低模量夹层

申请号 CN88103645 申请日 1988-06-16 公开(公告)号 CN1010085B 公开(公告)日 1990-10-24
申请人 PPG工业公司; 发明人 查理斯·里查德·科莱曼; 索马斯·乔治·鲁卡维纳;
摘要 揭示了一种用于 层压 热膨胀 系数不同的刚硬 板面 不发生 翘曲 的低 剪切模量 的热塑性聚氮酯,以及含有所述低模量夹层的层 压板 。
权利要求

1.一种含有两种刚硬层和层合在所述刚硬层之间的热塑性聚酯类层的层压制品,其中两种刚硬层的热膨胀系数相差很大,以致当所述层压板由高于140°F的层压温度冷却至室温时,含有所述刚硬层的平整的层压板发生翘曲,其特征在于所述聚氨酯为一种脂环族二异氰酸酯、一种端羟基聚合物和一种可提供比1,4-丁二醇所提供的剪切模量低的单体脂肪族二元醇的反应产物,所述聚氨酯具有足够低的剪切模量以减小翘曲。
2.根据权利要求1所述的层压制品,其特征在于一种刚硬层为玻璃。
3.根据权利要求2所述的层压制品,其特征在于另一种刚硬层由聚酸酯、丙烯酸塑料和聚氨酯中选取。
4.根据权利要求1所述的层压制品,其特征在于所述聚氨酯是1,4-亚甲基-双-(环己基异氰酸酯)、一种聚酯二醇和从二甘醇、1,5-戊二醇以及1,6-己二醇中选取的一种单体脂防族二元醇反应的一种产物。
5.根据权利要求1所述的层压制品,基特征在于所述聚氨酯是1,4-亚甲基-双-(环己基异氰酸酯)、一种聚酯二醇和从二甘醇、硫代二乙醇和1,5-戊二醇中选取的一种单体脂肪族二元醇反应的一种产物。
6.根据权利要求5所述的层压制品,其特征在于所述聚醚二醇是聚亚丁基醚二醇。
7.根据权利要求6所述的层压制品,其特征在于所述聚亚丁基醚二醇的分子量大约在500~2000之间。
8.根据权利要求7所述的层压制品,其特征在于所述聚亚丁基醚二醇的分子量约为1000。
9.根据权利要求8所述的层压制品,其特征在于所述单体脂肪族二元醇为1,5-戊二醇。
10.根据权利要求9所述的层压制品,其特征在于所述聚氨酯是所述二异氰酸酯与大约0.6~0.8当量的聚合物二醇和0.4~0.2当量的单体二元醇反应的一种产物。

说明书全文

发明通常与用于层压透明体的聚酯的技术有关,更具体地讲与热塑性聚氨酯用作夹层的工艺有关。

安全玻璃是人们所熟知的玻璃夹层结构的名称,它含有一层将两玻璃板或片粘合在一起的夹层,从而使得玻璃碎时破裂的玻璃碎片的分散程度降低到最低限。这些层压玻璃制品广泛地使用于汽车中,该夹层必须具有许多特性,其中有:(1)很大的冲击能量吸收性,以便使冲击致伤降低到最低限;(2)足够高的剪切强度和撕裂强度,以防止该夹层被破碎玻璃割裂;(3)对玻璃的足够粘合,以防止与玻璃接触时发生撕裂并阻止破碎玻璃的分散;以及(4)良好的光学性能。此外,安全玻璃层压制品还必须在这些材料所使用的很广泛的温度范围内具有这些特性。

已经发现,可以采用含一块或多块玻璃板和特殊聚氨酯的双层和多层层压板构成安全玻璃,这种安全玻璃在很宽的温度范围内抗冲击,可使冲击致伤降低到最低限,是一种优于使用聚乙烯醇缩丁夹层的安全玻璃。

美国专利No.3,264,457(Chang等人)公开的安全玻璃层压板含有由一种脂肪族聚酸酯、一种脂环族二异氰酸酯和一种单体脂肪族二元醇制成的热塑性聚氨酯片材。

美国专利No.3,931,113(Seeger等人)公开了用于安全玻璃层压板的聚酯型聚氨酯,它们由一种脂环族二异氰酸酯、一种低分子量二元醇,以及聚己酸内酯、聚(己二酸亚丁烯基酯)、聚(壬二酸亚丁烯基酯)的一种端羟基聚酯或它们的混合物制备而成。

