高温衬底保护结构

申请号 CN200880113739.6 申请日 2008-10-31 公开(公告)号 CN101842855B 公开(公告)日 2013-03-13
申请人 伯利米克思有限公司; 发明人 许砥中; 戴维·贝里; 乔治·I·巴特勒;
摘要 本 发明 公开了一种衬底保护结构,其包括高性能的 聚合物 和从1至超过2500mil厚的聚合物涂层。该结构用具有耐热性、 耐磨性 和化学惰性的聚合物保护金属或其它表面。该结构应用于衬底,提供了容易加工的曲面,提高了金属和聚合物的粘附性,对导致开裂和脱层的机械应 力 和热 应力 的耐受力,提高了环境耐受力。
权利要求

1.一种保护表面的结构,包括:
(a)膜,所述膜包括顶层和在顶层下方的基层,所述基层具有比顶层更高的断裂伸长率,所述顶层具有比基层更高的结晶度,以及
(b)所述膜与衬底相结合,
其中所述的基层和顶层为至少部分混溶的聚合物,且
其中所述的聚合物的熔点高于550°F且UL RTI等级等于或大于450°F。
2.如权利要求1所述的结构,其中所述的衬底包括金属。
3.如权利要求1所述的结构,其中所述的衬底包括金属,该金属包括位于其表面的无机层。
4.如权利要求2所述的结构,其中所述的金属包括黑色金属材料。
5.如权利要求4所述的结构,其中所述的黑色金属材料为
6.如权利要求2所述的结构,其中所述的金属包括有色金属材料。
7.如权利要求6所述的结构,其中所述的有色金属材料为
8.如权利要求3所述的结构,其中所述的无机层的厚度小于0.5mil。
9.如权利要求3所述的结构,其中所述的金属进一步包括位于其表面的一个或多个官能团,无机层设置成与所述一个或多个官能团发生化学反应。
10.如权利要求1所述的结构,其中所述的膜进一步包括在顶层上方的层,所述上方的层的耐磨性比所述顶层低。
11.如权利要求1所述的结构,其中所述的基层的熔点比顶层低。
12.如权利要求1所述的结构,其中所述的基层、顶层、或基层和顶层进一步包括至多
40w/w%的熔化或不熔化的无机填料
13.如权利要求1所述的结构,其中所述的膜的厚度为1mil~2500mil。
14.如权利要求1所述的结构,其中所述的基层和顶层进一步包括一种或多种惰性粘合剂,或一种或多种反应性粘合剂。
15.如权利要求1所述的结构,其中所述的基层和顶层包括附着所述层的交联结构。
16.如权利要求1所述的结构,其中所述的基层和顶层通过位于所述层的熔化界面间的共价键或机械结合构造相附着。
17.如权利要求1所述的结构,其中所述聚合物的熔化温度之差等于或小于150°F,室温下的抗拉强度等于或小于50%,室温下的伸长率之差等于或小于200%。
18.如权利要求17所述的结构,其中所述的聚合物进一步包括无机填料。
19.如权利要求17所述的结构,其中所述的聚合物进一步包括小于或等于40w/w%的无机填料。
20.一种保护表面的方法,包括:
使用一种膜,所述的膜具有顶层和在顶层下方的基层,所述顶层具有比基层更高的结晶度,所述基层具有比顶层更高的断裂伸长率;以及
将所述的膜施用于衬底;
所述基层具有比所述顶层更低的熔点,从而将膜在熔化基层但不熔化顶层的温度下与衬底相结合,
其中所述的基层和顶层为至少部分混溶的聚合物,且
其中所述的聚合物的熔点高于550°F且UL RTI等级等于或大于450°F。

说明书全文

高温衬底保护结构

[0001] 相关申请
[0002] 本申请要求2007年11月2日递交的,申请号为61/001,689的美国临时申请的优先权。

背景技术

[0003] 本发明涉及衬底保护结构,包括新的高性能聚合物和厚度从1mil至超过2500mil的聚合物涂层。本发明还涉及用具有耐热性、耐磨性和化学惰性的聚合物保护金属表面,以及将这些聚合物与金属紧密结合的结构,以提供:(1)容易加工的曲面(curved and bent surface);(2)金属和聚合物间更强的粘附;(3)对导致开裂和脱层的机械应和热应力的更强的耐受力;以及(4)更大的环境耐受力。
[0004] 热塑性材料的定义是一种当被加热到其熔点以上时重复变软,当被冷却到其熔点以下时重复变硬的材料。热塑性材料的例子包括聚苯砜(PPSU)、聚醚酰亚胺(PEI)、聚偏二氟乙烯(PVDF)、乙烯三氟氯乙烯共聚物(ECTFE)、聚醚醚(PEEK)和聚醚酮酮(PEKK)。
