层压材料及其制造方法

申请号 CN91105657.2 申请日 1991-08-15 公开(公告)号 CN1020559C 公开(公告)日 1993-05-12
申请人 光洋产业株式会社; 发明人 田村靖夫; 田中良治; 乡间孝彦; 堀川光正;
摘要 一种含有许多 植物 茎笔直部分的 层压 材料,每一植物茎笔直部分含有主要由木质 纤维 素组成的表皮层和多孔心层。用一种热 固化 剂溶液(系可以形成高分子的液体化合物, 树脂 化液体或其混合物)浸泡这些植物茎笔直部分,然后将其平行排列以形成一层片状材料,将这些片状材 料堆 叠起来压制从而使这些层呈扁平状态紧密 接触 。为了提高堆叠的多层层压材料(例如柱状层压材料)的弯曲强度和其他机械强度,可以使相邻层的片状材料中的植物茎的方向不同。这种柱状材料是用一对阴模和阳模压制而成,植物茎是置于阴模中进行 热压 。在这些植物茎层压后,热固化剂溶液中的树脂化合物被固化。
权利要求

1、一种层压板材,它含至少二层,每一层含有一系列偏平并列的平行植物茎(10):该层压板材的特征在于所述植茎含有浸渍在其中的固体树脂
2、如权利要求1的层压板材,其特征是植物茎有木质纤维素表皮层(10a)和多孔心层(10b)。
3、如权利要求1的层压板材,其特征是相邻层的植物茎以不同方向排列。
4、如权利要求1的层压板材,其特征是相邻层的植物茎以相同方法排列。
5、如权利要求1的层压板材,其特征是相邻层的植物茎以披此正交方向排列。
6、如权利要求1的层压板材,其特征是植物茎选自高梁茎、甘蔗茎、玉米茎、灯心草茎、稻作物茎和小麦茎。
7、一种制备层压板材的方法,它包括第一步将许多有表皮层(10a)和多孔心层(10b)的植物茎(10)并排堆叠并相互接触以形成片状材料(30):第二步在第一步形成的片状材料上再叠加一个附加片状材料以形成许多彼此相叠的层压层(40);和第三步将许多层压层(40)在固化条件下处理以形成层压板材(50):该方法的特征在于在第一步之前,将植物茎加压,在表皮层(10a)形成裂纹(13),然后用热固化剂溶液浸泡所述植物茎,被浸入植物茎的量为茎的总干重的5-200%(重量)。
8、如权利要求7的方法,其特征是在第二步之前将将粘合剂涂覆到片状材料(30)上。
9、如权利要求8的方法,其特征是粘合剂是一种木质纤维素树脂化液体。
10、如权利要求7的方法,其特征是在第二步许多层压层在阴模(44)中形成并在第三步中将许多层压板材在加压下热处理形成柱状层压材料(60)。
11、如权利要求7的方法,该方法特征还包括在第三步后,涂覆粘合剂到许多层压板材(50)的每个表面;将薄板(56)放置在层压板材之间;加压下处理层压板材和薄板以形成多层层压板材,和切割该多层压板材形成柱状层压材料(60)。

说明书全文

发明涉及一种主要是由高粱、玉米和甘蔗植物纤维或木质纤维素主茎制成的增强层压材料及其制造方法。特别是涉及一种用作建筑材料、家具材料、绝热材料、吸声材料、显示材料和手工艺品材料的层压材料。

现今碎料板、纤维板等与锯制板、胶合板贴面板和复合材料一样用作木基建筑材料、家具材料、显示材料、吸声材料和各种手工艺材料。另外,由合成树脂例如聚苯乙烯、聚乙烯、聚酯、树脂、三聚氰胺树脂和脲醛材料制成的硬质材料或泡沫材料也被用作显示材料、吸声材料和绝热材料等。

用于以上应用方面的这些材料取决于木材来源和石油来源。锔制板和胶合板本身是木质的,材料强度高,尺寸稳定性好。但木材中只有小部分才具有这些特性,因此木材的利用率或产率低,这是不利的。