美国专利No.4,131,605(Ammons)公开了一种透明的弹性聚氨酯,它是在丁基酸催化剂存在下,通过脂环族二异氰酸酯与聚亚烷基醚二醇和交联剂反应制备而成,可在室温下就地进行流延和固化

美国专利No.4,131,606(Ammons)公开了一种透明的弹性聚氨酯,它是由一种聚己酸内酯多醇、一种脂环族二异氰酸酯和丁基锡酸催化剂构成的均相无色液态反应混合物制备而成,可在室温或稍高温度下就地进行流延和固化。

美国专利No.4,241,140(Ammons)还公开了一种作安全玻璃层压板夹层用的透明弹性聚氨酯,它是由芳香族二异氰酸酯与聚亚烷基醚二醇、聚己酸内酯三醇和单体脂肪族二元醇的混合物反应制得。

虽然上述用作层压在玻璃间的聚氨酯夹层是有效的能量吸收和抗冲击材料,但是对于象聚碳酸酯或丙烯酸类塑料以及用于飞机挡板的玻璃和其它透明体的层压材料,则需要一种能便利地将具有不同热膨胀系数的硬片层压在一起的热塑性夹层。

本发明提供了一种低剪切模量的热塑性聚氨酯,它可以供高温下热膨胀系数不相近的玻璃和塑料进行层压,而不致使制品产生严重应力变形。本发明的低模量聚氨酯夹层具有能防止低温结晶的足够高的氨基甲酸酯含量和不同热膨胀系数的硬片高温层压在一起而回复到室温不发生翘曲的足够“软”的硬链段。

底基(例如玻璃)和硬塑料(例如碳酸酯或丙烯酸类塑料)热膨胀系数的差异悬殊使人们难以制成没有应力的层压制品。通常会造成制品变形以及塑料起裂纹。为了减缓应力,可以进行低温层压或就地流延和固化,但是这些替代方法不能提供层压板中的足够粘合力。根据本发明,借助一层具有低剪切模量、可防止应力在层板中积累的夹层,使这些问题得以解决。这种夹层允许对具有不同热膨胀系数的材料进行高温层压,而当该层压板冷却至室温时不发生翘曲。

本发明的低模量聚氨酯夹层由一种低分子量的聚酯二醇或聚醚二醇,一种脂肪族二异氰酸酯和链上至少有5个原子、可与二异氰酸酯反应生成较“软”的硬链段(即一种可提供给聚氨酯的软化点比一般加入1,4-丁二醇的聚氨酯的软化点低的硬链段)的单体脂肪族二元醇配制而成。本发明的低模量聚氨酯具有足够高的氨基甲酸酯含量,以避免低温结晶,它还含有足够“软”的硬链段,以允许在高温下(一般高于140°F(约60℃)]层压不同热膨胀系数的硬片,而当该层压板冷却至室温时不发生翘曲。

本发明的低模量聚氨酯夹层最好用分子量约为500~2000之间的聚酯二醇或聚醚二醇配制。聚己酸丙酯二醇是一种适宜的聚酯。聚亚烷基醚二醇是优选的聚醚类;聚亚丁基醚二醇是最受推荐的。

本发明的低模量聚氨酯较“软”的硬链段最好由能与二异氰酸酯反应生成软化温度较低的聚氨酯(同由1,4-丁二醇生成的聚氨酯的软化温度相比)的二元醇生成,例如1,6-己二醇、二甘醇和硫代二乙醇。更优选的是1,5-戊二醇,与上述二元醇相比,它可生成伸长百分率较高和模量较低的聚氨酯,显然,原因在于含奇数碳原子的硬链段是非补强性链段。