[0005] 当聚合物被从熔融冷却固化时,它们可以保持无定形或某种程度的结晶。部分结晶的聚合物称为半结晶的物质。反应化学(reaction chemistry),加工和/或添加剂都能明显地增加或延缓结晶的程度和/或速率。例如,在树脂合成期间的反应化学能够产生容易结晶的PEKK(C-PEKK),也能够产生在多数环境条件下保持无定形的PEKK(A-PEKK)。
[0006] 通常情况下,高温、坚硬、半结晶的芳族聚合物,例如聚苯硫醚(polyphenylene sulfide,PPS),PEEK和C-PEKK具有用于苛刻化学品、高温、磨损环境的困难运行条件的理想特性。然而,由于它们的处理窗口(processing window)很窄,因此极难作为涂层处理,仅限于非常简单的部件几何形状,即使在温和的环境中,其长期耐久性也不佳。由于聚合物和金属之间的线性热膨胀系数(Coefficient of linear Thermal Expansion,CLTE)不匹配,工艺过程中的高熔体温度产生的应力会引起这些问题,结晶引起的高收缩率以及低伸长率,从而导致开裂、出现针孔、粘附性变差和脱层。
[0007] 非晶态聚合物,例如聚苯砜(PPSU)、聚醚酰亚胺(PEI)和A-PEKK,可以与金属相结合,并具有好的耐久性,由于其处理窗口宽、软化点宽、收缩率低、延展性更强,更能粘附于金属表面;然而与半结晶聚合物相比,这些聚合物的耐磨性较差。
[0008] 因而,在本技术领域中没有哪种单独的已知聚合物或化合物能够提供所使用的领域中所需要的全部特性,包括:耐热性、耐磨性、化学惰性、极好的粘附、容易加工和良好的耐久性。

发明内容

[0009] 本发明涉及的体系将高温、半结晶、低伸长率聚合物的有益特性与高温、无定形、高伸长率聚合物的易加工性相结合。分层的A-PEKK/PEEK膜涂层体系(如本文所定义)显示出作为管涂层的优点,并与单层PEEK涂层的性能相比较。本发明所产生的结构(如本文所定义)为曲面或大的表面提供了质量非凡的涂层,这在以前是难以达到的。
[0010] 本发明具有以下优点:
[0011] 1.由半结晶的聚合物,例如PEEK,生产了耐用的涂层,而半结晶聚合物通常难以加工,并有很强的脱层和开裂倾向。
[0012] 2.产品在低涂布量时无针眼,从而改善了涂层的质量。无针眼的涂层改进了电绝缘性,并减少了由溶剂和操作环境中的气体引起的金属腐蚀
[0013] 3.特别是大大改善了凹面的加工性。
[0014] 4.与单层涂层或由一种或多种更高收缩率的聚合物组成的多层涂层相比,通过对弯曲的涂层-金属结构的断裂的耐受力来看,改善了涂层和所有几何形状的金属的粘附性。
[0015] 5.涂层之间不可分离的粘附性。例如,PEEK和A-PEKK在聚合物-聚合物界面上紧密结合,不会因为热和机械震动而分离。
[0016] 6.该结构允许金属衬底和涂层间的CLTE不匹配。
[0017] 7.该结构可以使用两种或更多的类似聚合物,聚合物混合物,或聚合物化合物,它们的收缩率和耐磨性不同,但具有相类似的耐热性和耐化学性,溶剂和气体的渗透性,以及加工条件。附图说明
[0018] 本领域技术人员应当了解,下述附图仅用于说明目的。附图不以任何方式限制本发明的范围。
[0019] 图1所示为本发明的“结构”,其组成结构包括:衬底、基层和顶层。不同实施方式的描述
[0020] 根据本发明,通过例如涂布、模塑和衬里的应用,使用包括从1mil至2500mil的热塑性膜的结构保护金属和其它衬底。这些保护膜提供了一种经济有效的减少或消除金属组件的腐蚀和磨损的方法。这些膜可以用于各种几何形状和尺寸的组件,例如圆柱体、容器、管子、法兰和螺旋体。衬底可以通过使用例如分散液涂布、静电喷涂流化床喷雾、喷涂、火焰喷涂等离子喷涂的多种技术来保护。模塑和挤出使结构直接熔化到金属和其它衬底上(例如,滚塑)。衬里通过生产膜、管道或管子,然后通过第二步骤将衬里附到管道上来制造,该步骤通常包括加热和/或加压使衬里和管道相结合。
[0021] 本发明包含多层的衬底保护结构,其设计适宜使复合层的组成部分产生最大的效益。本发明充分利用了至少两种单独材料的平衡效益,其中一种材料相比另一种材料伸长率更低,收缩率更低,耐磨性更差,结晶性更低。
[0022] 本文中的“衬底”是指本发明的结构所使用的金属或其它表面。金属包括黑色金属和有色金属,黑色金属例如为不锈钢,有色金属例如为。衬底还可以是用偶联剂处理的金属。
