用于使纤维网打褶或成型的方法和设备

申请号 CN201580012186.5 申请日 2015-02-26 公开(公告)号 CN106103282B 公开(公告)日 2017-12-26
申请人 宝洁公司; 发明人 J·M·奥恩多夫;
摘要 本文描述了用于使 纤维 网打褶或以其它方式成型的方法和设备。所述方法和设备可具有多种应用。在一些实施方案中,所述方法和设备用于消费产品用单位剂量 包装 的成形、填充和密封。本文还描述了一种用于将两个移动的纤维网成形密封在一起的方法和设备,所述纤维网具有非平面的部分。
权利要求

1.一种用于使纤维网成型的方法,所述纤维网在进机方向上移动使得纤维网围绕至少一个大体纵向取向的轴线在横向上弯曲,所述方法包括以下步骤:
a)提供纤维网;
b)提供成形设备,所述成形设备包括成形导件,其中所述成形导件包括两个侧边缘、上游端、下游端、面向纤维网的表面和相对表面,其中所述方法的特征在于所述成形导件的所述面向纤维网的表面包括在其中的交替的大体纵向取向的脊和谷,所述脊和谷至少邻近所述成形导件的所述下游端定位,并且所述面向纤维网的表面被构造成提供跨所述面向纤维网的表面的宽度的基本上相等的路径长度,当通过一系列点测量所述路径长度时,每个点距所述纤维网的一个侧边缘等距,所述成形设备包括用于维持纤维网与所述成形导件的面向纤维网的表面至少部分地接触的装置或机构中的一者;
c)通过使所述纤维网通过并至少部分地接触所述成形导件的面向纤维网的表面使所述纤维网成形,以在所述纤维网中形成多个并列的纵向取向的折叠。
2.根据权利要求1所述的方法,其中当在平面图中观察所述成形导件时,所述脊和谷设置在第一大体三形场中,其中所述第一大体三角形场具有基底和峰,并且所述第一大体三角形场被取向成使得所述三角形场的基底形成所述成形导件的下游部分。
3.根据权利要求1或2所述的方法,其中在所述成形导件上的交替的大体纵向取向的脊和谷彼此相邻。
4.根据权利要求1或2所述的方法,其中所述成形导件的面向纤维网的表面被构造成提供基本上相等的路径长度,使得所述面向纤维网的表面还包括在其上的至少两个突出部,所述突出部比除了所述脊之外的所述成形导件的各部分在所述面向纤维网的表面上更向外间隔开,其中所述突出部具有长度和宽度,其中所述突出部的长度大于其宽度,并且所述突出部被取向成使得它们的长度尺寸与所述脊成锐角,并且所述突出部与所述脊对齐。
5.根据权利要求4所述的方法,其中所述突出部的长度尺寸基本上与所述进机方向正交取向。
6.根据权利要求4所述的方法,其中当在平面图中观察所述成形导件时,突出部与所述脊沿对角线相交。
7.根据权利要求4所述的方法,其中当在平面图中观察所述成形导件时,所述突出部设置在第二大体三角形场中,其中所述第二大体三角形场具有基底和峰,并且所述第二大体三角形场被取向成使得三角形场的基底形成所述成形导件的上游部分。
8.根据权利要求4所述的方法,其中所述成形导件上的突出部中的至少一些选自以下构型中的一个:
a.其中所述大体纵向取向的脊包括第一组脊,并且在所述成形导件上的突出部中的至少一些呈脊的形式并且包括第二组脊;或者
b.其中在所述成形导件上的突出部中的至少一些包括辊,所述辊具有与所述大体纵向取向的脊成锐角取向的轴线。
9.根据权利要求1或2所述的方法,其中用于维持所述纤维网与所述成形导件至少部分地接触的所述装置选自下列中的一个:
a.用于所述成形导件的配合组件,其中所述配合组件与所述成形导件配对以在将所述纤维网馈送到所述成形导件和所述配合组件之间时,使所述纤维网跨所述纤维网的宽度至少暂时成型;
b.在所述纤维网上提供空气压的装置;或者
c.通过所述成形导件在所述纤维网上抽真空
10.一种用于使打褶纤维网成型的方法,其特征在于其用于在纵向上输送所述打褶纤维网时使所述打褶纤维网弯曲,所述打褶纤维网的弯曲在所述打褶纤维网的总体平面外,所述方法包括以下步骤:
a)提供打褶纤维网;
b)提供旋转导件,所述旋转导件包括上游端、下游端、和面向纤维网的表面,其中所述面向纤维网的表面包括在其中的第一组交替且相邻的纵向取向的脊和谷,其中所述面向纤维网的表面包括在其中的第二组交替且相邻的纵向取向的脊和谷,其中所述第二组脊和谷在第一组脊和谷的下游,并且与所述第一组脊和谷对齐,使得所述第二组中的谷与第一组中的一个脊在纵向上对齐,并且第二组中的脊与第一组中的谷对齐,并且当从在横向上看到的侧面来观察所述旋转导件时,所述第一组交替的脊和谷的脊限定第一平面,并且所述第二组脊和谷上的脊限定第二平面,其中所述第二平面在远离所述面向纤维网的表面的部分的方向上远离第一平面成角度,所述面向纤维网的表面的部分由所述第一组交替的脊和谷限定;以及
c)使所述打褶纤维网通过并接触所述旋转导件的所述面向纤维网的表面,以在维持所述纤维网中的褶裥的同时使所述打褶纤维网弯曲。
11.一种用于使纤维网成型的成形导件,所述纤维网在进机方向上移动,使得所述纤维网围绕至少一个大体纵向取向的轴线在横向方向上弯曲,所述成形导件包括两个侧边缘、上游端、下游端、面向纤维网的表面和相对表面,其中所述成形导件的所述面向纤维网的表面的特征在于其包括:
a)在其中的交替的大体纵向取向的脊和谷,所述脊和谷至少邻近所述成形导件的所述下游端定位,并且所述面向纤维网的表面被构造成提供跨所述面向纤维网的表面的宽度的基本上相等的路径长度,当通过一系列点测量所述路径长度时,每个点距所述纤维网的一个侧边缘等距;以及
b)用于维持纤维网与所述成形导件的面向纤维网的表面至少部分地接触的装置或机构中的一者,所述装置或机构靠近所述成形导件定位并且被布置成向纤维网的至少一部分施加力以维持所述纤维网与所述成形导件的面向纤维网的表面至少部分地接触。

说明书全文

用于使纤维网打褶或成型的方法和设备

技术领域

[0001] 本文描述了用于使纤维网打褶或以其它方式成型的方法和设备。所述方法和设备具有多种应用。在一些情况下,所述方法和设备用作用于使消费产品用单位剂量包装成形、填充和密封的方法的一部分。本文还描述了用于将材料的两个移动的纤维网密封在一起的方法和设备,所述材料的纤维网具有非平面部分。

背景技术

[0002] 用于使纤维网打褶或以其它方式成型的方法可用于多种用途。打褶纤维网可例如用于尿布和其它吸收制品、过滤器、窗帘、和其它制品的构造中。使纤维网打褶的方法描述于下列文献中:美国专利2,655,978,Gonda等人;美国专利3,066,932,Greiner等人;美国专利3,165,310,Peterson;美国专利3,401,927,Frick等人;美国专利3,784,186,Lenthall等人;美国专利5,589,014,Hicks;;美国专利4,170,347,Lewis;美国专利7,235,115,Duffy等人;美国专利7,963,899B2,Papsdorf等人;EP 0364084 A1;印度专利公布189471;和英国专利1 433 910。此外,名为Former Fab的公司制备了用于将纤维网加工成波纹的装置。可由其设备形成的纤维网见于网页www.former-fab.de/en/ideas-innovations/longitudinal-corrugating-technology。
