复合结构用表面膜以及其制造方法

申请号 CN201280054192.3 申请日 2012-12-06 公开(公告)号 CN103987751B 公开(公告)日 2017-09-12
申请人 氰特科技股份有限公司; 发明人 俊杰·杰弗里·桑; 达利普·库马尔·科利;
摘要 从可 固化 树脂 组合物形成表面膜,所述可固化树脂组合物含有环 氧 酚 醛 清漆 树脂、三官能或四官能 环氧树脂 、陶瓷微球、胺基固化剂、微粒 无机填料 以及增韧组分。所述表面膜在固化之后显示高Tg和高交联 密度 ,以及显示对 脱漆剂 溶液的高抗性。所述表面膜适合于与 纤维 增强型树脂 复合材料 共同固化。所述表面膜可以任选地含有导电添加剂以提供足够导电率以便实现 雷击 保护LSP或 电磁干扰 EMI屏蔽。
权利要求

1.一种对脱漆剂具有高抗性的表面膜,所述表面膜具有≥180℃的玻璃化转变温度Tg和根据ASTM D-3363的7H或更高的铅笔硬度,所述表面膜由包含以下组分的可固化树脂组合物形成:
具有多于一个环官能团的环氧酚清漆树脂;
三官能或四官能环氧树脂
陶瓷微球;
潜伏性胺基固化剂;
微粒无机填料;以及
预反应加合物,所述预反应加合物是通过四溴双酚A的二缩甘油醚、双酚A和选自以下的弹性体的反应形成的:胺封端的丁二烯丙烯腈(ATBN);羧基封端的丁二烯丙烯腈(CTBN);和羧基封端的丁二烯(CTB)。
2.根据权利要求1所述的表面膜,经固化,其显示根据ASTM D-3363的7H至9H的铅笔硬度,和在-55℃与71℃之间经受2000X热循环试验之后小于0.3条裂纹/英寸2的微裂纹密度
3.根据权利要求1或2所述的表面膜,其中所述环氧酚醛清漆树脂具有以下结构:
其中R=H并且n=0-5,所述四官能环氧树脂是四缩水甘油基4,4'-二基二苯基甲烷,并且所述三官能环氧是氨基苯酚的三缩水甘油醚。
4.根据权利要求1所述的表面膜,其进一步包含聚醚砜(PES)和聚醚醚砜(PEES)的共聚物。
5.根据权利要求3所述的表面膜,其中所述陶瓷微球是由二氧化-氧化陶瓷材料制成并且粒度在1-50微米范围内的中空微球。
6.根据权利要求1所述的表面膜,其中所述环氧树脂和所述陶瓷微球构成所述表面膜组合物的总重量的60重量%以上。
7.根据权利要求1所述的表面膜,其进一步包含足以向导电表面膜提供小于100mΩ的表面电阻率的量的呈微粒形式的导电材料,其中所述表面膜能够提供雷击保护LSP或电磁干扰EMI屏蔽。
8.根据权利要求1所述的表面膜,其由选自聚酯垫、玻璃垫或导电载体的非编织载体支撑
9.根据权利要求1所述的表面膜,其中所述可固化树脂组合物进一步包含双脲作为固化促进剂
10.一种复合结构,其包含复合衬底和形成于所述复合衬底上的根据权利要求1所述的表面膜,其中所述复合衬底包含基质树脂和增强纤维
11.根据权利要求10所述的复合结构,其中所述复合衬底包含预浸敷层,所述预浸敷层由一层布置在另一层上的多个预浸层组成,每一层包含浸渍有基质树脂的增强纤维,并且在所述预浸敷层的外表面上形成所述表面膜。
12.根据权利要求10所述的复合结构,其进一步包含涂覆在所述表面膜上的漆涂层,其中所述表面膜对所述漆涂层的粘着使得在(a)在干燥条件下根据ASTM D3359经受漆粘附试验或(b)浸渍于75℉去离子水中7天,然后根据ASTM D3359经受漆粘附试验之后,上漆表面显示实质上为0%的漆损失。
13.根据权利要求10所述的复合结构,其中所述表面膜对所述漆涂层的粘着使得如通过以下程序确定,所述上漆表面显示实质上为0%的漆损失:使未上漆的表面膜经受
1000KJ/m2UVA辐射曝露,接着在干燥条件下,根据ASTM D3359使所述上漆表面经受漆粘附试验。
14.根据权利要求12所述的复合结构,其中所述表面膜对所述漆涂层的所述粘着使得如通过以下程序确定,所述上漆表面显示实质上为0%的漆损失:使所述未上漆的表面膜经受1000KJ/m2UVA辐射曝露,接着使所述上漆表面在75℉去离子水中浸渍7天,且然后根据ASTM D3359,经受漆粘附试验。