然而,碎料板和纤维板是由木片和木纤维混合后加合成树脂粘结剂并经热压成板而制成的。这些板是用木片或纤维制成,因此一般认为这样能有效地利用木材资源。但由于制板时木材的纤维素纤维被切得很细,因此这类板的动强度或机械强度以及尺寸稳定性较差。

木质材料,例如锯制板、胶合板、碎料板和纤维板等,已广泛 用作建筑材料等,它们都是主要由天然木材制成的。由于近年来木材资源大量消耗,木材的供应将是有限的,因此,不可能完全满足今后对木材的大量需要,而木材的价格也会大大提高。

由合成树脂如聚苯乙烯、聚乙烯、聚氨酯和酚醛树脂等制成的泡沫材料是很轻的,其加工性好,且绝热性能极佳,因此广泛用作显示材料和绝热材料。这些树脂依赖于石油来源,而石油来源是有限的,因此恐怕不久的将来其来源也会用尽。

为了对付世界上面临的这种局面,本发明人已提出了分别利用高粱、玉米、甘蔗的木质纤维素主茎的笔直部分制成的层压材料及其制造方法的专利申请,这是鉴于高粱、玉米、甘蔗的木质纤维素主茎每年都能繁殖,而且甚至是难以废弃的(日本专利申请公开昭63-107505,日本专利申请公开平1-280538)。

专利申请公开昭63-107505说明书所述的方法是将高粱、玉米、甘蔗的植物主茎沿其纤维方向切开,需要的话还除去其心层部分,然后将切开的茎压紧,并将许多压紧的茎平行地排列好,以形成茎的片材,再在这些茎片上涂加熟知的粘结剂,并将粘合的茎片层叠和压制成形。

专利申请公开平1-280538说明书所述的方法是先将高粱茎压平以形成扁平的茎,将许多扁平茎排列起来以形成扁平茎层,然后在许多扁平茎层上涂加熟知的粘结剂,最后将这些茎片层叠和压制成形。

用这些方法制成的层压材料是具有任何特定的比重、厚度、尺寸和极好的机械强度性能的木质材料。

然而,用前一种方法虽然可制得具有很高机械强度和尺寸稳定性的板材,但为了制得一具有预定厚度的层压材料需要许多工序,包括将植物茎切开、除去茎的心层部分和进行压制,而且需要大量植物茎原料,这就带来了产品的制造成本高这样的问题。

采用后一种方法时,虽然制造成本低,但层压材料产品的机械强度低于用前一种方法制得的材料。而且一旦该层压材料被浸湿并含有分,层压材料便会膨胀加厚,这是不利的。

本发明的一个目的是提供一种重量轻、机械强度和尺寸稳定性优异沾水后不会膨胀且具有多种用途的层压材料。

本发明的另一目的是提供一种成本低的制造上述层压材料的方法。

为了达到以上目的,如图1-4所示,本发明的层压材料包括许多层,各层都是由植物茎的笔直部分10并行排列而形成的(层30),而植物茎的笔直部分10则含有多孔心层10b和主要由木质纤维素组成的表皮层10a。在层压材料中,当植物茎部分被压扁并相互接触后,各层相互正交。全部或一部分植物茎含有热固化的树脂化合物。

本发明的层压材料的制造方法是,先对许多各具有多孔心层10b和主要由木质纤维素组成的表皮层10a的植物茎笔直部分10进行处理,即用热固化剂溶液或能热固化的溶液14(能形成高分子的或可聚合的液体化合物、树脂化液体或它们的混合物)使其浸润,然后将这些植物茎部分并行排列,排好后进行热压以使热固化剂溶液热固化。