[0003] 申请人已经发现需要在其中纤维网通常更随机地成型的领域中-在用于制备液体产品的单位剂量用包装的立式成形填充密封(VFFS)方法中,用于使纤维网成型的改进的方法。液体产品诸如洗发剂和毛发调理剂的单位剂量常常置于被称为小袋的相对薄的、平坦的包装中。此类小袋通常具有蒸气阻隔特性以防止随时间推移包装中产品的水损失。这种类型的小袋一般使用立式成形填充密封(VFFS)方法制备。
[0004] 目前的方法对于间歇和连续地立式成形填充密封存在。立式成形填充密封(VFFS)方法通常采用填充喷嘴,所述填充喷嘴插入用于形成包装的材料的两个层之间。目前的VFFS机器可具有最多十二个喷嘴,所述喷嘴跨材料的两个纤维网的宽度排成行以便同时形成并填充十二个小袋。这些方法依赖于在喷嘴之间迫使材料的纤维网在一起并且通过喷嘴保持分开,以便形成通过喷嘴将产品分配于其中的空间。当在喷嘴之间迫使纤维网在一起时,在纤维网之间形成纵向密封件以将小袋的侧面闭合,并且在喷嘴分配的每个剂量之间形成横向密封件。
[0005] 现有VFFS系统中的一个问题在于对材料的纤维网在它们围绕喷嘴通过时形成用于分配产品的空间的依赖是不精确的,并且可导致材料的不均匀宽度,从而形成小袋的不同侧面。因此,来自形成小袋的前部的纤维网中一个的材料可具有与形成小袋的后部的材料的其它纤维网不同的宽度。这可导致小袋的褶皱。另外,纤维网的褶皱可妨碍横向密封件的形成,使得材料不完全密封在一起,从而导致裂漏的小袋。
[0006] 因此,持续研究用于使纤维网打褶或以其它方式成型的改进的方法和设备,以及改进的包装成形工艺。发明内容
[0007] 本文描述了用于使纤维网打褶或以其它方式成型的方法和设备。所述方法涉及使在纵向上移动的纤维网成型。所述方法包括提供成形导件,所述成形导件包括面向纤维网的表面。成形导件的面向纤维网的表面可被构造成提供跨其面向纤维网的表面的宽度的基本上相等的路径长度。通过使纤维网通过并至少部分地接触所述成形导件的面向纤维网的表面来形成所述纤维网,以在所述纤维网中形成纵向取向的折叠。
[0008] 所述方法和设备可具有多种应用。在一些情况下,所述方法和设备用于消费产品用单位剂量包装的成形、填充和密封。所述方法还包括将材料的第一纤维网和材料的第二纤维网在纵向上馈送到包装成形设备中。包装成形设备包括用于在纤维网之间分配产品的至少一个喷嘴。所述方法包括使材料的第一纤维网和第二纤维网中的至少一个邻近成形导件通过以使材料的第一纤维网和第二纤维网中的至少一个跨所述纤维网的宽度至少暂时成型,以远离喷嘴将材料的第一纤维网和第二纤维网中的至少一个的至少一部分间隔开。可使用喷嘴在材料的纤维网之间分配产品,并且材料的纤维网的各部分可与其间的产品一起密封以形成包含产品的包装。
[0009] 本文还描述了用于将材料的两个移动的纤维网密封在一起的方法和设备,所述材料的纤维网具有非平面部分。所述方法包括将材料的第一纤维网和材料的第二纤维网沿其长度的至少一部分在纵向上大致平行于彼此馈送到装置中。材料的纤维网中的至少一个在其中具有非平面部分,所述非平面部分跨纤维网的宽度形成。所述方法包括提供组件,所述组件具有在其中具有至少一个凹陷部的接触纤维网的表面,并且迫使纤维网的至少一部分进入其中具有凹陷部的组件的接触纤维网的表面中的凹陷部中,以便将纤维网中的非平面部分的至少一些拉伸和展平;以及将材料的纤维网的各部分跨展平的非平面部分密封在一起。附图说明
[0010] 图1是纤维网的示例,所述纤维网在现有技术折叠板的上方通过以在纤维网中形成单个褶裥。
[0011] 图2是纤维网的示例,所述纤维网在并排布置的多个现有技术折叠板的上方通过以试图在纤维网中产生多个褶裥。
[0012] 图3是一个示例性成形设备的透视图,所述成形设备包括用于使纤维网成型的成形导件。
[0013] 图4是成形导件的另一示例的平面图。
[0014] 图5是成形导件的一部分的透视图,所述成形导件示出相等路径长度成形的概念。
[0015] 图5A为图5所示成形导件的部分的平面图。
[0016] 图6是示出成形导件和配合组件如何能够在两者间具有纤维网的情况下相对于彼此定位的示意性端视图。
[0017] 图7是穿过成形设备之前或之后的纤维网的构造的局部透视图。
[0018] 图8是成形导件的一个示例的透视图,所述成形导件包括具有辊的第二区域。
[0019] 图9是小袋的一个实施方案的示意性前视图。
[0020] 图10是单通道立式成形填充密封方法的示意透视图。
[0021] 图11是多通道立式成形填充密封方法的示意透视图。
[0022] 图12是围绕多通道立式成形填充密封设备的喷嘴的纤维网的一部分的示意性剖视图。
[0023] 图13是用于将材料的成型纤维网中的一个旋转的旋转导件的一个实施方案的示意透视图。
[0024] 图14是用于将材料的成型纤维网中的一个旋转的旋转导件的另一个实施方案的示意透视图。
[0025] 图15A是在现有技术横向密封棒之间的一对成型纤维网的示意性剖视图,其在密封序列的第一位置中。
[0026] 图15B是在现有技术横向密封棒之间的一对成型纤维网的示意性剖视图,其在密封序列的第二位置中。
[0027] 图15C是在现有技术横向密封棒之间的一对成型纤维网的示意性剖视图,其在密封序列的第三位置中。
[0028] 图15D是在现有技术横向密封棒之间的一对成型纤维网的示意性剖视图,其在密封序列的第四位置中。
[0029] 图16A是在用于形成横向密封件的新设备之间的一对成型纤维网的示意性剖视图,其在密封序列的第一位置中。
[0030] 图16B是图16A所示的设备的示意性剖视图,其在密封序列的第二位置中。
[0031] 图16C是图16A所示的设备的示意性剖视图,其在密封序列的第三位置中。
[0032] 图17是用于形成横向密封件的另选的机构的平面图(在纤维网将运行的方向上观察)

具体实施方式

[0033] 本文描述了用于使纤维网打褶或以其它方式成型的方法和设备。如本文所用,术语“成型”是指以可控方式改变平面纤维网的构造。术语“成型”包括但不限于:形成纤维网但不必要在所述纤维网中形成折叠;至少部分地折叠纤维网但不在纤维网中形成折痕或使纤维网本身对折;将纤维网的一部分折叠到其本身上;以及在纤维网中形成多个并列的折叠或褶裥。所述方法和设备具有多种应用。