[0023] 本文中的“偶联剂”是指用于处理金属(例如,通过涂装或涂布)的无机层。在某些实施方式中,偶联剂是薄或很薄的,厚度为0.5mil或更少。该层与金属上的官能团发生化学反应以产生阻止溶剂和气体的渗透阻挡层。偶联剂可以在处理过程中阻止金属的化,或者在现场应用期间通过聚合物涂布来减少金属腐蚀,以及溶剂和气体的渗透。偶联剂,例如高温烷,通过加热到约90°F~140°F 1小时,或者通过置于室温下老化约24小时来固化到金属上。
[0024] 本文中的“聚合物”包括所有熔点约高于550°F且UL RTI等级(UL RTIrating)不低于约450°F的热塑性材料。聚合物族的例子包括聚酰亚胺,聚砜/多硫化物,芳香族聚醚酮(PAEK)。聚酰亚胺的例子包括PEI,热塑性聚酰亚胺(TPI)和聚苯并咪唑(polybenzimidazole,PBI)。聚砜/多硫化物的例子包括聚苯硫醚(PPS),聚苯砜(PPSO2),聚醚砜(PES)和PPSU。PAEK聚合物的例子包括PEEK、PEKK、PEK、PEKEKK和PPEK。
[0025] 不同的聚合物通常难以直接和持久地相互结合,除非这些聚合物具有相近的熔化温度、熔化稳定性、氧化热阻(thermal resistance to oxidation)、耐化学性、机械强度,以及相互之间具有强的亲和力。在将所有聚合物的混合物熔化时,这些聚合物的组合在两种或更多聚合物的界面间形成紧密,不可分离的结合。
[0026] 而本文中的“相容的”是指聚合物都具有这些特性,另外相容的聚合物还显示完全或部分的混溶性。混溶性可以通过热转变,例如玻璃化温度(Tg)来确定,其中混合物的Tg向组分聚合物的Tg移动。在一些实施方式中,相容的聚合物具有:(1)相差不超过约150°F的熔化温度,(2)室温下的抗拉强度相差至多约50%,以及(3)室温下的伸长率相差至多约200%。抗拉强度和伸长率可以通过ASTM D882A测试方法测量。相同聚合物族的成员是指相容的聚合物。例如,A-PEEK和PEEK,A-PEEK和C-PEKK,PEEK和PEK,PEK和PEKEKK,PEEK和PEI是相容的聚合物。
[0027] 本文中的“混合物”是指两种或更多聚合物的混合物。混合物可以包含相容或不相容的聚合物。混合聚合物的例子包括PEEK和PEI(PEEK/PEI),PEEK/PEI/PES以及PEEK/PPS的混合物。
[0028] 本文中的“化合物”是指聚合物或者聚合物的混合物与任何无机填料混合,无机填料含量高达约40w/w%时,在处理后仍旧保留在涂层中。化合物的例子包括PEEK与5%的玻璃粉末的混合物(PEEK/5%的玻璃粉末),PES/5%的陶瓷粉末,以及PEKK/PI/7%的母。填料超过40w/w%所产生的材料通常会太脆而且结合困难。
[0029] 本文中的“体系”总体上是指聚合物、混合物或化合物。
[0030] 本文中的“收缩率”通常是指如果为半结晶的聚合物,通过结晶,从熔化到固化,体系的尺寸变化。相对于可以结晶的聚合物,非晶态聚合物的收缩率很低,此处特别是指用于涂层的材料所显示的结晶度。聚合物的结晶度越高,熔化的收缩率就越高。例如,A-PEKK的结晶度小于15%,优选小于10%,而PEEK的结晶度通常在25%和30%之间。
[0031] 本文中的“涂层”是指通过一个加工循环形成的膜内的层。一个分散液涂布、静电喷涂、喷涂、流化床喷雾的循环以在炉内的一个热循环为标志,该热循环用于提供热量以使体系熔化,流动并固化为连续的,无针孔的表面。每一涂层应与前一涂层相容,若存在后一涂层,也应与之相容。
[0032] 本文中的“膜”是指在加工过程中产生的涂层的总和(total number),至少包括两层:基层和顶层,还可以包括附加层。
[0033] 本文中的“结构”是指与衬底结合的膜。
[0034] 本文中的“层(layer)”包括体系的一个或多个涂层(coats)。
[0035] 顶层附着于基层(例如,通过结合),并包括第一涂层(first coat)。顶层的第一涂层的组成与基层的最后涂层(last coat)不同。在一些实施方式中,第一涂层的耐化学性和耐磨性比基层要好。
[0036] 基层在顶层下方,基层包括至少一个涂层,该涂层对衬底的粘附性比顶层中的任何单层涂层都强。更具体地说,基层含有附着于衬底的涂层。