下面结合附图对本发明作更为具体的描述。附图中,图1为一透视图,显示许多片状材料的排列状况,使构成片状材料的植物茎相互正交或交替地正交。

图2为用作原料的植物茎的透视图。

图3为压辊的透视图,该压辊通过将植物茎压紧而使植物茎的表皮层开裂。

图4说明使热固化剂溶液浸渍植物茎。

图5为挤压辊的侧视图,该挤压辊用于挤掉浸透的植物茎中过剩的热固化剂溶液。

图6为层压产品的侧视图,该层压产品由许多片状材料组成,而这些片状材料的植物茎是沿同一方向排列的。

图7为与图6相似的侧视图,所不同的是层压产品中的有些片状材料中的植物茎的排列方向不同。

图8为按图1堆叠并暂时压紧的片状材料的层压产品。

图9表示如何将图8所示的层压产品进行热压。

图10为热压成形后的板状层压材料的透视图。

图11为阴模的主要部分和置于阴模中的用来制造柱状层压材料的植物茎的透视图。

图12为一侧截面图,表示通过将阳模插入阴模来制造柱状层压材料的第一种方法。

图13是按图12所示的方法进行热压在成形而获得的柱状层压材料的透视图。

图14是通过堆叠几种板状层压材料来成形另一种柱状层压材 料的第二种方法的透视图。

图15是许多相互粘合在一起的板状层压材料的透视图。

图16是从多层层压产品切下的柱状层压材料的透视图。

图17所示如图18所示的按照第三种方法制造柱状层压材料所用的装置沿A-A线所取的截面图。

图18为沿图17的B-B线所取的截面图。

优选实施方案的说明

(a)原料

如图2所示,制造本发明的层压材料所用的原料为植物主茎10,该植物茎具有表皮层10a和多孔心层10b,表皮层主要由木质纤维素组成。典型的原料为高粱、玉米和甘蔗,也可用灯芯草、水稻、小麦。

按照本发明,所用的植物茎的笔直部分不含叶子和低处枝干部分,应完好无损。植物茎的笔直部分不切成碎片,而通常的甘蔗渣板和稻草板则是用切成碎片的材料茎制成的且成形成板状。因此,本发明可制成重量轻,弯曲强度高的层压材料,所需的工序比通常的甘蔗渣板少。

在用热固化剂溶液浸泡植物茎10之前,最好先用一对压辊11和12将这些茎10压紧(而不是沿其纤维方向切开),以便如图3所示在表皮层中形成裂纹13,或沿纤维方向裂开(未在图中示出)。这样,在本发明的浸泡工序中,热固化剂溶液便易于在几分钟这样短的时间内浸入植物茎10的内部。

由开裂的植物茎制成的层压材料的机械强度和尺寸稳定性,包括材料的其他物理性能,并不次于未开裂的茎的层压材料的性能。

(b)热固化剂溶液

如图4所示,热固化剂溶液14被渗入经处理的植物茎10。热固化剂溶液是一种在加热时能使植物茎固化的液体,它包括一种能形成高分子的液体化合物、一种树脂化液体或其混合物。

能形成高分子的液体化合物的例子有:

(1)可聚合的液体单体,例如丙烯酸酯单体、甲基丙烯酸甲酯单体和苯乙烯单体等;

(2)通过这些液体单体的缩合、聚合或加聚作用而获得的能形成高分子的预聚物;

(3)液体异氰酸酯化合物,例如甲苯二异氰酸、二苯基甲烷二异氰酸酯、六亚甲基二异氰酸酯、异佛尔二异氰酸酯、二甲苯二异氰酸酯等,或

(4)由糖醛、糖醇或液体木质纤维素液体进行聚合,缩合或加成缩合作用而制得的、能形成高分子的液体化合物。

这里,液化木质纤维素系指通过将酚类、多元醇加入木质纤维素中使木质纤维素液化而获得的溶液。液化木质纤维素的制备是在苯酚的存在下,在150-300℃高温和1-100大气压高压下将植物茎(例如高粱茎)的要抛弃的叶子或低处枝干熔化或将这种植物茎的不可使用的弧形部分和端部熔化而得。在使用酸催化剂(如硫酸盐酸、苯酚磺酸或石蜡磺酸)的情况下,上述熔化过程 可在大气压下在150-200℃下进行。

此外,上述树脂化液体还包括液体聚合物,例如不饱和聚酯树脂、环树脂、酚醛树脂、三聚氰胺树脂和脲醛树脂及其预聚物。也可使用由热塑性树脂(如聚氯乙烯、聚醋酸乙烯、丙烯酸类树脂、聚苯乙烯、聚乙烯醇、尼龙和聚酰胺树脂等)溶于溶剂而制得的树脂化液体,或使用木质纤维素的树脂化液体。这里,木质纤维素的树脂化液体是指用醛化合物或异氰酸酯化合物将液体木质纤维素液体树脂化、然后将该树脂化液体溶于水或溶剂而制得的树脂化液体。