15.一种用于制造复合结构的方法,其包括:
(a)提供可成形的预浸敷层,其由布置成堆叠布置的多个预浸层构成,每一预浸层包含未固化或部分固化的树脂基质树脂和增强纤维;
(b)由包含以下的可固化树脂组合物形成表面膜:
具有多于一个环氧官能团的环氧酚醛清漆树脂;
三官能或四官能环氧树脂;
陶瓷微球;
潜伏性胺基固化剂;
微粒无机填料;以及
预反应加合物,所述预反应加合物是通过四溴双酚A的二缩水甘油醚、双酚A和选自以下的弹性体的反应形成的:胺封端的丁二烯丙烯腈(ATBN);羧基封端的丁二烯丙烯腈(CTBN);和羧基封端的丁二烯(CTB);
(c)使所述表面膜与所述预浸敷层接触;以及
(d)使所述表面膜和所述预浸敷层在250℉-350℉范围内的温度下共同固化,从而所固化的表面膜具有≥180℃的玻璃化转变温度Tg以及根据ASTM D-3363的7H或更高的铅笔硬度。

说明书全文

复合结构用表面膜以及其制造方法

背景技术

[0001] 本发明一般来说涉及复合表面膜。更具体地,本发明涉及纤维增强型聚合物基质复合结构用表面膜。
[0002] 纤维增强型聚合物基质复合物(PMC)是常用于需要对侵蚀性环境具有抗性、高强度和/或低重量的应用中的高性能结构材料。这些应用的实例包括飞行器组件(例如尾、翼、机身推进器)、高性能汽车、船体和自行车架。
[0003] 航空航天工业中使用的常规复合结构通常包括表面膜以在上漆之前向复合结构提供所需性能特征。使用这些表面膜以提高结构零件的表面质量,同时减少劳动、时间和成本。在制造结构零件期间,表面膜通常与聚合物基质复合材料共同固化。然而,常规表面膜并不怎么能抗用于脱漆目的的商业脱漆溶液,如苯甲醇基溶液。那些脱漆剂可导致表面膜膨胀和/或鼓泡并且可使重漆工艺更麻烦。因此,需要可耐受使用常规脱漆溶液进行重复脱漆以允许复合结构重漆和在使用寿命内持久的漆粘附性,并且还可以耐受对紫外线(UV)辐射的曝露的表面膜。

发明内容

[0004] 本发明提供一种由可固化组合物形成的表面膜,所述可固化组合物包括:具有多于一个环官能团的环氧酚清漆树脂;三官能或四官能环氧树脂;陶瓷微球;潜伏性胺基固化剂;作为流动控制剂的微粒无机填料;以及至少一种选自由以下组成的群组的增韧剂:(a)通过环氧树脂、双酚和弹性体的反应形成的预反应加合物;(b)聚醚砜(PES)和聚醚醚砜(PEES)的共聚物;(c)核-壳橡胶(CSR)颗粒;以及其组合。在固化后,所得热固性表面膜的玻璃化转变温度(Tg)≥180℃,并且如根据ASTM D-3363测量,表面铅笔硬度大于7H。
[0005] 本发明还提供一种具有在纤维增强型树脂基复合衬底上形成的表面膜的复合结构,以及一种制造所述复合结构的方法。表面膜可以与树脂基复合衬底在250℉-355℉(或120℃-180℃)范围内的温度下共同固化。
附图说明
[0006] 根据以下对本发明的各个方面的详细描述,结合描绘本发明的各个实施例的所附附图,将更容易地理解本发明的特征。
[0007] 图1示意性展示根据本发明的一个实施例在模制工具上形成具有表面膜的复合结构。

具体实施方式

[0008] 典型的用于航空航天复合零件的环氧基表面膜当暴露于常规醇基脱漆剂(例如苯甲醇基溶液)以及紫外线(UV)辐射时经常受影响。已经设计了经改善的表面膜以克服这些问题。已调配经改善的表面膜组合物以得到高Tg和高交联密度。已发现高Tg和高交联密度的组合使得表面膜对醇基脱漆剂溶液(例如苯甲醇基溶液)具有高的抗性。为了实现这些性质,表面膜组合物是基于以下的组合:某些多官能树脂、用于树脂基质增韧的聚合增韧组分、潜伏性胺基固化剂、作为流体屏障组分的陶瓷微球,以及作为流变学改性组分的微粒无机填料。多官能树脂和陶瓷微球构成总组合物的50重量%以上,优选60重量%以上。现在,接下来将是对表面膜组合物的组分的详细描述。
[0009] 多官能树脂