[0037] 在本发明的一些实施方式中,基层的特点是其总组成具有至少约2%的低收缩率,更优选具有2%的低结晶度,以及具有比顶层包含的涂层更高的断裂伸长率,更低的耐磨性。每一层的耐磨性可以通过Taber磨耗测试(ASTMD4060)的质量损失/循环进行测量。每一循环的质量/损失越小,耐磨性越强。
[0038] 通过使用包含基层和顶层的膜,可以产生具有凹面的(例如管子)的明显更容易加工的衬底的结构。而且,该设计产生的结构更能抵抗由热和机械应力,例如剧烈的热循环、震动、弯曲和磨损引起的失效。这些都是相对使用由单层涂层组成的膜的结构而言的。
[0039] 本文中的“基层”是指包含下列体系或其由本领域技术人员所知的变化的涂层:A-PEKK,PEI;PEI/PES,A-PEKK/TPI,A-PEKK/PBI,PEEK/PEI//PES,A-PEKK/PEEK的混合物,以及PEEK/5%的玻璃粉末,PEEK/PEI/5%的云母的化合物。这些体系产生非晶态的或含有半结晶聚合物的混合物的涂层,相比大多数单独的半结晶聚合物,具有更低的结晶度和更高的伸长率。所有这些体系的断裂伸长率都超过约50%。这些实施例的结晶度小于15%,更优选小于10%。由于这些材料或者是非晶态的或者具有很低的结晶度,相比下文提供的用于顶涂层的实施例,这些实施例的耐磨性相对较差。例如,在大多数情况下,PEEK的耐磨性至少比A-PEKK好100%。
[0040] 本文中的“顶层”是指包含下列体系或其由本领域技术人员所知的变化的涂层:PEEK,C-PEKK;PEEK/C-PEKK,C-PEKK/PBI,PEEK/PBI的混合物;以及PEEK/玻璃纤维和PEK/陶瓷球的化合物。这些体系用于产生半结晶的或含有半结晶聚合物的混合物的涂层,相比大多数单独的半结晶聚合物,具有更高的结晶度和更低的伸长率。这些体系的断裂伸长率都低于约45%,结晶度大于约15%。包含顶层的这些体系的收缩率大于以上所述的任何用于基层的体系。
[0041] 在一些实施方式中,如果每一涂层与前一涂层和后一涂层(如果存在)相容,膜的顶层或基层可以包括相同或不同组成的涂层。例如,底涂层可以包含一个或多个A-PEKK涂层。底涂层还可以包含一个或多个A-PEKK涂层和一个PEEK/PEI涂层。在一些实施方式中,顶涂层可以是一个或多个PEEK或PEEK化合物涂层。
[0042] 当通过涂布生产本发明的多层膜时,至少基层的第一涂层优选由生产与任何其它涂层相比质量更好的涂层的体系制成。(参考,例如以上所述的基层体系。)例如,即使每一聚合物的粉末粒度和分子量都相同,由A-PEKK涂层制成的基层显示比单独由PEEK涂层制成的基层更高的涂布质量。当涂布量(coat weights)低至4-5mil厚时,A-PEEK也可以一次连续涂布,而PEEK的连续涂布不能在单涂层中完成。PEEK的厚度可以一次达到7mil厚,直至在衬底上的沉积厚度达到8-10mil时,才能连续涂布。作为基层A-PEKK相比PEEK的另一优点是A-PEKK的收缩率比PEEK低,A-PEKK凝固到凹面或凹面体上,例如管道的内表面,在从熔化状态凝固以后不会丧失粘附力。PEEK在从熔化状态凝固以后会结晶,并有从凹面上脱层,产生大的空隙和开裂的倾向。
[0043] 为得到最佳的膜性能而使用的基层和顶层的量或比例通常取决于部件的特定使用环境和几何形状。对于一个严格的凹面来说,基层越厚,结构关于初始粘结力的耐久性,以及对热应力、机械应力和震动的耐受力越强。但是,相对于顶层较厚的膜来说,这种膜对于磨损的抵抗力较差。在不同实施方式中,基层厚度约为顶层厚度的5%至95%。
[0044] 与顶层相比,基层的结晶性越低,伸长率越高,收缩率越低,膜能够吸收的在加工和现场使用过程中施加到结构上的应力就越多。由于基层吸收加工过程中出现的大部分应力,顶层可以制成刚性的耐磨层。相对于基层来说,顶层的结晶性,耐磨性和硬度越高,结构对渗透,浆料,流体的流动的耐受力就越强。由于顶层和基层包含相容体系的事实,底涂层和顶涂层间的结合不会被机械方法破坏,因此在正常环境中不会出现开裂和脱层。
[0045] 在本发明的一些实施方式中,基层和/或顶层可以是交联的。在某些条件下,交联是可以存在的。另外,底层(bottom layer)和顶层可以含有惰性或反应性粘合剂,其在加工后消失或保留在涂层中。