(c)用热固化剂溶液浸泡

本发明的热固化剂溶液渗入植物茎的量为茎的总干重的5-200%(重量)。它能在室温和大气压下充分渗入植物茎。可以在按特性将热固化剂溶液加热的情况下或提高或降低压力的情况下进行浸泡。

如果热固化剂溶液的渗入量超过50%(重),在层压多层片状材料时,固化剂溶液会从层压材料中慢慢渗出,产生粘附作用从而能大大减少原来的粘结剂的用量。如果热固化剂溶液不含任何高分子组分,那就必须使热固化剂溶液的渗入量达到50%(重)以上,或者除固化剂溶液外还必须使用粘结剂。

如果热固化剂溶液的渗入量为5%(重)或5%(重)以下,那就难以对层压材料起到足够的增强作用,而这种增强作用正是本发明的目的之一,而且特别是难以使层压材料具有很好的尺寸稳定 性。此外,当渗入量要超过200%(重)时,浸泡便变得困难,即使进行强制浸泡(例如加压注入热固化剂溶液)也不能提高层压材料的强度和尺寸稳定性。

如图5所示,为了除去过剩的热固化剂溶液以使植物茎20含有所需量的溶液,宜使含有过剩溶液的植物茎20在一对挤压辊16和17之间通过,受到挤压。在室温至200℃下干燥后,将这些经过挤压的植物茎20平行地排列,以形成板状或柱状层压材料。

(d)形成板状层压材料

如图1所示,将植物茎20平行排列以获得片状材料30。许多这样的片状材料被堆叠起来。如要成形为板状层压材料,所有植物茎的端部或边缘要用线21扎或用胶粘带和类似的固定方法暂时固定其位置,或者将粘结剂涂在所有植物茎的端部或边缘使其具有线或带条的形状。

片状材料的堆叠方法取决于板状层压材料的使用目的。如果需要板状层压材料在各个方向都具有均匀的弯曲强度并防止其弯曲,堆叠各层片状材料30时应使构成片状材料的各植物茎20的方向成正交状态,从而成形获得如图1和8所示的层压产品40。如果需要获得在一特定方向具有很好的弯曲强度的板状层压材料,在堆叠多层片状材料30时可使所有植物茎20取同一方面,从而成形获得如图6所示的层压产品40。

也可如图7所示,在排列植物茎时使构成片状材料30的某个 特定组植物茎与别的几层片状材料30的其他组植物茎成正交状态,从而成形获得另一种层压产品40。为了防止板状层压材料的弯曲强度在特定的方向上提高,在堆叠多层片状材料时宜使其植物茎交替地正交。

从提高层压材料的机械强度和尺寸稳定性的观点来看,宜使热固化剂溶液渗入板状层压材料的所有植物茎。但是为了降低生产成本,也可将热固化剂溶液仅渗入构成板状层压材料的一部分植物茎。热固化溶液可能不能渗入构成有些片状材料的所有植物茎,或者不能渗入构成片状材料的一部分植物茎。

当用少量热固化剂溶液渗入植物茎或是用一特种溶液渗入植物茎时,要在片状材料的表面涂加或沉积一种粘结剂或液体。

用于上述情况的粘结剂是人所熟知的,例如脲醛树脂、三聚氰胺-尿素缩合树脂、苯酚-三聚氰胺树脂、酚醛树脂、苯酚-间苯二酚树脂、间苯二酚树脂和含有高分子异氰酸酯粘结剂水分散液的异氰酸酯粘结剂以及单宁树脂。当用上述木质纤维素的树脂化溶液作本发明的粘结剂时,片状材料之间的粘结性能尤其改善,这是因为树脂化液体对植物茎有很好的亲合力且茎的利用率提高的结果,这样就能更为经济而有效地利用植物茎。这些粘结剂可以单独使用,也可组合使用。