[0010] 表面膜组合物含有至少两种多官能环氧树脂,一种是具有大于一个环氧官能团的环氧酚醛清漆树脂。第二种环氧树脂是非酚醛清漆多官能环氧树脂,优选为四官能或三官能环氧树脂(即,每个分子具有三个或四个环氧官能团的环氧树脂)。
[0011] 合适的环氧酚醛清漆树脂包括具有以下化学结构(结构I)的苯酚-甲醛酚醛清漆或甲酚-甲醛酚醛清漆的多缩甘油基衍生物
[0012]
[0013] 其中n=0至5,并且R=H或CH3。当R=H时,树脂是苯酚醛清漆树脂。当R=CH3时,树脂是甲酚酚醛清漆树脂。前者可作为DEN428、DEN431、DEN438、DEN439和DEN485从陶氏化学公司(Dow Chemical Co.)商购获得。后者可作为ECN1235、ECN1273和ECN1299从汽巴-嘉基公司(Ciba-Geigy Corp.)商购获得。其它可以使用的合适的酚醛清漆包括来自塞拉尼斯聚合物特制品公司(Celanese Polymer Specialty Co.)的SU-8。在一个优选实施例中,环氧酚醛清漆树脂在25℃下的粘度为4000-10,000mPa·s并且环氧当量重量(EEW)为190-210克/当量。
[0014] 合适的四官能环氧树脂是每个分子具有四个环氧官能团并且具有至少一个缩水甘油基胺基的四官能芳族环氧树脂。作为实例,四官能芳族环氧树脂可以具有以下通用化学结构(结构II),即亚甲基双苯胺的四缩水甘油醚。
[0015]
[0016] 展示结构II中的胺基处于芳环结构的对位或4,4'位,然而应了解,其它异构体,如2,1'、2,3'、2,4'、3,3'、3,4'是可能的替代物。合适的四官能芳族环氧树脂包括四缩水甘油基-4,4'-二基二苯基甲烷,其由亨斯迈先进材料(Huntsman Advanced Materials)提供可作为 MY9663、MY9634、MY9655、MY-721、MY-720、MY-725商购获得。三官能环氧树脂的实例包括氨基苯酚的三缩水甘油醚,例如由亨斯迈先进材料提供的 MY0510、
MY0500、MY0600、MY0610。
[0017] 在一个优选实施例中,环氧酚醛清漆树脂和多官能环氧树脂(三官能和/或四官能)的组合构成表面膜组合物总重量的至少30重量%。在某些实施例中,环氧酚醛清漆树脂和多官能环氧树脂的组合构成表面膜组合物总重量的约30重量%至约60重量%,并且在其它实施例中,构成约40重量%至约50重量%。环氧酚醛清漆树脂和多官能环氧树脂的相对量可以改变,但优选地,对于每100份多官能环氧树脂,环氧酚醛清漆树脂的量是在80-100份的范围内。在指定比例下的环氧酚醛清漆树脂和多官能环氧树脂的组合有助于所需的高Tg和特定的固化后交联密度。
[0018] 聚合增韧组分
[0019] 为了将基于以上文所讨论的多官能树脂的混合物的树脂基质增韧,将一种或一种以上聚合增韧剂添加到表面膜组合物中。聚合增韧剂选自由以下组成的群组:(i)通过环氧树脂、双酚和弹性聚合物的反应形成的预反应加合物;(ii)聚醚砜(PES)和聚醚醚砜(PEES)的共聚物;以及(iii)核-壳橡胶颗粒;以及其组合。在一个优选实施例中,使用来自此群组中的两种增韧剂的组合。增韧剂的量总共为表面膜组合物总重量的约10重量%至约20重量%。
[0020] 关于预反应加合物,合适的环氧树脂包括双酚A的二缩水甘油醚、四溴双酚A的二缩水甘油醚、双酚A的氢化二缩水甘油醚或双酚F的氢化二缩水甘油醚。还合适的是环脂族环氧树脂,包括每个分子含有至少一个环脂族基团和至少两个环氧乙烷环的化合物。具体实例包括由以下结构表示的环脂族醇、氢化双酚A的二环氧化物(由CVC热固性特制品(CVC Thermoset Specialties)提供的EpalloyTM5000、5001):
[0021]
[0022] 这种环脂族环氧树脂的实例是可获自CVC热固性特制品的 5000(通过对双酚A二缩水甘油醚进行氢化所制备的环脂族环氧树脂)。适用于预反应加合物中的其它环脂族环氧化物可以包括EPONEX环脂族环氧树脂,例如由迈图特殊化学品(Momentive Specialty Chemicals)提供的EPONEX Resin1510。