[0034] 图1是纤维网10的示例,所述纤维网在现有技术折叠板的上方通过以在移动的纤维网中形成单个褶裥。箭头表示纤维网的移动方向,其将被称为纵向(或“MD”)。T垂直于进入的未折叠纤维网的平面中纵向的方向被称为横向(或“CD”)。出于下文解释的原因,图1中所示用于形成纤维网的折叠板不适用于在纤维网中形成多个并列的褶裥。
[0035] 图2是纤维网的示例,所述纤维网在改进的现有技术折叠设备上通过,所述设备包括三个相邻的现有技术折叠板,所述折叠板被布置成试图在纤维网10中产生多个褶裥。如图2所示,考虑并排放置一系列现有技术折叠板形状以在纤维网中产生多个褶裥,但这要求纤维网在每个褶裥之间如在点P处分裂(或裂开),这是不期望的。纤维网通常将不能够在横向上充分拉伸以保持褶裥并且仍然横跨在这些并列折叠板之间。为此,此类折叠设备设计对于其中要求设备在单个纤维网中形成多个并列型褶裥的用途是不适用的。
[0036] 成形设备
[0037] 图3示出如本文所述用于使纤维网打褶或以其它方式成形的成形设备20的一个示例。成形设备20包括成形导件22和用于维持纤维网与成形导件22至少部分地接触的装置或机构。在一些情况下,用于维持纤维网与成形导件22至少部分地接触的装置可包括任选的配合组件24。成形导件22可包括两个侧边缘26、具有端边的上游端28、具有端边的下游端30、面向纤维网的表面32和相对表面34。下文更详细地描述了成形导件22的面向纤维网的表面32的构型。相对表面34可具有任何合适的构型,其包括但不限于:平坦的(如图3所示)、波纹形(如图6所示)、或成度或弯曲的(如图13和14所示)。
[0038] 应当理解虽然图3所示的成形设备20被构造成在纤维网中形成多个并列的临时褶裥,但成形导件22可以呈多种其它构型。此类其它构型包括但不限于下列那些,其中:成形导件22被构造成:使纤维网成型(或“成形”);在纤维网中提供单个折叠或褶裥;至少部分地折叠纤维网但不在纤维网中形成折痕或使纤维网本身对折;以及使纤维网折叠或打褶。在任何情况下,纤维网将围绕至少一个大体纵向取向的轴线在横向上弯曲。如所讨论的,成形设备20可在纤维网中形成多个褶裥。在一些方法中,一个或多个折叠可永久性成形于纤维网中。在其它方法中,一个或多个折叠可暂时成形,使得纤维网中不形成永久性折痕。
[0039] 在图3所示的实施方案中,成形导件22的面向纤维网的表面32包括第一区域(或“下游区域”)36和第二区域(或“上游区域”)38。第一区域36和第二区域38可具有任何合适的平面图构型。在所示成形导件22的示例中,第一区域36和第二区域38具有介于两者间的边界。在该情况下,边界为对角边界40。当从上方观察时(平面图),对角边界40可被认为将成形导件22的面向纤维网的表面32分成两个大体三角形场。这些包括第一三角形场,所述第一三角形场包括第一区域36,和第二三角形场,所述第二三角形场包括第二区域38。
[0040] 如图3所示,第一区域36可包括至少两个突出部(或“突出元件”),所述突出部设置在从成形导件22的面向纤维网的表面32向外,比所述成形导件的其它部分更大的高度处。所述突出部在横向上彼此间隔开。面向纤维网的表面32的第一区域36还包括在面向纤维网的表面32中的至少一个凹入部,其位于突出部之间。第一区域36可包括在面向纤维网的表面32中的多个交替且相邻的突出部和凹入部。所述突出部具有长度和宽度。所述突出部的长度长于突出部的宽度。在图3所示的成形导件22的示例中,突出部呈脊42的形式并且凹入部呈谷44的形式,所述谷具有大体在纵向上取向的其较长(或长度)尺寸。这些可被称为第一组脊和谷。第一组脊42和谷44至少邻近成形导件22的下游端30定位。
[0041] 可认为在图3所示的实施方案中由第一区域36形成的三角形平面视场具有基底B1和峰P1。三角形场的基底B1邻近成形导件22的下游部分定位,并且三角形场的峰P1邻近成形导件的上游部分定位。然而,应当理解,第一区域36的构型不限于大体三角形构型,并且多种其它构型是可能的。此外,当认为脊42和谷44大体在纵向上取向时,这包括在纵向上的取向,以及相对于纵向成小于或等于约45°,另选地介于约1°和10°之间的角度A1的那些。
[0042] 第二区域38可包括至少两个第二区域突出部(或“突出元件”),所述突出部设置在从所述成形导件22的面向纤维网的表面32向外,比第二区域中的成形导件的其它部分更大的高度处。这些第二区域突出部在纵向上彼此间隔开。面向纤维网的表面32的第二区域38还包括在面向纤维网的表面32中的至少一个凹入部,其位于突出部之间。第二区域38的面向纤维网的表面32可包括多个交替且相邻的突出部和凹入部。所述第二区域突出部具有长度和宽度。所述第二区域突出部的长度长于第二区域突出部的宽度。在图3所示的成形导件22的示例中,突出部呈脊的形式并且凹入部呈谷的形式,所述谷具有大体在横向向上取向的其较长(或长度)尺寸。这些可被称为第二组脊46和谷48。第二组脊46和谷48至少邻近成形导件22的上游端28定位。在一些实施方案中,在横向上观察的第二区域38中的大体横向取向的突出部和凹入部的横截面可以与第一区域中的纵向取向的脊和谷的横截面相同或相似,当后者在纵向上观察时。在其它实施方案中,第一区域36和第二区域38的这些元件的横截面可以不同。
[0043] 可认为由第二区域38形成的三角形平面视场具有基底B2和峰P2。三角形场的基底B2邻近成形导件的上游部分定位,并且三角形场的峰P2邻近成形导件的下游部分定位。然而,应当理解,第二区域38的构型不限于大体三角形构型,并且多种其它构型是可能的。此外,当认为第二区域38中的脊46和谷48在横向上“大体取向”时,这包括相对于横向成介于约0°-45°之间的角度A2运行的取向。在横向上运行的角度(即相对于纵向成90°)是期望的,因为其它角度趋于拖拽纤维网,并导致纤维网移动至侧面。这可形成对于向成形设备添加装置以便使纤维网“在轨道上”的需要。
[0044] 如图4所示,第二区域38中的突出部可取向成使得其长度尺寸相对于第一区域36中的大体纵向取向的脊42成锐角(小于90°)A3。合适的角度A3在介于约45°和约89°之间,另选地介于约70°和约89°之间。还可使用更小的角度;然而这将改变褶裥形成的深度。在边界40处,第二区域38中的突出部与第一区域36中的脊42对齐,并且第二区域38中的凹入部与第一区域36中的谷44对齐。第二区域38中的突出部可以与或可以不与第一区域36中的脊42邻接。在所示的示例中,第二区域中的突出部(第二组脊46)沿对角边界40与脊42邻接。