粘结剂的用量为片状材料总干重的1-50%(重)。当用量为1%(重)或低于1%(重)时,层压材料的结构强度大大下降。当用量为50%(重)或大于50%(重)时,层压材料的成本过高,与所能获得的性能的提高相比是不值得的。

如图8-10所示,根据需要将堆叠的片状材料30暂时压紧,获得层压产品40,然后将产品40夹在一对金属板43之间,用一热压机42在2-30公斤/厘米2的压力和50-250℃的温度下将其热压成形。

如图9所示,在产品40旁边放几个间距块41,以决定层压产品40的厚度,从而成形获得具有所需厚度的板状层压材料50。为了提高层压材料50的平滑度或使其厚度精确,可根据需要用刮削器、刨床、砂轮磨光机等对材料表面进行机械加工。还可以单面层压一层中密度纤维板、碎料板、金属板、薄膜等。

(e)柱状层压材料的制造

按照柱状层压材料第一种的制造方法,将许多植物茎的笔直部分相互平等地排列并捆扎在一起。将捆扎在一起的植物茎热压成形成柱状这叫做间歇式方法。

如图11所示,先将许多植物茎20按同一方向排列,然后平放在槽形阴模44内的底部。形成植物茎的第一层51。如果阴模44的长度大于植物茎20的长度,可将植物茎沿长度方向连续排列,然后切去长出部分使其能放入模44内。然后将许多别的植物茎20堆叠在已排列在阴模44内的第一层51之上,形成第二层52。按照上述铺放植物茎20的方法形成第三层53和第四层54。当在长度方向加入其他植物茎时,上层植物茎20的接缝与下层植物茎20的接缝必须错开,以提高柱状层压材料的弯曲强度。

如图12和13所示,堆叠几层植物茎20之后,将阳模45放入阴模44内,并对阳模加压以形成柱状层压材料60这样的一堆植物茎20。当热固化剂溶液渗入植物茎的量较小或使用特种固化剂溶液时,要在植物茎层的表面涂以粘结剂,然后用与制造板状层压材料相同的方法将各层堆叠起来。

按照制造柱状植物茎层压材料的第二种方法,如图14-16所示,将数块板状层压材料50相互粘结,并将粘结在一起的这堆板状层压材料50沿植物茎排列方向切开。在该方法中,先将粘结剂涂在各块板状层压材料的两个表面上,然后将这许多板状层压材料50进行热压。也可在热压之前,将薄的片材56(例如塑料薄片、单片、薄木片)置于两块层压材料50的涂有粘结剂的两个表面之间。这种方法是更可取的,因为涂粘结剂是简易可行且很可靠的。将所得的多层层压制品57沿图15中箭头“P”所示的线切开就获得柱状层压材料60。这种方法只能提供方柱,但它比使用阳模和阴模来生产柱状材料的第一种方法简易可行。方柱状层压材料60具有极好的尺寸稳定性和弯曲强度。

连续制造柱状层压材料的第三种方法如图17和18所示。按照该方法所用的制造设备有两对传动辊:一对为71和72,另一对为73和74。环绕着这两对辊的分别是传动带75和76。在钢传动带75的下部和钢传动带76的上部之间有一空隙。在辊73与74一边形成的空隙距离相当于最后层压成形的柱状材料的厚度,而在另一边辊71与72形成的空隙距离则被做成大于73与74一边的空隙距离。在钢传动带75和76的两侧分别有一对 侧壁78和79。在下辊72与74之间装有许多传动热辊81,它们在固定的位置旋转。在上辊71和73之间装有许多加热压辊82,它们可通过其可垂直移动的轴而上下移动。辊81和82的钢传动带75和76的宽度大体上等于最后制得的柱状材料的宽度。

在该方法中,将植物茎20的许多笔直部分捆扎在一起并连续供应到转动着的下部传动带76的上部,并传送进入辊71与72之间的空隙或传动带75和76之间的空隙。植物茎20在由上辊82和下辊81组成的多组辊子之间通过时被热压成形,形成柱状层压材料60。