可用于制备本发明的低模量夹层的二异氰酸酯包括有:4,4′-亚甲基-双-(环己基二异氰酸酯);氢化甲苯二异氰酸酯;4,4′-异亚丙基-双-(环己基异氰酸酯);1,4-环己基二异氰酸酯;4,4′-二环己基二异氰酸酯;2,2,4-三甲基六亚甲基二异氰酸酯(TMDI);以及3-异氰酸根合甲基-3,3,3-三甲基环己基二异氰酸酯(IPDI)。如果能谨慎地控制使用量,避免造成发黄,半透明和抗冲击性下降等问题,也可使用含少量其它二异氰酸酯的混合物,例如甲苯二异氰酸酯(TDI),二苯基甲烷二异氰酸酯(MDI)和其它芳香族二异氰酸酯。

最优选的脂环族二异氰酸酯是4,4′-亚甲基-双-(环己基异氰酸酯)。由杜邦公司出售这种商品名为“Hylene    W”的产品其中含有19~21%反,反;17~18%的顺,顺;62~64%的顺,反的立体异构体。反式和顺式的总比率为55%∶45%。该二异氰酸酯也可含有少量的单异氰酸酯,例如大约为0.27~0.40%,它的总酸度(以HCl表示)约为0.001~0.002%(重量),异氰酸酯的含量大约为其理论值的99.8%。优选的4,4′-亚甲基-双-(环己基异氰酸酯)目前可从Bayer公司以商品名“Desmodnr    W”购到。在本发明的最优选的组合物中,与这种二异氰酸酯和多醇反应的单体二元醇是1,5-戊二醇。

根据本发明作夹层用的低模量聚氨酯的重均分子量范围一般为65,000~255,000;优选的范围为150,000~180,000。根据反应物的不同,氨基甲酸酯含量范围可为10~16%;而优选的范围为12~14%。用优选的1,5-戊二醇作硬链段时,最优选氨基甲酸酯含量约为12.5%。

本发明的低模量聚氨酯夹层可以根据本技术领域所公知的聚氨酯的反应来生产,包括一步合成法和预聚物合成法。各种已知的催化剂都可以使用,锌酸亚锡为优选者。整体聚合物最好挤压成为片状,以便用于根据本发明的层压板。本发明的低模量夹层可用于玻璃与各种聚合物的层压,例如聚碳酸酯、丙烯酸塑料和硬聚氨酯,以及不同聚合物间的层压,例如丙烯酸塑料同聚碳酸酯的层压,而不发生翘曲。

为了测定本发明的低模量聚氨酯的效能,按照如下方法制备层压板并测定其翘曲程度。在一片尺寸为6英寸×40英寸(约0.15米×1米)并厚度为1/8英寸(约3毫米)的玻璃的一面涂敷覆一层烷底漆,同时配上一块6英寸×40英寸×1/4英寸(约0.15米×1米×6毫米)的聚碳酸酯板。将一片6英寸×40英寸×1/8英寸的低模量聚氨酯放在玻璃涂有底漆的一面和聚碳酸酯之间。将组装好的复合板放在210°F(约99℃)和200磅/英寸2压力的高压容器中,历时90分钟以形成层压板。将该层压板试样放在一平面上并使其冷却到25℃。以测得的中心挠度,即平面至该层压板中心的距离作为翘曲的程度。

从如下具体实施例的说明可对本发明有进一步理解。

实施例1使分子量为1000的聚亚丁基醚二醇与4,4′-亚甲基-双-(环己基异氨酸酯)反应,用二甘醇来生成硬链段制备一种低剪切模量的聚氨酯。将该聚氨酯层压在118英寸(约3毫米)厚的玻璃和1/4英寸(约6毫米)厚的聚碳酸酯之间而形成6英寸×40英寸(0.5米×1.0米)的表压板试样。该试样的中心挠度为0.02英寸(约0.5毫米),表明它是一种良好的低模量夹层。

实施例2按照实施例1配制一种低模量聚氨酯组合物,不同之处在于为改善稳定性并使用硫代二乙醇来生成硬链段。该组合物由318.9克聚亚丁基醚二醇,22.1克硫代二乙醇和131克二异氰酸酯制备而成。该聚氨酯含有14.7%的硬链段,17.3%的环化合物和12.5%的氨基甲酸酯。