[0045] 纤维网的取向还可在其通过成形导件22上方时改变。纤维网的取向基于纤维网的边缘的取向。纤维网可具有通常不同的进机方向取向MDI,和出机方向取向MDO。例如,图4示出第二区域突出部如脊46可以相对于进机方向取向MDI成约90°运行的角度设置(即,脊46在横向上运行),并且纤维网(未示出)可具有出机方向取向MDO,即成一角度A4,所述角度与进机方向取向MDI不同。在该情况下,角度A3与出机方向取向MDO角度A4互补(两个角度组合以形成90°角)。
[0046] 如图5所示,成形导件22的面向纤维网的表面32可被构造成提供跨面向纤维网的表面32的宽度的基本上相等的路径长度。所述路径长度通过一系列点来测量,每个点距纤维网的一个侧边缘等距,所述纤维网在纵向上在成形导件22上方运行。例如,图5示出三个平行的路径52A、52B和52C,所述路径沿循成形导件22的面向纤维网的表面32的轮廓。如果表示这些路径的波形线(不可延展的线图像)脱离成形导件22的表面并且拉直位于相同平面中,且其各自具有相同长度。还应当指出的是每当一条线的片段在与另一条线的片段相同的平面上时(诸如在由双虚线标记的位置处),则它们在所述平面中平行并且还平行于纤维网的边缘。如图5所示,将从线52C的一端到线52C的另一端测量的直线平面距离命名为Y,并且将从线52A的一端到线52A的另一端的直线平面距离命名为X。
[0047] 在这种情况下,如在图5A最佳示出,距离Y短于距离X。X和Y的上游端具有共用纵向起始位置(或“起始线”)S。下游端具有共用纵向终点位置。然而,终点位置沿线(“终点线”)F设置,即与“起始线”S成一角度。终点线F垂直于下游区36中的脊42和凹槽44,并且垂直于通过成形导件22上方的纤维网的边缘。因此,虽然线52在其中具有更多弯曲,但当两条线52A和52C拉直时,它们具有相同的直线长度。
[0048] 该相等路径长度的面向纤维网的表面32提供具有跨纤维网的宽度(横向)的恒定应变的纤维网,从而促进材料在所有凹入部中的均匀分配。因此纤维网还在其中具有相等的表面路径长度。这确保了纤维网的一些部分不比纤维网的其它部分拉伸/应变更多。这还确保了纤维网保持紧贴成形导件22相对绷紧并减少了可导致纤维网中的褶皱的松弛。
[0049] 如图3所示,为了有助于使纤维网至少部分沿循成形导件22的形状,配合组件24可定位成与成形导件22成面对面的关系。出于解释说明的目的,配合组件24以打开的未配合位置示于图3中。图3示出成形设备20布置有铰链使得成形导件22和配合组件24可被打开用于清洁。配合组件24具有成型的面向纤维网的表面,其与成形导件22的面向纤维网的表面32匹配。配合组件24可具有存在于成形导件22上的元件中的任一个或全部。因此,配合组件
24可包括两个侧边缘56、上游端58、下游端60、面向纤维网的表面62、相对表面64、第一区域
66、第二区域68、边界70、第一区域中的第一组脊72和谷74、以及第二区域中的第二组脊76和谷78。配合组件24可具有能够与成形导件22的面向纤维网的表面32匹配的任何合适的面向纤维网的表面构型。在所示的示例中,配合组件24具有表面构型,所述表面构型包括与成形导件22的脊和谷相似的脊和谷的图案,但是为偏置的,使得配合组件的脊72与成形导件
22的谷44对齐,并且成形导件22的脊42与配合组件24的谷74对齐。
[0050] 如图6所示,在使用中时,两个配合的成形表面32和62略分开定位以便迫使纤维网10至少部分地沿循成型表面的轮廓。两个配合的成型表面32和62可间隔开任何合适的距离以在两者间形成间隙G。间隙G可例如为约1mm。纤维网10在该间隙之间通过,使得成型表面的峰推动纤维网10朝向相对的成型表面的谷,从而迫使纤维网10成为期望的形状。
[0051] 纤维网10可采用成型表面的大体形状。当认为纤维网10可采用成型表面32和62的大体形状时,如图6所示,纤维网10可以但不必须精确地适形于成型表面32和62的构型。例如,如图6所示,纤维网10可仅接触脊(或其它突出的元件)42和72,并且可不延伸入谷44和74中。因此,可认为纤维网10至少部分地接触成形导件的面向纤维网的表面。当纤维网10移动通过成形设备20时,其可在整个纤维网中维持非常近乎相等的应变。在至少一些情况下,平坦的进入纤维网可沿如图所示的成形设备的峰和谷折叠并且峰之间的纤维网的所有部分均可维持其原始形状。在此类情况下,纤维网可基本上免于在折叠线之间拉伸。
[0052] 在操作中,纤维网10将通常具有基本上平面(平坦)的进入构型。纤维网10首先穿过连接至大体纵向取向的褶裥形成形状的一系列大体横向取向的褶裥形成形状。使纤维网10穿过成形设备20导致纤维网10首先获得第二区域38的面向纤维网的表面的大体构型,并且然后随着纤维网10在下游行进逐步在横向上形成纵向取向的褶裥。如图6所示,所有褶裥峰可位于纤维网的平坦进入部分的平面中。所有褶裥谷可位于平行于峰平面并在峰平面下方距离“DP”(褶裥的深度)处的共用平面中。图7示出当其进入成形设备20时,并且在其穿过成形设备之后,纤维网10看起来可能是什么样子的一个示例。纤维网10具有多个纵向取向的脊82和谷84,所述脊和谷具有限定所述脊和谷的纵向取向的折叠线85。
[0053] 成形设备20和方法的多个另选的实施方案是可能的。以下描述了非限制性数目的这些实施方案。图8示出成形导件22的第二示例。在该情况下,成形导件22包括第二区域38,其中在先前所示的成形导件上的脊(其大体在横向上取向)由可旋转惰辊80替换。与穿过固定表面成形设备的纤维网相比,这极大地减少了纤维上10上形成的摩擦。虽然辊80可以相对于纵向成小于90度的角取向,但希望辊80取向成其旋转轴线A相对于进机方向MDI成90°的角度。
[0054] 在其它实施方案中,除了具有包括成形导件22和配合组件的成形设备20之外,一些其它机构也可用于迫使纤维网10沿循成形导件22的形状。例如,可将空气压施加于纤维网的顶部以迫使纤维网10沿循成形导件22的形状。在其它实施方案中,除了将空气压力施加于纤维网的顶部之外,成形导件22可在其中具有孔,并且可对孔抽真空以便将纤维网保持在成形导件22上的适当位置。
[0055] 本文所述用于使纤维网打褶或以其它方式成型的方法可用于多种用途,其包括但不限于:在制造尿布和其它吸收制品、过滤器、窗帘和其它制品时,以及如下所示,在形成包装时。
[0056] 使用成形设备制备单位剂量包装
[0057] (1)单位剂量包装
[0058] 在一些情况下,所述方法和设备可用于消费产品用单位剂量包装的成形、填充和密封。虽然本文示出在制备单位剂量包装的环境中的方法和设备,但应当理解这仅是使用所述方法和设备的一个示例。所述方法和设备可用于任何合适的方法中。
