上述实施例1至实施例4中制备的绝热膜作为外皮材料、并将陶瓷纸作为芯材而使用,从而制备真空绝热材料。以270×270mm的大小切割芯材,将绝热膜与芯材设置-4在成型架并布置在真空成型机内,将真空成型机内部调节为10 托后,调节不同的热线温度及加热时间,从而进行热熔接成型。热熔接成型结束后,将成型的真空绝热材料进行熟化,之后切割边缘部分后,对绝热膜和芯材的粘接与否、表面状态及厚度变化进行测定。下述表
1中示出了对真空绝热材料的热熔接温度及加热时间,下述表2中示出了物理性质的测试结果。
[0065] 表1
[0066]实施例 热线温度(℃) 传递温度(℃) 加热时间(秒) 芯材
3 193 105 3 陶瓷纸
1 193 105 3 陶瓷纸
2 193 105 3 陶瓷纸
3 193 105 3 陶瓷纸
4 193 105 3 陶瓷纸
[0067] 表2
[0068]
[0069] 此外,图8a至8e中分别图示了根据本实施例制备出的真空绝热材料的形状。芯材和绝热膜的粘接程度良好,并且可以确认边角和边缘区域的形状也被光滑地切割。
QQ群二维码
意见反馈