[0046] 在一些实施方式中,在顶层之上还加有附加层或顶层。附加层可以包括不相容体系,并可用于调整耐化学性,溶剂和气体渗透,以及硬度。一个这样的例子是在PFA附加层之下,依次是PEEK顶层和PEKK基层。
[0047] 包括多层的膜可以通过多种方式产生,包括下列代表性的例子:静电喷涂、喷涂、分散液涂布、流化床喷雾、火焰喷涂和等离子喷涂、滚涂成型(roto-lining),滚轧成型(roll forming)和挤出成型。这些工艺包括通过热洗和喷砂处理制备的金属。在某些实施方式中,优选使用偶联剂。涂布工艺通过本领域技术人员公知的技术直接将涂层形成在衬底上的膜的层中。模塑和挤出成型工艺通过本领域技术人员公知的技术直接将单独或多种熔化的聚合物注射到金属上。挤出成型工艺还可以产生膜,管子或管道形式的多层衬里,并以与金属相结合为第二步。在一些实施方式中,基层的熔点比顶层低,膜在可以熔化基层但不熔化顶层的温度与衬底相结合。
[0048] 附图的详细描述
[0049] 图1具体显示的为本发明的结构20。整个结构20包括衬底10,与之相结合的基层12,基层包括一个或多个涂层16。与基层相结合的是顶层14,其也由一个或多个涂层16组成。如前面对于各个术语的定义,基层和顶层共同组成膜18,用于保护衬底。当各涂层相继施用于衬底,每一涂层的结晶性从与衬底22接触的涂层(或底漆层)到顶层24的顶涂层逐渐增加。结构20可以选择性地包括底漆层或偶联剂26,和/或顶涂层28,在此予以描述。实施例
[0050] 容易理解,此处本发明的体系,技术和方法的实施方式的下列描述并不用以限制本发明。
[0051] 实施例I.
[0052] 通过测量对在烘炉和中的热循环的耐受力来比较包含A-PEKK基层和PEKK顶层的PAEK基涂层和标准的单层PEEK。与PEEK相比,A-PEKK的收缩率很低(为0.3%至0.5%,而PEEK为0.7%至1.0%),断裂伸长率为其两倍(为80%,而PEEK为40%),但耐磨性较差。其结晶性(小于15%)小于PEEK,PEEK的结晶性通常为25%至30%。A-PEKK可以很容易地应用于各种几何形状和尺寸的组件,而不会像PEEK那样断裂或脱层。相比PEEK,A-PEKK/PEEK多层涂层显示出许多优点,例如可加工性,对应力的耐久性,以及优良的耐磨性。本发明部分使用ΔT,其为测试循环数,以及通过/失效的定义,其具体出现于样品的制备、测试方法、结果和结论部分。使用喷砂、热洗的工业标准步骤,静电喷涂的应用步骤。对PEEK/A-PEKK层使用本领域公知的炉循环次数、加工温度、喷枪设置、涂布量(coat weight)/通过的标准。例如,管子的内部静电喷涂A-PEKK基层。该层有5mil-7mil厚。
管子置于700°F的炉中10分钟以熔化聚合物。增加另一A-PEKK层使基层的总厚度达到
10mil。然后管子的内部静电喷涂PEKK。每次5-7mil厚。整个PEKK涂层约10mil厚。每次过程完成以后,体系置于750°F的炉中20分钟以熔化PEKK树脂。
[0053] 标准的PEEK涂层以涂层“A.”表示,涂布量紧随其后以mil标明。例如“A-30”是指30mil厚的PEEK涂层,“A-40”是40mil厚的PEEK涂层。PAEK基涂层以涂层“B.”表示。膜的总厚度和衬底的总厚度在涂层类型后标明。例如,“B-30/10”是具有10mil的A-PEKK基层,A 20mil的PEEK顶层的30mil厚的PAEK基涂层。“B-40/20”是具有20mil的A-PEKK基层的PAEK基涂层。
[0054] 样品制备
[0055] 直径四英寸(4”)的一英尺和两英尺的碳钢管用作比较“A”和“B”涂层性能的衬底。管段在750°F热洗三小时,然后内部使用36氧化铝砂(36grit aluminum oxide)进行喷砂。用压缩空气除去样品的所有碎片。
[0056] 在喷砂后进行涂装表面的粗糙度(anchor profile)测量并记录,表面喷砂后形成5mil-7mil的锚状物(anchor)。
[0057] 对照的三根管子都用每一种涂层处理。每一管段的总涂布量在20-45mil之间。通过三至七次涂布(每次5-10mil)达到涂布厚度。
[0058] 测试方法