[0059] 由所述方法和设备形成的单位剂量包装可以呈任何合适的构型。包装的内容物可以呈任何合适的形式,包括但不限于固体、液体、糊剂和粉末。术语“流体”可用于本文以包括液体和糊剂两者。
[0060] 在某些实施方案中,单位剂量包装包括填充有产品的小袋,所述产品可包括个人护理产品或家庭护理产品,其包括但不限于:洗发剂、毛发调理剂、染发剂(染料和/或显影剂)、衣物洗涤剂、织物然润滑剂、盘碟洗涤剂、以及牙膏。小袋可包含其它类型的产品,所述产品包括但不限于食品诸如番茄酱、芥末、蛋黄酱和橙汁。此类小袋通常相对薄和平坦,并且在一些情况下具有水蒸气阻隔特性以防止随时间推移包装中产品的水损失,或水从包装外侵入产品中。
[0061] 图9示出呈现有技术小袋90形式的包装的一个非限制性示例。小袋90具有前部92、后部94、周边96、两个侧面98、顶部100和底部102。小袋90还具有围绕所述周边的密封件104。小袋可以呈任何合适的构型,其包括但不限于所示的矩形。小袋可具有任何合适的尺寸。在一个实施方案中,小袋为48mm×70mm,并且具有围绕全部四个侧面的宽度为5mm的密封区域。小袋内的袋106的尺寸(宽度W和长度L)为38mm×60mm。
[0062] 包装诸如小袋90可由任何合适的材料制成。合适的包装材料包括膜和织造或非织造材料(在其中小袋包含固体产品的情况下),或前述材料中任一种的层合体。如果需要,包装材料可包含呈层或涂层形式的液体和/或蒸汽阻隔层。包装材料可由非水溶性材料构成,或就一些用途而言,由水溶性材料构成。小袋的各个部分(或其它类型的包装)可全部由相同的材料制成。在其它实施方案中,包装的不同部分可由不同的材料制成。在一个实施方案中,小袋90由形成小袋的前部92和后部94的两片相同膜制成。所述膜可以为任何合适类型的膜,其包括单层膜和层合体。
[0063] 在一个实施方案中,包装材料为层合体,其包括下列三层:9微米厚的聚对苯二甲酸乙二醇酯(PET)膜;18微米厚的真空金属化双轴向聚丙烯(VMBOPP)蒸气阻隔膜;以及30-50微米厚聚乙烯(PE)膜。PET和PE层通过粘合剂附着到VM BOPP膜上。在该膜中,PET层将包括小袋的外表面,并且聚乙烯层将包括在小袋的内侧上的密封层。该膜的水蒸气阻隔特性对于在其被消费者使用之前防止随时间流逝小袋内产品中的水损失而言是重要的。所述膜具有小于或等于约0.4克/m2/天的目标水蒸气传输速率。该层压膜的平均纵向模量为约63,
000N/m,并且平均横向模量为约75,000N/m。
[0064] 图10示出用于制备小袋的立式成形填充密封(VFFS)过程和设备114。如图10所示,将用于形成小袋的材料的两个纤维网10和12引入设备中,并且以竖直向下方向馈送到所述过程中。当纤维网穿过分配区时,在纤维网10和12之间设置填充管116。喷嘴118位于填充装管116的端部或顶端处(喷嘴118的视图被第二纤维网10阻挡)。可通过竖直密封机构120沿纤维网10和12的侧面形成竖直密封件。横向密封机构122位于填充喷嘴118下方。横向密封机构122形成位于一个小袋的顶部和下一个小袋的底部处的密封件。在包装的底部处形成初始水平密封件之后,喷嘴118可将产品诸如液体(或糊剂)产品分配在纤维网10和12之间。穿孔或切割机构124可位于横向密封机构122的上部和下部部分之间(如图10所示),或其可位于横向密封机构122下方。穿孔机构124形成穿过由横向密封机构122形成的密封件的穿孔126。最终的包装或小袋90示于图10的下部处。
[0065] 图10所示的设备114的简化型式是仅单通道(一个包装宽度)宽的。已知提供具有多个并列型通道的此类设备。当前,在此类设备中,纤维网10和12将通常源自单卷纤维网材料。将从初始纤维网材料卷获取的纤维网分成两半,在两个转杆上方反转,并在惰辊130和132上方运行。如图10所示,以大致平坦的构型将纤维网10和12引入设备中。即,纤维网10和
12在其整个宽度中大体是平面的。在围绕惰辊130和132旋转之后,材料10和12的第一和第二纤维网大体彼此平行,其中它们的密封表面彼此面对。材料10和12的第一和第二纤维网在一个或多个喷嘴118的区域中大体彼此平行。当前方法通常依赖于材料10和12的纤维网在它们围绕喷嘴118通过时分开,以便形成通过喷嘴118将产品分配于其中的空间。
[0066] 当以该方式形成纤维网以形成喷嘴和产品的空间时,其可导致跨纤维网宽度的可变的纵向张力。例如,纤维网10和12的外侧边缘比纤维网的中心线更绷紧,这是由于成形纤维网的减小的纤维网宽度。此外,如果存在多个并列型通道,则在每个通道内,纤维网在密封棒120接触区域中比围绕喷嘴118更绷紧,这是由于纤维网采用了更长的路径长度。这可导致根据纤维网的整个宽度上的纵向张力变化的通道间纤维网成形不稳定性。例如,在围绕喷嘴将其包裹的机器中心中的纤维网是跨纤维网宽度的最短纤维网路径长度,从而使得中心通道对于成形而言最不稳定。这可导致各种问题。例如,前纤维网和后纤维网采用的构型可能不是给定通道中的相同构型。最终,这导致在小袋横向密封件中形成褶皱的更大机会。此外,如果小袋上具有文字,则褶皱可破坏文本使其难以阅读。
[0067] (2)形成一个或多个纤维网
[0068] 图11示出一个设备,所述设备具有在横向上的多个通道L1、L2…至L12。这使得小袋的并列行能够由膜的单个纤维网制备(即,材料10的单个第一纤维网和材料12的单个第二纤维网)。本文所述的VFFS设备可包括任何合适数目的多个通道,两个至十二个,或更多。制备本文所述的单位剂量包装的方法提供用于纤维网10和12中至少一个的成形设备20。然而,通常希望提供用于纤维网10和12两者的成形设备。在此类情况下,纤维网各自运行通过本文所述类型的成形设备20和20’中的一个。成形设备20和20’可相对于水平方向和竖直方向成任意合适的角度取向(即,在任何合适的取向上)。合适的取向可在大致竖直至大致水平的范围内。在图11所示的方法的型式中,成形设备20和20’大致水平取向,其中将纤维网
10和12从相对的方向馈送到所述方法中。使纤维网10和12在其穿过成形设备20和20’时更靠近地聚集到一起,并且竖直向下旋转并馈送到填充区中围绕其上具有喷嘴118的填充管
116。在图的下部示出竖直密封机构120。
[0069] 代替将喷嘴用作成形工具,将成形设备20和20’用于使纤维网10和12形成为更一致成型的构型。使用该技术可极大地减少渗漏和缺陷险。成形设备20和20’包括如上所述的成形导件22(和22’)。成形导件22和22’具有被构造成将纤维网10和12的至少一部分远离喷嘴间隔开的表面。成形导件22和22’被成型用于维持纤维网上的均匀应变。成形导件22和22’可用于将纤维网10和12成形为任何期望的形状,包括但不限于折叠构型。