实施例3使0.8当量的分子量为520的聚己酸内酯与1.0当量的4,4′-亚甲基-双-(环己基异氰酸酯)反应,用0.2当量的1,6-己二醇生成硬链段,制备一种低模量聚氨酯组合物。所制备的聚氨酯中的氨基甲酸酯含量为16.4%,硬链段为10.6%,而其肖氏硬度A为60。在约230°F(约110℃)下,将0.08英寸(约2毫米)厚,大小为2英寸×12英寸(约5厘米×30厘米)的聚合物条层压在1/4英寸(约6毫米)厚的玻璃和3/16英寸(约4.8毫米)厚的聚碳酸酯之间。层压板具有0.01英寸(约0.25毫米)的中心挠度,它优于对照层压板样品的0.03英寸(约0.76毫米)的中心挠度,后者揭示在美国专利3,931,113(Seeger等人),该对照层压板使用了0.09英寸(约2.3毫米)厚的聚氨酯,这种聚氨酯是由相同的二异氰酸酯,分子量为2000的聚己二酸亚丁烯基酯二醇和1,4-丁二醇制备的,其中含氨基甲酸酯为12.3%、硬链烷为25%。

实施例4使1当量的4,4′-亚甲基-双-(环己基异氰酸酯)与0.56当量的分子量为1000的聚亚丁基醚二醇和0.44当量用来生成硬链段的二甘醇反应制备一种低模量聚氨酯。与前述实施例一样,该聚合物被层压在玻璃和聚碳酸酯之间。夹层厚度为0.038英寸(约1毫米)时,中心挠度为0.069英寸(约1.8毫米)。夹层厚度为0.063英寸(约1.6毫米)时,中心挠度仅为0.03英寸(约0.8毫米)。为比较起见,厚度为0.058英寸(约1.5毫米)的前述实例对照聚氨酯夹层的玻璃/聚碳酸酯层压板的厚度为0.124英寸(约3.15毫米)。

实施例5使分子量为1000的聚亚丁基醚二醇与4,4′-亚甲基-双-(环己基异氰酸酯)反应,用1,5-戊二醇作硬链段,制备一种低模量聚氨酯。在为确定该聚合物最佳弹性而设计的一系列实验中,氨基甲酸酯含量、硬链段的重量百分比,环化合物含量的重量百分比,以及过量二异氰酸酯的摩尔百分数都是变化的。

选择Box-Behnken特性响应曲面设计进行该低模量夹层实验,因为该设计支持了一种正交模型并提供了涉及到同连续独立变量有关的线性、相互作用和曲率影响的信息。这样,可以查看整个因子空间的特性响应,而且可以建立预测模型。在本实验中,对于具有三个重复主要点的总计15个试样使用了三变量、三位设计。使所有的实验随机化。列在表Ⅰ中的独立变量为氨基甲酸酯含量、过量二异氰酸酯的摩尔百分数和催化剂浓度。选择过量二异氰酸酯的摩尔百分数作为一个独立变量的目的是为了控制分子量,因为二异氰酸酯与其多醇的理论摩尔比是实现不了的。选择催化剂浓度作为一个独立变量的原因是因为催化剂部分地控制着聚合度。氨基甲酸酯含量在10~14%范围内变化,因为从以前的研究工作推测,超出这一范围的材料将不能做为玻璃/塑料透明体的夹层。催化剂(丁基锡酸)浓度在200~1000ppm范围内变化。过量二异氰酸酯的摩尔百分数在0~6%间变化。用于全部15个配方中的异氰酸酯都是4,4′-亚甲基双-(环己基异氰酸酯)。多醇是分子量为1000的聚亚丁基醚二醇(商品名Teracol    1000,可从Du    Pout公司够买),戊二醇可从Aldrich公司购得。所有聚氨酯夹层均在175°F(约79℃)固化48小时。

聚氨酯的配方示于表Ⅰ,这些聚氨酯的物理性能概括在表Ⅱ中。聚氨酯夹层的热性能列于表Ⅲ。玻璃转化温度是硬质玻璃态聚合物变成橡胶态聚合物时的温度。中心挠度按本文所述方法测定。

QQ群二维码
意见反馈