[0023] 预反应加合物中的双酚用作直链或环脂族环氧树脂的增链剂。合适的双酚包括双酚A、四溴双酚A(TBBA)、双酚Z和四甲基双酚A(TMBP-A)。
[0024] 适用于形成预反应加合物的弹性体包括但不限于橡胶,例如胺封端的丁二烯丙烯腈(ATBN)、羧基封端的丁二烯丙烯腈(CTBN)、羧基封端的丁二烯(CTB)、氟弹性体、弹性体、苯乙烯-丁二烯聚合物。在一个实施例中,预反应加合物中使用的弹性体是ATNB或CTBN。
[0025] 在一个实施例中,使环氧树脂与双酚增链剂和弹性体聚合物在催化剂(例如三苯膦(TPP))存在下在约300℉(或148.9℃)下预反应以链接环氧树脂并且形成高粘度的成膜高分子量环氧树脂预反应加合物。然后将预反应加合物与表面膜组合物的其余组分混合。
[0026] 聚合增韧组分的第二种选择是热塑性增韧材料,其为聚醚砜(PES)和聚醚醚砜(PEES)的平均分子量为8,000-14,000的共聚物。在一实施例中,增韧剂为聚(氧基-1,4-亚苯基磺酰基-1,4-亚苯基),其Tg为约200℃。
[0027] 聚合增韧组分的第三种选择为粒度为300nm或更小的核-壳橡胶颗粒。核-壳橡胶(CSR)颗粒可以为硬壳包围软核的任何核-壳颗粒。优选的CSR颗粒为具有聚丁二烯橡胶核或丁二烯-丙烯腈橡胶核和聚丙烯酸酯壳的CSR颗粒。然而,也可使用具有由软壳包围的硬核的CSR颗粒。CSR颗粒可以作为分散于液体环氧树脂中的25-40重量%CSR颗粒来提供。可以商品名Kane Ace MX从钟化得克萨斯公司(Kaneka Texas Corporation)(德克萨斯州休斯顿(Houston,Tex.))商购获得具有橡胶核和聚丙烯酸酯壳的CSR颗粒。优选的,但并非必需的,将核-壳橡胶颗粒作为合适液体环氧树脂中的颗粒悬浮液添加到表面膜组合物中。Kane Ace MX411是25重量%核-壳橡胶颗粒在MY721环氧树脂中的悬浮液并且是核-壳橡胶颗粒的合适来源。Kane Ace MX120、MX125或MX156含有25-37重量%的分散于DER331树脂中的相同核-壳橡胶颗粒,也是核-壳橡胶颗粒的合适来源。也可以使用核-壳橡胶颗粒的其它合适来源,例如MX257、MX215和MX451。核-壳橡胶颗粒的另一商业来源是陶氏化学公司的ParaloidTMEXL-2691(平均粒度为约200nm的甲基丙烯酸酯-丁二烯-苯乙烯CSR颗粒)。
[0028] 陶瓷微球
[0029] 将陶瓷微球添加到表面膜组合物中以提高膜的表面光滑度。在一个实施例中,使用由惰性二氧化硅-氧化陶瓷材料制成的中空陶瓷微球。陶瓷微球可以具有高于60,000psi的压碎强度、约3.7-4.6的介电常数、在1000-1100℃(或1832-2012℉)范围内的软化点,以及在0.1微米至50微米或1-50微米范围内的颗粒直径。陶瓷微球的高软化点使其能够不吸收到溶剂中、不易燃并且对化学物质具有高抗性。已经发现直径在约0.1微米至约20微米且优选为约1微米至约15微米的范围内的微球是特别合适的。特别适用于本发明的表面膜组合物的可商购获得的陶瓷微球的实例是由泽兰工业公司(Zeelan Industries,Inc.)以商品名 (例如G-200、G210和W-200)出售者。这些陶瓷微球是壁厚、无气味
并且浅灰色的中空二氧化硅-氧化铝球。在一优选实施例中,多官能树脂和陶瓷微球的组合构成表面膜组合物的50重量%以上,优选60重量%以上。在某些实施例中,以表面膜组合物的总重量计,陶瓷微球的量为至少20重量%,优选为至少25重量%或至少30重量%。在一些实施例中,陶瓷微球的量可以在20重量%-40重量%或25重量%-35重量%的范围内。
[0030] 固化剂