[0059] 经涂布的管段于篮中一起在电炉中加热一小时。管子的温度通过使用Fluke 63红外测温仪测量。随后记录样品的温度。
[0060] 用800磅冰在水浴中产生冷水罐。冰水浴温度控制在32°F-60°F。在将装满管子的热篮浸入冰水浴之前,记录水温。
[0061] 加热的管段从热炉中直接取出,放入冷水罐中,总共浸入15分钟。然后将装满管子的篮子从冰水浴中取走。
[0062] 检查所有部分看是否失败。失败定义为脱层,或起泡,或涂层从管子的内表面开裂。脱层可以是在轴向或径向出现。
[0063] 所有通过的样品再装入篮中,移至炉中进行下一循环。所有失败的样品从测试中除去。记录下样品的数目和样品失败时循环数。
[0064] 在两个测试中重复该步骤。测试一在两英尺的管子上进行。测试二在一英尺的管子上进行。表I提供了样品的概要、涂层、涂布量、炉温、样品在炉中的时间、冰水浴温度和样品在冰水浴中的时间。
[0065] 表I:测试条件。
[0066]管子 烘焙 冰水浴 冰水浴
长度 炉温 时间 温度 时间
测试 (英尺) 涂层 (°F) (分钟) (°F) (分钟)
一 2 A-30,B-30/10 204-454 60 44-60 15
二 1 A-25,A-40,B-25/10, 225-440 60 44-60 15
B-35/10,B-40/10
[0067] 结果
[0068] 测试一由冰水浴和加热炉的22个循环组成。循环1至10的平均ΔT为160°F。最低的ΔT为155°F。最高的ΔT为188°F。ΔT定义为挂在炉外的架子上的Fluke红外测温仪测量的样品管子外径的温度和浸入冰水浴的测温仪测量的冰水浴的温度之间的温度差值。
[0069] 表II:测试一在2英尺长的4”管子上,30mil的“A”和“B”涂层。
[0070]冰水浴 金属
温度 温度 ΔT
循环 (°F) (°F) (°F) 结果 失效类型
1 56 231 175 1,“A-30”失败 开裂
2 54 233 179 1,“A-30”失败 轴向和径向脱层,开裂
3 58 215 157 1,“A-30”失败 轴向和径向脱层,开裂
4 65 222 157
5 57 217 160
6 48 236 188
7 60 220 160
8 44 204 160
9 48 212 164
10 59 215 156
11 44 243 199
12 47 244 197
13 35 243 208
14 41 250 209
15 40 263 223
16 40 260 220
17 41 244 203
18 41 255 214
19 42 247 205
20 40 280 240
[0071]21 43 315 272
22 57 454 397 3,“B-30/10”失败 径向脱层
[0072] 所有的“A”涂层在循环1-3中失败。失败的机制是脱层,开裂。脱层在轴向或径向都出现。开裂只当管子的边缘有涂布时才出现。
[0073] 循环11-20的平均ΔT为205°F。最低的ΔT为196°F。最高的ΔT为222°F。
[0074] 循环21的ΔT为271°F。
[0075] 循环22的ΔT为391°F。所有的“B”涂层在这些条件下因轴向脱层而失败。
[0076] 测试二包括一英尺的管段样品。样品由对照批“A-25”,“A-40”和“A-45”涂层和样品“B.1-25/10”,“B.1-35/10”和“B.1-40/10”组成。
[0077] 表III:测试二在1英尺长的4”管子上,“A”和“B”的25-40mil涂层。
[0078]冰浴 金属
温度 温度 ΔT
循环 (°F) (°F) (°F) 结果 失败类型
1 34 226 192
2 40 229 189
3 40 223 183
4 39 235 196
5 39 235 196 1,A-45失败 径向脱层
6 42 235 193
7 46 286 240 2,A-45失败 起泡,径向脱层
8 46 238 192 1,A-40失败 径向脱层
9 51 308 257
10 55 282 227 1,A-40失败 径向脱层
11 41 249 208 1,A-25失败 径向脱层
12 42 290 248 1,A-40失败 径向脱层
[0079]13 42 322 280
14 40 340 300 1,A-25失败 径向脱层