[0070] 图12示出在填充区中围绕喷嘴118的纤维网10和12的横截面的一个示例。如图12所示,褶裥的谷和峰的底部由在纵向上运行的临时折叠线限定。当在纵向上观察纤维网时,在临时折叠线的任一侧上的纤维网的部分可彼此形成任何合适的角度A5。合适的角度A5包括但不限于约45°(或更小)和小于约180°之间。使纤维网的折叠线对齐。即,纤维网10的折叠线与纤维网12的折叠线对齐。使折叠部分对齐使得相对地设置在喷嘴118的每个侧面上的褶裥的部分形成用于喷嘴的空间。在形成用于单位剂量包装的纤维网的情况下,期望褶裥仅暂时形成并且不在纤维网中形成折痕。在纤维网的此类临时打褶部分移动超过一个或多个喷嘴时,褶裥可展平。应当理解图12仅示出纤维网10和12的一个可能构型,并且多种其它构型是可能的。例如,虽然较不可取,但如果仅纤维网10和12中的一个成形或打褶,则可实现本发明有益效果中的一些。
[0071] 用于使纤维网从平坦构型转化(当其来自辊时)成包装诸如小袋的方法如下。在多通道立式成形填充密封小袋制备过程中,使两个纤维网10和12从一排填充管116的相对侧聚集到一起。在每个纤维网10和12穿过成形设备20和20’时,纤维网一般各自采用打褶纤维网的形状,其中折叠线在纵向上运行。当纤维网邻近喷嘴118并在竖直密封棒120之间通过时,所述纤维网维持该形状。纵向密封件成形装置可以呈纵向(MD)取向的加热元件(棒)120的形式,所述加热元件位于相邻通道之间并且还侧向位于第一通道和最后通道的外侧。将纤维网的密封层加热至其熔点以将所述纤维网热密封在一起。将纤维网的部分密封在一起以在位于填充管116之间的纵向区域中将纤维网10和12接合。这产生了围绕每个填充管116及其缔合的喷嘴118的管状纤维网结构。所述纵向密封件将形成小袋上的侧密封件。管状纤维网结构稍后用水平取向的密封件密封,用产品填充,并用水平密封件再次密封以形成小袋90。
[0072] 在立式成形填充密封过程中,还希望减小填充管116的长度,因为细长填充管由于机器振动而趋于损坏和不稳定。长填充管还可使VFFS机器的高度太大。现有技术方法中填充管的不稳定性可导致在小袋的前部上比在小袋的后部上提供更多纤维网材料,或反之亦然,从而导致在密封区域中形成褶皱。如图11所示,减小填充管116的长度的一种方式是使纤维网10和12在水平平面上形成为期望的打褶构型。然后可使打褶纤维网10和12通过旋转设备上方以使成形(例如打褶)纤维网旋转成竖直运行取向以用于填充过程。这消除了纤维网10和12的成形和打褶在竖直取向上进行时,成形可占的大部分竖直空间。
[0073] (3)旋转导件
[0074] 使纤维网10和12旋转的一个挑战是在旋转设备上使打褶纤维网重新取向。使打褶纤维网简单地通过常规的惰辊上方将使打褶纤维网的结构弯曲,从而破坏其期望的打褶形式。申请人已经开发了比尝试使打褶纤维网围绕惰辊旋转更好的方案。该方案是使纤维网的至少一部分,并且通常使纤维10和12中每一个通过固定的,特定成型的表面,诸如图13所示的旋转导件140。将通常从相对的方向将纤维网10和12引入VFFS设备中,如图11所示。纤维网10和12各自如本文所述形成,并且然后将纤维网10和12竖直向下旋转经过其各自的旋转导件(图11中未示出)。图13所示的旋转导件140使打褶纤维网向下旋转45度角。
[0075] 旋转导件140使得一个或多个打褶纤维网弯在所述一个或多个打褶纤维网的折叠构型外弯曲。打褶纤维网包括具有折叠线的褶裥,所述折叠线通常在纵向上取向。打褶纤维网是三维结构,其中脊的折叠线通常位于一个平面中,并且谷的折叠线通常位于另一个平面中。这些平面通常平行。可认为打褶纤维网具有中性轴线或节线。如图13所示,旋转导件140使得打褶纤维网10在这些平行平面外在纵向上弯曲(即,打褶纤维网在打褶纤维网的总体平面外在纵向上弯曲)。
[0076] 旋转导件140具有上游端、下游端、具有纵向尺寸MDD的面向纤维网的表面142、在横向上取向的宽度W1、和设置在纵向上的至少两个部分144和146。如图13所示,旋转导件140的所述接触纤维网的表面142的第一部分144包括跨旋转导件140的宽度的第一组交替的纵向脊148和谷150。接触纤维网的表面142的第二部分146是向下倾斜的部分,其包括在跨旋转导件140的宽度的第二组交替的纵向脊152和谷154。旋转导件140被构造成使得第一部分144的脊148基本上与第二部分146的谷154对齐,并且第一部分144的谷150基本上与第二部分146的脊152对齐。换句话讲,旋转导件140具有成形的接触纤维网的表面142,使得水平部分上的褶裥成形表面的“谷”变成向下倾斜部分上的褶裥成形表面的“峰”,以确保旋转过程遵循相等路径长度折叠的原理。
[0077] 当从在横向上看到的侧面来观察旋转导件140时,第一组交替的脊和谷的脊148限定第一平面,并且第二组脊和谷上的脊152限定第二平面,并且第二平面在远离由第一组交替的脊和谷限定的面向纤维网表面142的部分的方向上远离第一平面成角度。当打褶纤维网通过旋转导件140的面向纤维网的表面142上方时,打褶纤维网可在纵向上弯曲同时保持纤维网中的褶裥。
[0078] 为实现90度向下旋转,旋转导件140的面向纤维网的表面的向下倾斜部分可简单地制成竖直的,但这要求纤维网10旋转,并且冲过非常尖的角,这可损坏纤维网。为减少纤维网必须冲过的尖角,旋转导件140可成形为冲过一系列较小的角度,诸如三个30度断层,如图14所示。在每个30度断层的情况下,谷变成峰,并且峰变成谷,保留纤维网的相等路径长度特性。可能看起来在图14中在第一30度断层之后,成形导件的顶部上的谷仍然保留谷,但实际上谷确实变成了峰。此类峰可被认为是零纵向长度的峰。使峰长度最小化保持旋转导件140尽可能紧凑。
[0079] 旋转导件140的多个另选的实施方案是可能的,其非限制性数如下。在一些实施方案中,旋转导件140可具有配合组件以保持打褶纤维网紧贴旋转导件140的面向纤维网的表面。在其它实施方案中,旋转导件140不必要具有配合组件。在其它实施方案中,可使用喷气流和/或真空以紧贴旋转导件140保持纤维网。
[0080] (4)将具有非平面的部分的移动纤维网密封在一起。