[0031] 多官能环氧树脂可以通过多种在高温(例如高于150℉(65℃)的温度)下活化的潜伏性胺基固化剂进行固化。合适固化剂的实例包括二氰二胺(DICY)、胍胺、胍、氨基胍和其衍生物。还可使用咪唑和胺复合物类化合物。在一个实施例中,固化剂为二氰二胺。以表面膜组合物的总重量计,胺基固化剂以1-5重量%的范围内的量存在。
[0032] 固化促进剂可以与胺基固化剂组合使用以促进环氧树脂和胺基固化剂之间的固化反应。合适的固化促进剂可以包括烷基和芳基取代的脲(包括芳族或脂环族二甲脲);基于甲苯二胺或亚甲基双苯胺的双脲。双脲的一个实例是4,4'-亚甲基双(苯基二甲脲)(可作为Omicure U-52或CA152从CVC化学品(CVC Chemicals)商购获得),其为一种合适的二氰二胺用促进剂。另一实例是2,4-甲苯双(二甲脲)(可作为Omicure U-24或CA150从CVC化学品商购获得)。固化促进剂可以在0.5重量%-3重量%的范围内的量存在。
[0033] 流动控制剂
[0034] 将微粒形式(例如粉末)的无机填料作为流变学改性组分添加到表面膜组合物中以控制树脂组合物的流动并且防止其中聚结。可以用于表面膜组合物中的合适的无机填料包括滑石、母、碳酸、氧化铝和热解法二氧化硅。在一个实施例中,将疏水性热解法二氧化硅(例如Cab-O-Sil TS-720)用作无机填料。以表面膜组合物的总重量计,无机填料的量可以在1-5重量%的范围内。
[0035] 任选的添加剂
[0036] 表面膜组合物可以进一步包括一种或一种以上任选的影响以下中一个或一个以上的添加剂:固化或未固化表面膜的机械性质、电性质、光学性质、耐火性和/或热学性质。添加剂可以包含与在上面形成表面膜的复合衬底的环氧树脂化学反应或可能不与其反应的物质。这些添加剂包括但不限于紫外线(UV)稳定剂、颜料/染料和导电材料。当使用这些添加剂时,以表面膜组合物的总重量计,其总量小于5重量%。
[0037] 可以添加到表面组合物中的UV稳定剂的实例包括丁基化羟基甲苯(BHT)、2-羟基-4-甲氧基-二苯甲酮(UV-9)、2,4-双(2,4-二甲基苯基)-6-(2-羟基-4-辛氧基苯基)-1,3,5-三嗪 UV-1164光吸收剂)、3,5-二叔丁基-4-羟基苯甲酸正十六烷基酯
UV-2908光稳定剂)、季戊四醇四(3-(3,5-二叔丁基-4-羟苯基)丙酸酯
(IRGANOX1010)。汽巴特殊化学品(Ciba Specialty Chemicals)的液体受阻胺光稳定剂,例如2-(2H-苯并三唑-2-基)-4,6-二叔戊基酚(TINUVIN328)、癸二酸甲酯1,2,2,6,6-五甲基-
4-哌啶基酯(TINUVIN292)。癸二酸双(2,2,6,6-四甲基-1-(辛氧基)-4-哌啶基酯
(TINUVIN123)也可以用作合适的UV稳定剂。另外,纳米尺寸化氧化锌(n-ZnO)(例如
NanoSunGuard3015)和氧化纳米颗粒(n-TiO2)也可用作UV稳定剂。
[0038] 可以将本领域中已知的用于将颜色添加到树脂系统的颜料和/或染料添加到表面膜组合物中。颜料和/或染料的实例包括但不限于红色氧化、绿色铬、碳黑和氧化钛。在一个实施例中,颜料是氧化钛(白色)颜料。在另一实施例中,颜料是碳黑。
[0039] 还可以将微粒形式(例如颗粒或薄片)的导电材料添加到表面膜组合物中以将导电性赋予最终表面膜。合适的导电材料的实例包括薄片或颗粒形式的金属,如、金、镍、、铝和其合金。还可将碳基纳米尺寸化材料(例如碳纳米管(单壁纳米管或多壁纳米管)、碳纳米纤维石墨烯、巴基纸(bucky-paper))用作导电组分以将导电性赋予树脂膜。纳米纤维的直径可以在70纳米和200纳米的范围内并且长度为约50-200微米。纳米管可以具有约10纳米的外径、约10,000纳米的长度和约1000的纵横比(L/D)。
[0040] 表1展示根据本发明的表面膜组合物的各个实施例。所有百分比(%)都是重量百分比。
[0041] 表1
[0042]
[0043]
[0044]