15 39 367 328 1,A-25失败 径向脱层
16 40 326 286 1,B-45/10失败 径向脱层
17 52 395 343
18 46 396 350
19 49 360 311
20 56 386 330 2,B-45/10失败 径向脱层
21 58 363 305
22 63 384 321
23 66 390 324 1,B-35/10失败 径向脱层
24 71 316 245 1,B-35/10失败 径向脱层
25 44 313 269 1,B-35/10失败 径向脱层
26 40 360 320
27 38 300 262
28 39 400 361
29 39 340 301
30 39 358 319
31 40 381 341
32 40 343 303
33 41 385 344
34 42 390 348
35 44 326 282
36 47 308 261
37 50 385 335
38 52 358 306
39 53 330 277
40 55 417 362
41 42 342 300
[0080]42 42 342 300
43 40 360 385
44 40 425 344
45 41 385 324 No B-25/10失败
[0081] 循环1-7的平均ΔT=197°F。所有的45mil厚的“A”涂层在这一范围内失败。
[0082] 循环7-15的平均ΔT=266°F。25mil和10mil厚的“A”涂层在这一范围内失败。
[0083] 循环16-25的平均ΔT=317°F。35mil和10mil的“B”涂层在这一范围内失败。
[0084] 测试二在45循环停止。25mil的B涂层没有一个失败。
[0085] 结论
[0086] 此处的测试表明,在加工和使用PEEK涂层的过程中:
[0087] (i)由于加工温度,由结晶引起的收缩,涂层和技术衬底间的线胀系数不匹配,会产生大的径向应力和轴向应力。
[0088] (ii)当温度变化超过200°F时,在几个循环以后,缺乏仍旧与内金属表面结合的足够的粘结力。
[0089] (iii)当管子的边缘有涂布时,由于涂层和金属衬底之间的热膨胀不匹配,会产生开裂。
[0090] 在相同的总涂布量厚度下,PAEK基“B”涂层比PEEK单层涂层显示明显改良的耐热冲击性。例如,30mil的PAEK涂层能承受200°F的无限热循环;而PEEK涂层在4”直径,2英尺长的碳钢管上最多能承受三个相同的热循环。另外,PAEK基涂层能承受超过300°F的热循环。在另一实施例中,在4”直径,1英尺长的碳钢管上,25mil的PAEK基涂层能承受
200°F的至少25个热循环;而PEEK不能承受一个热循环。
[0091] PAEK基涂层改善了对轴向脱层的耐受力。PAEK涂层的基层(bayerlayer)比单独的PEEK更有延性。加上固化的低收缩率,结果是与单独的PEEK相比,相同涂布量的PAEK基涂层会持久粘结在大的凹面(例如,长的管段)上。基层会比单独的PEEK更有效地吸收由弯曲和CLTE聚合物-金属热膨胀不匹配导致的机械应力,单独的PEEK硬度更高,断裂伸长率更低,固化收缩更强。
[0092] PAEK基涂层的耐久性是顶层与基层的比的函数。基层比顶层厚的越多,对机械和热应力的耐受力就大。与单独的顶层相比,基层比顶层厚的越多,对磨损的耐受力就低。
[0093] 顶层与基层的比应当基于部件的几何形状选择。PAEK基涂层特别用于改善凹面对机械应力和热应力的耐久性。在为管子的情况下,优选基层占总涂布量的10%至40%。管子的直径越小,基层与顶层的比越大。对于直径2英尺的管子,优选基层占35%-40%。对于直径4”的管子,优选基层占20%-40%。对于直径8”的管子,优选基层占10%-15%。
[0094] 实施例II.通过使用偶联剂增加粘结力。
[0095] 通过热洗和喷砂处理制备用于涂布的由碳钢制造的直径4”,2”长的管段。
[0096] 管段用含2%的具有与A-PEKK反应的官能团的高温硅烷的乙醇-水溶液擦拭。硅烷通过在110°F加热20分钟后固化。固化后,硅烷与金属衬底发生化学反应形成增强的腐蚀抑制层。腐蚀抑制层进一步阻止溶剂和气体渗入金属表面。因而在这种环境中,初始粘结力保留更长的时间。