[0081] 当小袋的多个通道由一个纤维网同时形成时,纤维网10和12可呈现如图12所示那样的横截面构型。这是在热密封横向密封棒夹持纤维网以形成横向(CD)密封件之前,分配区域中纤维网10和12的示例。夹持纤维网10和12以制备横向密封件时出现的一个挑战在于可在待密封的纤维网的各部分中形成折皱。如绘制的序列图15A至15D所示,当密封棒122和122’到一起时,组合的纤维网不能水平伸展以形成用于密封的平坦结构。图15A-15C示出到一起的密封棒122和122’的序列。图15D示出可在密封棒122和122’移回分开之后在纤维网中形成的折皱。
[0082] 因此,已经开发了用于将具有非平面的各部分的材料的两个移动纤维网密封到一起的改进的方法和设备。跨材料的一个或多个纤维网的宽度形成材料10和12的一个或多个纤维网的非平面部分。非平面部分可包括但不限于:一个或多个纤维网中的折叠、褶裥、皱纹和折皱。具有非平面部分的一个或多个纤维网可由大体在纵向上取向的折叠线限定。
[0083] 用于将材料的两个移动纤维网密封在一起的方法和设备可用于任何适宜的方法中,其中材料的移动纤维网具有非平面的部分。此类方法包括但不限于,使用喷嘴使纤维网成型的常规现有技术的立式成形填充密封方法,以及当然使用成形设备使纤维网围绕喷嘴成形的本文所述的改进的方法。
[0084] 用于将材料的两个移动纤维网密封在一起的设备包括第一组件160和相对的第二组件162。如图16A至16C所示,第一组件160和第二组件162可包括横向密封棒122和122’(或122’和122)。即,第一组件和第二组件可与横向密封棒相同,或横向密封棒可包括第一组件
160和第二组件162的一部分。在其它实施方案中,第一组件160和第二组件162可包括与横向密封棒122和122’分开的元件。
[0085] 如果第一组件160和第二组件162与横向密封机构分开,则横向密封机构的至少一部分可位于第一组件160和第二组件162的上游和/或下游。如果横向密封机构包括在纵向上彼此间隔开的横向密封件成形元件,则第一组件160和第二组件162的至少一部分可定位在此类横向密封件成形元件之间。不考虑其在设备中的位置,第一组件160和第二组件162中的至少一个通常可朝向彼此移动。
[0086] 在图16A至16C所示的实施方案中,第一组件160具有在其中具有至少一个凹陷部166的接触纤维网的表面164。可具有一个至两个或更多个的任何合适数量的凹陷部。一个或多个凹陷部166可呈任何合适的构型,前提条件是它们适用于执行期望的功能。例如,在制备小袋时,期望凹陷部166足够窄使得当纤维网的各部分聚集于其中时,纵向密封件宽度将比凹陷部166的宽度加上膜积聚量的总和大约至少20%至30%。这将确保横向密封件与纵向密封件相交,使得成品小袋将围绕其整个周边密封。合适的凹陷部构型包括但不限于纵向取向的凹槽和纵向取向的谷。相对的第二组件162具有面向第一组件160的接触纤维网的表面168。第二组件162包括至少一个突出部,所述突出部可以呈突出元件170的形式,所述突出元件与第一组件160的面向纤维网的表面164中的凹陷部166配合。
[0087] 将材料10和12的移动纤维网馈送到第一组件160和第二组件162之间。用于将材料的移动纤维网的各部分密封在一起的密封机构122(如果不是第一组件和第二组件的部分)邻近第一组件160和第二组件162定位。密封机构122可在第一组件160和第二组件162的上游,第一组件160和第二组件162的下游,或可具有在第一组件160和第二组件162的上游和下游两者的密封机构或它们的部分。在图16A至16C所示的实施方案中,密封机构是第一组件160和第二组件162的部分,并且位于第一组件和第二组件的表面上。
[0088] 如图16A至16C所示,在第二组件162的面向纤维网的表面168上的突出元件170可以是可回缩的并且加载弹簧以在密封之前将纤维网的部分推入凹陷部(例如凹槽)166中。可回缩的、加载弹簧的突出元件170通过将突出元件170接合到弹簧172来形成,所述弹簧负载于第二组件162的面向纤维网的表面168中的凹陷部174中。通过添加在密封之前将纤维网的部分推入凹槽166中的加载弹簧的特征结构,可在密封棒与纤维网进行接触之前将待密封区域中的过量纤维网部分拉出。
[0089] 事件的顺序示于图16A至16C中。图16A示出第一组件和第二组件,其中其上的密封棒开始聚集到一起以在待成形的小袋之间形成横向密封件。如图16A所示,形成两个小袋。在该特定实施方案中,凹陷部166和突出元件170在介于纤维网10和12的成形部分之间的空间中对齐。(在其它实施方案中,这不是必要的)。突出元件170从朝向凹陷部166的第二组件
162的面向纤维网的表面168向外延伸。图16B示出第一组件160和第二组件162在其移动到一起足够靠近之后,突出元件170将纤维网推入凹陷部166中。如由围绕突出元件170的箭头所示,这导致邻近突出元件170和凹陷部166的纤维网的各部分朝向突出元件170拉出并展平。图16C示出在以下阶段的第一组件160和第二组件162,其中在它们的表面在两者间具有纤维网的情况下聚集在一起以便形成横向密封件。在该阶段,加载弹簧的突出元件170回缩到第二组件162的表面中的凹陷部174中。
[0090] 所述步骤包括:(1)迫使纤维网的至少部分进入第一组件160的接触纤维网的表面中的至少一个凹陷部166中,以便将纤维网的非平面部分中的至少一些拉伸和展平;以及(2)跨展平的非平面部分将第一纤维网和第二纤维网的各部分密封在一起可以任何顺序进行,诸如其中步骤(1)在步骤(2)之前进行,或其中步骤(1)和(2)同时进行,前体条件是迫使纤维网的至少部分进入第一组件160的接触纤维网的表面中的至少一个凹陷部166中的步骤(1)在密封步骤中形成的密封件已经最终固定之前进行。
[0091] 图17示出用于形成横向密封件的设备的另选的实施方案。在图17中,所述设备包括第一组件180和第二组件182。组件180和182各自分别具有三维密封表面184和186,在其中具有多个突出部和多个凹陷部。第一组件180和第二组件182上的突出部和凹陷部互补,并且相对的突出部和凹陷部中的至少一些彼此匹配。配对的突出部和凹陷部可以呈任何合适的构型。在所示的实施方案中,第一组件180和第二组件182的密封表面184和186具有正弦波构型,其中波的波峰在纵向上延伸。当纤维网10和12(未示出)呈其打褶构型时,在进行横向密封件之前,从每个纤维网的一个边缘到每个纤维网的相对边缘的距离小于平坦纤维网的宽度。为了避免密封组件之间的一些位置中具有可形折皱的额外的材料,密封表面184和186可被构造成使得沿密封表面184和186的正弦路径的横向长度等于平坦纤维网的宽度。每个待形成的包装(例如小袋)可具有任何合适的正弦循环数,从一个至两个或更多个。密封表面184和186还可涂覆有任何合适的涂层。