[0045] 在一个实施例中,以基于组合物总重量的重量百分比表示,表面膜组合物具有以下调配物:20%-25%环氧苯酚酚醛清漆树脂;20%-25%四官能环氧树脂;10%-15%预反应加合物、1%-3%PES-PEES共聚物、25%-35%陶瓷微球;1%-5%潜伏性胺基固化剂;0.5%-3%固化促进剂;1%-3%无机填料;以及任选地0.1-1%颜色颜料。
[0046] 形成表面膜和复合结构
[0047] 可以将表面膜组合物的组分添加到配备以混合、加热和/或冷却组分的混合容器中。此外,必要时还可以将一种或一种以上有机溶剂添加到混合物中以帮助组分的混合。这些溶剂的实例可包括但不限于甲基乙基酮(MEK)、丙酮、二甲基乙酰胺和N-甲基吡咯烷酮。随后使用常规成膜工艺由表面膜组合物形成表面膜。根据预期用途,如此形成的表面膜的膜重量可以在约0.01psf至0.45psf(磅/平方英尺)之间的范围内。
[0048] 为了帮助表面膜的处理,将表面膜组合物涂覆于载体上。载体的非限制性实例可以包括由热塑性聚合物纤维或碳纤维制造的纤维薄片、金属筛或金属箔、非编织垫、无序垫、编结载体、涂布金属的碳遮蔽物等。金属筛或金属箔的实例可以包括经延展的金属筛或金属箔,和涂布金属的遮蔽物。这些筛和箔可以包含铜、铝、银、镍和其合金。非编织垫、编织或编结背衬的实例可以包括碳垫、聚合物垫和涂布金属的碳、玻璃或聚合物玻璃遮蔽物。非编织垫、编织或编结背衬可以用铜、铝、银、镍和其合金涂布。
[0049] 如此形成的表面膜也可以未固化状态储存直至准备使用为止。例如,可以将表面膜储存在冷库中以抑制表面膜固化并且延长其适用搁置寿命。可以将可除去的背衬纸施加于表面膜的一个或一个以上表面以抑制表面膜在其预期用途之前附着到不想要的表面。
[0050] 将表面膜设计为在高于150℉(65℃)、更具体地在250℉-350℉(或120℃-175℃)范围内的温度下与纤维增强型树脂基质复合衬底共同固化。纤维增强型树脂基质复合衬底是由已经浸渍或注入有基质树脂的增强纤维组成。基质树脂可以包括一种或一种以上热固性树脂,如环氧树脂。复合衬底可以是预浸层片或预浸敷层。预浸层片是由增强纤维组成,所述增强纤维呈已用树脂(例如环氧树脂)浸渍的织物或定向排列的连续纤维的形式。定向排列的纤维可以是单向纤维或多向纤维。预浸敷层是由多个依堆叠顺序布置的预浸层片组成。通常,可以将未固化的表面膜涂覆于处于未固化或部分固化状态的纤维增强型树脂基质复合衬底上,接着共同固化以形成结合有热固性表面膜的完全固化的复合衬底。
[0051] 在一个实施例中,将表面膜纳入敷设工艺中以形成复合结构。如图1中所示,首先使表面膜10与模制工具20的模制表面接触,并且将预浸层片以一层在另一层之上依次敷设在表面膜10上以形成预浸敷层30。或者,可以在不同位置组装预浸层片,且然后置于表面膜10上。如本领域中已知,可以在预浸敷层的层片之间插入一个或一个以上核,例如泡沫或蜂窝结构。然后使整个组合件经受热和压力以使预浸敷层和表面膜固化成具有所选形状的最终复合结构。当从模制工具除去复合结构时,表面膜变成复合结构的最外层。
[0052] 在一个实施例中,可以将表面膜施加(通过涂布或层压)到单个预浸层片以产生自我表面预浸带。这种自我表面的预浸带适用于自动胶带敷设(ATL)或自动纤维放置(AFP)系统,所述系统配备有用于将预浸狭缝胶带直接分配并压缩到模制表面(如心轴表面)上以形成复合零件的构件。
[0053] 在固化后,所得的固化表面膜是具有高交联密度、≥180℃的高玻璃化转变温度(Tg)、根据ASTM D-3363为7H或更高的铅笔硬度的热固性膜。这些性质使固化的表面膜能够显示对常规脱漆剂(例如安息油醇基脱漆溶液)以及UV辐射和微裂纹具有高抗性。已经发现,在环境温度(20℃-25℃)下与苯甲醇基脱漆溶液接触7天之后,表面膜显示小于0.5%的流体吸收,并且铅笔硬度不会减小超过2H的铅笔等级。此外,已经发现固化的表面膜在-55℃与71℃之间经受2000X热循环试验之后显示小于0.3条裂纹/英寸2的微裂纹密度。表面膜进一步显示对通常用于对航空航天结构上漆的漆涂层的高粘着。表面膜对漆涂层的粘着使得根据ASTM D3359,在干燥条件或湿润条件(在去离子水中在75℉下浸渍7天之后)下,在经受或没经受1000KJ/m2UVA辐射曝露下经受漆粘附试验之后,上漆表面显示实质上为0%的漆损失。