如果渗入植物茎的热固化剂溶液的量较少,或使用特种热固化剂溶液,就要采用与上述第一种方法相同的方法将粘结剂涂在植物茎上,然后才供料到带76上。上述第三种方法可以毫不困难地大批生产很长的柱状层压材料。

同时,如果适当地选用各种形状的热压模具,就能制造板状或柱状以外的任何形状的任何层压材料。

下面要说明本发明的操作和效果。

在用热固化剂溶液浸渍植物茎时,热固化剂溶液不仅能很容易地渗入植物茎的表皮层,而其也能均匀地渗入其多孔的心层。特别是用液化木质纤维素或木质纤维素的树脂化液体作热固化剂溶液时,由于它们在分解(例如木质纤维素的水解等)时会生成不同分子量或分子量范围很宽的物质,低分子量部分和高分子量部分同时浸入植物茎的心层。此外,有一部分低分子量物质还渗入表皮层内 部,提高了表皮层的增强效果,而高分子量部分则在表皮层的上层形成一树脂层,除提高粘合作用外还对表皮层起到增强作用。

使用木质纤维素液化液或木质纤维素的树脂化液体时,在植物茎层压过程中粘结剂的用量可减少或甚至不用。

在将整齐排列的许多植物茎进行压制成形时,粘结剂被干燥,热固化剂溶液固化并变为树脂化合物,结果制成增强层压材料。

如上所述,按照本发明的方法,天然资源丰富的植物茎能获得有效的利用并制得经济的层压材料。

该层压材料的密度为0.3-0.7克/厘米3,与市场上目前供应的碎料板、纤维板等相比是很轻的。另一方面,其机械强度(特别是弯曲强度)和尺寸稳定性不仅明显地高于碎料板和纤维板,而且也明显地高于用完整的高粱茎排列并压制而得的常规层压材料。

该层压材料的机械强度取决于渗入植物茎的热固化溶液量和所得的层压材料的密度,因此通过适当地选择渗入量和密度便易于获得具有任何机械强度的任意的层压材料。

使渗入植物茎的热固化剂溶液变成树脂化化合物便能防止层压材料在浸水时膨胀,同时能保持层压材料表面平滑,尺寸稳定性好。

此外,用木质纤维素的树脂化液体作粘结剂能有效地利用植物茎的废弃部分,减少昂贵的粘结剂的用量,使层压材料的制造成本降低。

与传统的胶合板、碎料板、纤维板相似,这样制得的层压材料 可广泛用作建筑材料,例如用作地板底层材料、屋顶下层材料、墙壁内层材料、混凝土浇铸框架、家具板的面板、板框、桌板等。

此外,通过控制层压材料的密度能使材料具有合适的绝热或吸声性能并用作绝缘体或消音材料,或广泛用作各种显示材料。特别是通过在层压材料的热压成形过程中选择压模的形状,能分别获得具有各种不同形状的层压材料,如曲面板、波纹板、方柱、圆柱等,用作建筑材料或家具的组件。

下面同对照实施例一起来说明本发明优选的实施例。

实施例1

如图2-5所示,切取一些约30厘米长的完整的高粱茎的笔直部分10,然后使其通过一对压紧辊11和12而受压,辊11和12的间隙为茎的直径的60%左右,这样能使茎10受压后在其表皮层10a产生细裂纹13。

然后将这些具有细裂纹的高粱茎10浸泡在用于增强木材的酚醛树脂(Ohshiko    shinko公司生产的TD-62)的5%水溶液14中达5分钟。酚醛树脂溶液经细裂纹13和表皮层10a渗入心层10b。然后用间隙为茎10直径约60%的一对挤压辊16和17挤压经过这样处理的高粱茎10,以除去过剩的酚醛树脂溶液,并使茎在室温下干燥3天。这样就得到了浸有树脂液体的高粱茎20。

如图1和8所示,将17根高粱茎的笔直部分20挨紧平行排列,并用线21捆扎高粱茎的端部,从而制成三块片状材料30, 每片的宽度为30厘米左右。

接着将10克异氰酸酯树脂(OR-4000,MitsuiToatsu公司制造)的50%水分散液喷涂到这些片状材料30每块的一个侧面上。将这些片状材料30堆叠在一起,堆叠时要使高粱茎的笔直部分20相互正交,从而得到由三层组成的层压产品40。