[0092] (5)填充小袋
[0093] 在制备小袋的方法的情况下,制备第一横向密封件以形成小袋的底部。将产品分配到小袋的开口顶部中。可在制备密封件以形成小袋的底部之后,分配产品。在其它实施方案中,可在即将制备密封件以形成小袋的底部之前分配产品以获得最大线速(因为产品向下流入密封区域需要少量时间)。产品可利用任何合适的分配装置或设备分配。取决于待分配的产品,合适的装置包括但不限于喷嘴、容积式和用于分配固体或粉末的装置。虽然本说明书描述了喷嘴,但可代替使用其它分配装置。
[0094] 喷嘴118、和它们的孔可具有任何合适的类型和构型。一种合适的喷嘴是购自Hibar Systems Limited(Toronto,Canada)的Hibar双作用填充管组件(3/8”ID)圆孔直接关闭喷嘴,其具有1/4英寸(6.4mm)的分配孔口直径。在其它实施方案中,喷嘴可具有多个孔。即,喷嘴可以为多个孔或“多孔”喷嘴。多孔喷嘴的示例描述于2013年9月17日提交的美国专利申请序列号14/028,877中。喷嘴组合件和喷嘴组件的排放端可具有任何合适的构型。例如,当多孔喷嘴用于立式成形填充密封方法中时,期望多孔喷嘴的排放端具有扁平形状,诸如扁平菱形,使得其更好地被构造成安装在用于形成包装的材料的两个纤维网之间的空间中。
[0095] 可存在从单个喷嘴到多个喷嘴的任何合适数量的喷嘴118。如图11所示,多个喷嘴可在设备中在横向(CD)上提供,所述设备包括用于形成包装的多个横向通道。如果存在多个并列型通道,则可具有任何合适数量的通道,包括但不限于两个至十二个或更多个通道。多个喷嘴118可以是基本上对齐的,诸如在横向上成排。
[0096] 喷嘴118可以是固定的或移动的。不承认可移动的喷嘴机构是现有技术的部分。如图10所示,如果可移动喷嘴机构用于立式成形填充密封(VFFS)方法中,则所述喷嘴118可在箭头方向上竖直地向上和向下移动。喷嘴118可以在投料期间以恒定速度或可变速度移动。如果喷嘴的速度可变,则喷嘴的移动可在投放期间加速或减速。
[0097] 期望待分配的每次投料的液体完全进入包装中并且在投料之间基本上立即停止液体流动。如果分配喷嘴118在投料之间滴落或产生产品线,投料之间的密封区域可被潜在的污染,从而导致密封件失效和裂漏的小袋。剂量的控制可通过使用填充系统或填充控制系统来实现。具有填充控制系统的填充(或投料)系统的示例描述于2013年2月26日提交的美国专利申请序列号13/776,753和13/776,761中。
[0098] 立式成形填充密封(VFFS)设备114诸如图10中所示的可具有静态喷嘴118和静态密封棒120和122,然而机器是运行的。然而,可能需要喷嘴118能够在期望改变小袋长度的情况中上下移动。这是可能在机器不运行时进行的设置变化。在一个实施方案中,可将纵向密封棒120固定在纤维网的一个侧面上,其中固定的纵向密封棒120的表面在与喷嘴118的中心线对齐的平面中。相对的纵向密封棒120可面对其间具有纤维网10和12的固定密封棒加载弹簧。取决于小袋长度和填充体积,喷嘴118可例如保持固定在横向密封棒122的初始接触点上方标称20-90mm处。
[0099] 当需要更多过程调节时,纵向密封棒120、喷嘴118或两者均可上下移动,与纤维网10和12的向下运动结合。纵向密封棒120可直接上下移动。另选地,纵向密封棒120可以半椭圆形模式移动,扩展开约1mm,正好足以丧失与纤维网10和12接触。然后棒120可接触膜,向下移动一定距离,诸如为小袋长度的约5%至约50%,其中它们的移动与膜速匹配,然后回缩并返回至起始接触位置。期望密封棒的运动和长度被设计成确保其间具有连续的纵向密封件,其将是在将纤维网切割成独立的小袋之前的连续小袋。
[0100] 另外,可移动喷嘴118使得喷嘴顶端118通常与填充目标保持固定距离。例如,如果当填充开始时,小袋的底部位于喷嘴118的顶端118下方25mm,则喷嘴118可在填充进行时向上回缩,以保持喷嘴118的顶端118到流体包的顶部至少25mm的间距。然后喷嘴118可在填充结束时更快向上回缩以使得横向密封机42关闭。喷嘴移动的一种其它替代方案将是在首先制成密封件以减少小袋的变形时,使喷嘴118远离横向密封棒122进一步间隔开。一旦横向密封过程已被发起以通过上述由下而上的填充顺序进行,则喷嘴118的顶端118可下降到小袋中。
[0101] 制备小袋的方法可包括用于形成纵向狭缝的设备和用于横向穿孔/切割的设备。用于形成纵向狭缝的设备和用于横向穿孔/切割的设备可位于横向密封装置122的上游或下游。例如,用于形成纵向狭缝的设备可位于横向密封装置122的上游,并且用于横向穿孔/切割的设备可位于横向密封装置122的下游。纵向裁切可通过任何合适的机构126进行,包括但不限于通过紧贴砧座的粉碎裁切机或通过纵切剪设备进行。单位剂量包装的纤维网可根据需要在每个通道之间或以其它方式裁切。狭缝可以是连续的或它们可间歇穿孔。横向穿孔方法可被设计并操纵以在指定行之间裁切从而制备垫(产品的基质)。机加工工具可用于纵向裁切设备和横向裁切设备两者。然而,可利用纵向或横向上的激光裁切。在完成裁切和穿孔/切割操作之后,完成小袋的制备。
[0102] 本文所公开的量纲和值不应被理解为严格限于所述精确值。相反,除非另外指明,每个此类量纲旨在表示所述值和所述值附近的功能等同范围。例如,公开为“40mm”的量纲旨在表示“约40mm”。
[0103] 应当理解在本说明书中给出的每一最大数值限度包括每一更低数值限度,就像此类更低数值限度在本文中明确写出一样。应当理解在本说明书中给出的每一最小数值限度将包括每一更高数值限度,就像此类更高数值限度在本文中明确写出一样。本说明书中给出的每一数值范围将包括落入此类更宽数值范围内的每一更窄数值范围,就像此类更窄数值范围全部在本文中明确写出一样。
[0104] 除非另外明确地排除或以其它方式限制,本文所引用的每一文献,包括任何交叉引用的或相关的专利或专利申请均全文以引用方式并入本文。任何文献的引用均不是对其作为与本文所公开的或要求保护的任何发明有关的现有技术的认可,或者其单独或与以任何其它一个或多个参考文献组合的形式教导、建议或公开了任何该发明。另外,在该文献中术语的任何含义或定义与以参考方式并入的文献中的相同术语的任何含义或定义相抵触的范围内,应以此文献中赋予所述术语的含义或定义为准。
[0105] 虽然已经图示和描述了本发明的具体实施方案,但是对于本领域的技术人员显而易见的是,可以在不脱离本发明的实质和范围的条件下,做出各种其他改变和修改。因此旨在在所附权利要求中涵盖在本发明范围内的所有此类改变和修改。
QQ群二维码
意见反馈