[0054] 实例
[0055] 以下实例用以给出根据本发明形成的表面膜的具体实施例,但不以任何方式意在限制本发明的范围。
[0056] 依据表2中所示的调配物(1-9)制备九种表面膜样品。所有量都用重量百分比表示。
[0057] 表2
[0058]
[0059]
[0060] 通过将表2中公开的组分添加到混合容器中并且使用高速剪切实验室混合器将组分混合来制备每一表面膜。首先添加环氧树脂。必要时将MEK作为溶剂添加到环氧树脂混合物中以调整组合物的流变学和固体含量。随后,将增韧剂(预反应加合物和/或PES-PEES共聚物)添加到环氧树脂中。在某些表面膜(调配物4和5)中,还将导电添加剂(银薄片或Ag-Cu薄片)添加到混合容器中。将陶瓷微球、热解法二氧化硅和UV稳定剂(在一些调配物中)进一步添加到混合容器中。必要时添加MEK溶剂以将上述混合物的粘度控制到约80重量%固体,并且将组合物的组分在约1000-3000rpm下混合约50-70分钟。将组合物的温度保持在约160℉以下。必要时再添加MEK以抑制混合物攀爬混合轴。
[0061] 随后将混合物冷却至约120℉以下并且将固化剂(二氰二胺(Dicy)和双脲)添加到组合物中。然后混合组合物直至近似均质为止。在添加固化剂期间,将混合物的温度维持在约130℉以下。
[0062] 为了由上述组合物形成表面膜,对每一组合物进行筛滤,脱气并沉积成膜。通过过滤介质EP-15进行筛滤。进行脱气以使组合物的固体含量为约80重量%。然后通过涂膜机将经筛滤并脱气的组合物涂布成膜重量为约0.020-0.030psf的膜,然后干燥以实现小于约1%重量的挥发物。在轻压力下将所选的非编织聚酯或玻璃无序垫载体或导电载体压到膜中以将所述垫嵌埋到所述膜中。
[0063] 通过纳入由表2的调配物形成的表面膜来制造复合面板。对于每一面板,将表面膜放到工具上,接着敷设预浸层片(氰特工业公司(Cytec Industries Inc.)的CYCOM5276-1,碳纤维/环氧基预浸物)以形成预浸敷层。然后使预浸敷层在约350℉的温度下在高压釜条件中在80psi下固化2小时。
[0064] 表面膜评估
[0065] 通过使用调制式DSC(TA2910)或热机械分析器(TMA2940,TA仪器)在氮气下以10℃/分钟的斜坡,在30℃-230℃温度范围内测定固化表面膜的玻璃化转变温度(Tg)。
[0066] 在固化之后,检查用表面膜表面化的复合面板的表面外观缺陷(凹坑、针孔)。然后评估复合面板的脱漆剂抗性、在有或无UV曝露下的干和湿漆粘附性以及微裂纹抗性。
[0067] 脱漆剂抗性试验
[0068] 通过测量在用于航空航天复合结构脱漆工艺的苯甲醇基脱漆剂溶液(可购自美吉诺(McGean)的Cee Bee2012A或可购自汉高(Henkel)的Turco1270-6)的浸渍期内(在环境室温下多达168小时)脱漆剂流体吸收和表面铅笔硬度变化来测量未上漆的经表面化复合面板(2"×2"试样尺寸,厚0.15mm)的脱漆剂抗性。在脱漆剂浸泡之前和之后,以24小时、48小时和最多168小时(7天)的间隔测量各试验面板的重量。以浸渍最多168小时(7天)的相同试验间隔测量试验面板的脱漆剂流体吸收(随浸渍时间的重量变化,以重量%表示)。
[0069] 在环境室温下将每一未上漆试验面板的表面浸渍于苯甲醇基脱漆剂溶液中最多168小时,且然后根据ASTM D3363试验在浸渍期期间的铅笔硬度变化。ASTM D3363是指用于测定衬底上透明且着色的有机涂层膜的表面硬度的标准试验方法。铅笔硬度等级如下:6B(最软)、5B、4B、3B、2B、B、HB、F、H、2H、3H、4H、5H、6H、7H、8H、9H(最硬)。在浸泡于脱漆剂中之前和之后,以24小时、48小时和最多168小时(7天)的间隔测量试验面板的铅笔硬度。认为在