[0097] 制备三个样品涂层:(1)PEEK,(2)PEEK/A-PEKK,以及(3)PEEK/A-PEKK/偶联剂。材料的收缩率,断裂伸长率和结晶性同实施例I。每一涂层的总涂层厚度是25mil。A-PEKK层占总涂层厚度的35%。
[0098] 每一涂层用钉子刮破露出金属衬底。
[0099] 管段浸入沸水中直至由于水在被钉子破坏的地方渗入涂层下方,使涂层物理上散开而出现脱层。记录下失败的小时数。
[0100] PEEK涂层先在10小时时脱层。PEEK/A-PEKK涂层第二个在40小时时脱层。PEEK/A-PEKK/偶联剂体系最后在60小时时失败。
[0101] 实施例III.A-PEEK/PEEK与通常的PEEK涂层相比具有改进的涂层质量的证据。
[0102] A-PEEK/PEEK和PEEK以与实施例I相同的方式,通过静电喷涂在弯曲90°金属片上形成总厚度为10mil的涂层。材料的收缩率,断裂伸长率和结晶性同实施例I。
[0103] 在冷却到室温以后,将A-PEEK/PEEK结构与通常的PEEK相比较。通过目测和50,000V电火花测试检测,A-PEEK/PEEK结构未显示可见的针孔。标准的PEEK涂层在弯曲附近有大的,可见的针孔,这是由于在固化期间由于PEEK涂层的高收缩率和低伸长率导致的聚合物从弯曲处移动造成的。
[0104] 实施例IV.通过二次施加热和压力将A-PEKK/PEEK膜与金属相结合。
[0105] 挤出A-PEKK/PEEK膜,其中A-PEKK层为1mil厚,PEEK层为5mil厚。材料的收缩率,断裂伸长率和结晶性同实施例I。该膜置于脱脂的铝板上。该膜-金属体系置于两重的平钢板之间,加压并升温至635°F。由于加工温度低于半结晶的PEEK层的熔化温度,PEEK层不会熔化。加工温度高于无定形A-PEKK层的熔化温度,其会软化并与金属结合。
[0106] 实施例V.使用A-PEEK/PEEK结构作为氟聚合物-金属涂层的连接层。
[0107] 由于比多孔氟聚合物具有更好的粘附性和更低的溶剂渗透性,PEEK偶尔用作厚的多孔氟聚合物涂层,例如PTFE的基层。与具有简单PTFE涂层的容器相比,更好的粘附性和更低的渗透性改善了耐久性和耐腐蚀性
[0108] 使用A-PEKK/PEEK代替PEEK改善了聚酮层对金属的粘附性。溶剂和气体渗透过聚合物的比较如下:PEEK<A-PEKK<<PTFE。由于PEEK层结晶时会收缩,使用A-PEKK/PEEK通过消除容器和管子内部的针孔,开裂和脱层来改善涂层的质量。
[0109] 实施例VI.使用化合物改善涂层中的A-PEEK和PEEK层的特性。
[0110] 可以在A-PEKK和PEEK层中加入有机和无机微粒,纤维和片状的增强物来改善其特性。例如,可以通过加入玻璃粉末和纤维、陶瓷填料、碳纤维、不锈钢粉末等来改善A-PEKK基层的耐磨性。除了改善耐磨性以外,填料进一步减小了聚合物熔化的收缩率并提高了对金属的粘附性。可以在PEEK顶层中加入类似的填料来减少摩擦系数、润滑性、CLTE和收缩率。这些填料包括,例如PTFE、PFA、MoS2、WS2、BN和SiC。
[0111] 实施例VII.相容涂层。
[0112] 除了A-PEKK和PEEK,本发明还有能在一层中形成连续相容涂层的其它体系。表IV列出了代表性的实施例。当每一单独的涂层由同一聚合物族制成或至少部分混溶时,就会形成相容涂层。然而在本发明中,渐进性的(progressive)涂层必须渐进性地具有相等或更大的收缩率,更优选具有相等或更大的结晶性。
[0113] 表IV:相容涂层的实施例
[0114]涂层#1 涂层#2
组成 组成 评价
A-PEKK C-PEKK A-PEKK和C-PEKK在同一聚合物族中并
且是混溶的。
A-PEKK/TPI C-PEKK A-PEKK和TPI形成混溶的混合物。
PEEK/PEI PEEK PEEK和PEI形成混溶的混合物。
PEEK/PES PEEK PEEK和PES形成不混溶的混合物;然而
各层的PEEK相互结合。
A-PEKK/PBI A-PEKK A-PEKK和PBI部分混溶。
[0115] 本文所用的部分标题只是出于总结目的,不能以任何方式解释为对所描述的主题的限定。
[0116] 而本发明以为不同实施方式相关联的方式进行描述,但并不是将本发明限制为这些实施方式。相反,本发明包含的不同选择、修改和等同替换是本领域技术人员所知的。
QQ群二维码
意见反馈