此外,如图9所示,将层压产品40放入装有12毫米厚的间隔块的热压机42中,并在150℃下保持,层压产品40是夹在一对金属板43之间的,在约4公斤/厘米2的压力下热压10分钟,便获得板状层材料50。

实施例2

用与实施例1基本相同的方法制得板状层压材料,所不同的是用酚醛树脂的10%水溶液取代实施例1中的酚醛树脂的5%水溶液作热固化剂溶液。

对照实施例1

用与实施例1基本相同的方法制得板状层压材料,所不同是未使用实施例1的酚醛树脂溶液。

实施例3

在制造层压材料之前,先制备用作热固化剂溶液的高粱茎树脂化液体。即将700克高粱茎端部碎片和300克苯酚置于1升高 压釜中,然后徐徐搅拌并加热至250℃,当高压釜中的压力升至45大气压时,将该状态保持3小时左右,于是高粱茎碎片便溶于苯酚中。

接着,将800克液化高粱茎和1000克37%甲醛水溶液装入1升三口烧瓶中。在搅拌下加入160克40%苛性苏打溶液,然后在80℃下将该混合物加热30分钟。反应后,迅速冷却反应产物,并加水以制备稀释至10%浓度的热固化剂溶液。

用与实施例1相同的方法处理已切成约30厘米长的高粱茎部分,以使其产生裂纹,并将该茎部分在热固化剂溶液中浸泡5分钟,接着使浸泡过的茎通过实施例1所述的挤压辊,以除去过量的热固化剂溶液,然后将经过挤压的茎在室温下干燥3天。

用浸有热固化剂溶液的高粱茎制造3块片状材料,每块的宽度为30厘米左右,与实施例1相同。将3.5克与实施例1的相同的50%异氰酸酯树脂水分散液喷涂到每块片状材料的一个侧面上。按照与实施例1相同的工序制造板状层压材料。

实施例4

在制造层压材料之前先制备粘结剂。即将500克苯酚和12克浓硫酸加到500克甘蔗渣中,并将所得的混合物在150℃下加热约2小时。将200克甘蔗渣-苯酚溶液和540克37%甲醛水溶液加入1升三口烧瓶中,然后在搅拌下加入100克40%苛性苏打溶液。将该混合物在80-90℃下加热50分钟以制备粘结剂。

将已切成长度约为30厘米的完整的玉米茎笔直部分放在含有0.5%的过氧化苯甲酰和1.0%的邻苯二甲酸二辛酯的甲基丙烯酸甲酯液体中浸泡10分钟。用与实施例1相同的方法除去过量的单体液,并在室温下干燥。

将17根玉米茎部分相互挨紧举行排列,并用与实施例1相同的方法捆扎茎的端部,从而做成了块片状材料,每块材料的宽度约为30厘米。

在用上述粘结剂喷涂各块片状材料的一个侧面之后,将各块片状材料堆叠在一起,使玉米茎相互交替正交,从而制成由三层组成的层压产品。

此外,用与实施例1相同的方法,将该层压产品放入一装有12毫米厚的间隔块的热压机内,并在150℃下保持。将该层压产品在约4公斤/厘米的压力下热压10分钟便获得板状层压材料。

将4块分别按照实施例1、实施例2、对照实例1和实施例3的方法制得的板状层压材料在室温下放置7天,并将按照实施例4的方法制得的板状层压材料在室温下放置10天。基本上按照JIS    A5908中规定的用于碎料板的试验方法测定这五块板状层压材料的冷弯曲强度、杨氏弯曲模量和厚度膨胀指数。测试结果示于表1。

表1表明,对于用高粱茎制成的增强板状层压材料来说,各实施例的弯曲强度约为对照实例1的1.2-1.5倍,各实施例的杨氏模量约为对照实例1的1.3-1.7倍。它还表明,各实施例的吸水率和厚度膨胀率与对照实施例1相比都是很小的。

从以上所述可以明显地看出,实施例1-4的板状层压材料具有极好的工业特性。

QQ群二维码
意见反馈