24小时浸渍后变化大于2H水平的铅笔硬度不具有良好的脱漆剂抗性。
[0070] 有或无UV曝露的干和湿漆粘附性
[0071] 根据ASTM D3359,在有或无UV曝露下,在上漆之前测量经表面膜表面化的上漆复合面板(呈3"×6"试样尺寸的形式,厚0.15mm)的干和湿划线漆粘附性。ASTM D3359是指用于通过在膜中产生的切口上方施加和除去压敏胶带来评价涂层膜对衬底的表面粘附性的标准试验方法(交叉影线划线胶带试验)。根据AATCC试验方法16选项3,将固化的试验面板2 2
曝露于零(无UV)、200kJ/m或1000kJ/m紫外线(UV-A)辐射。用于UV试验的仪器是西诺耐气候试验计(Xeno Weather-o-meter),例如Atlas CI3000褪色计。准备(清洁,砂磨和没有砂磨)每一试验面板表面并用航空航天上漆(环氧树脂涂底漆,接着是聚氨酯基面涂层)中使用的外部装饰性漆涂层涂覆。随后,根据ASTM D3359进行干漆粘附试验。为了进行湿漆粘附性,将经UV曝露的试验面板上漆,然后于75℉去离子水中浸渍7天。然后根据ASTM D3359进行湿漆粘附试验。
[0072] 含有导电添加剂的表面膜的导电性测量
[0073] 切割具有固化表面膜的试验面板以形成约6×5英寸的试件,并且使用四点探针DLRO10X数字低电阻欧姆表测量其导电性或表面电阻率(欧姆/平方,或毫欧/平方)。
[0074] 表3展示具有基于表2的调配物1-9的表面膜的试验面板的表面性质和试验结果。试验面板数目对应于表面膜调配物数目。
[0075] 表3
[0076]
[0077]
[0078] 基于调配物8和9的表面膜不含有三官能或四官能环氧树脂,因此,在浸渍期内,其对脱漆剂的抗性不如针对其它表面膜所观察到的那么好。然而,所有表面膜都显示良好的漆粘附性(10+的意思是0%漆损失)。
[0079] 微裂纹抗性试验
[0080] 还测量了经上漆和表面化的复合试验面板(呈4"×6"试样尺寸的形式,厚0.15mm)对微裂纹的抗性。使经上漆的试验面板经受在-55℃和71℃之间的热循环多达2000X循环。在显微镜下检查每一试验面板的表面在热循环之后在暴露于400X、800X、1200X、1600X和
2000X热循环之后的微裂纹出现。使用裂纹密度(试验面板尺寸面积中所示的表面漆裂纹的数目)来测量表面化复合试验面板的微裂纹抗性。裂纹的最大长度应小于0.1英寸。表4中展示在2000X热循环之后的微裂纹试验结果。
[0081] 表4-热循环试验结果
[0082]
[0083] 基于调配物6和7的表面膜不含有其它调配物中的增韧剂。因此,试验面板6和7的微裂纹抗性不如其它试验面板的那么好。
[0084] 术语“第一”、“第二”等在本文中不表示任何顺序、量或重要性,而是用以区分一种要素和另一要素,并且术语“一个(种)”不表示对量的限制,而是表示存在所引用项中的至少一个。与量关联使用的修饰语“近似地”和“约”包括所述值并且具有在上下文规定的含义(例如包括与具体量的测量相关的误差的程度)。如本文所用的后缀“(s)”旨在包括单个和多个其所修饰的术语,从而包括一种或一种以上所述术语(例如,金属(s)包括一种或一种以上金属)。本文公开的范围是包括性的并且可独立地组合(例如范围“最多约25重量%,或更具体地,约5重量%至约20重量%”包括所述范围的端点和所有中间值,例如“1重量%至10重量%”包括1%、2%、3%等。
[0085] 虽然本文描述了多个实施例,但是应了解,所属领域的技术人员可以根据说明书对其中的要素、变型或改进进行各种组合,并且所述各种组合在本发明的范围内。另外,在不脱离本发明的本质范围的情况下,可对本发明的教示进行许多修改以适应特殊情形或材料。因此,本发明并不打算限于为了执行本发明而作为预期的最好模式公开的具体实施例,但本发明将包括属于所附权利要求书的范围的所有实施例。
QQ群二维码
意见反馈