电池

申请号 CN200510131408.3 申请日 2005-12-12 公开(公告)号 CN100472845C 公开(公告)日 2009-03-25
申请人 索尼株式会社; 发明人 八田一人; 涩谷真志生;
摘要 提供一种高度安全的不易发生 短路 的 电池 。为了防止短路,例如防止当切割用作外 包装 材料的 层压 膜时产生的毛刺穿透层压膜的内部 树脂 层。当热 焊接 层压膜的 电极 端子 的延伸侧时,通过加热器头在除其边缘部分以外的层压膜部分上进行加热和压缩,以使上述边缘部分的厚度 比热 焊接部分的厚度大。另外,进行热焊接,以使包含电极端子的热焊接部分的厚度比不包含电极端子的热焊接部分的厚度大,并且结果,可以更有效地防止短路。
权利要求

1.一种电池,包括:
电池元件,其包括具有带状金属箔和提供在该带状金属箔两个表面上 的反应层的正极、具有带状金属箔和提供在该带状金属箔两个表面上的反 应层的负极、和电解质;
用于包装该电池元件的层压膜,该层压膜具有密封部分并且由外部树 脂层、内部树脂层和提供在外部树脂层和内部树脂层之间的金属层构成, 该密封部分在除密封部分边缘部分以外的层压膜部分上热焊接以便形成用 于密封电池的热焊接部分;和
电连接到电池元件上并且穿过密封部分延伸到外部的电极端子
其中,层压膜边缘部分的厚度t2比热焊接部分的厚度t1大,
其中当层压膜的厚度和内部树脂层的厚度分别用t和p表示且按照单位 为μm计时,满足下列公式:
t×2-p×2+5t12.根据权利要求1的电池,其中外部树脂层包括尼龙或聚(对苯二甲酸 乙二醇酯),金属层包括箔,并且内部树脂层包括聚烯树脂。
3.根据权利要求1的电池,其中正极的金属箔是正极集电体,并且正 极的反应层是正极活性材料层,该正极活性材料层均包括化钴锂、聚(偏 二氟乙烯)和石墨
4.根据权利要求1的电池,其中负极的金属箔是负极集电体,并且负 极的反应层是负极活性材料层,该负极活性材料层均包括聚(偏二氟乙烯) 和石墨。
5.根据权利要求1的电池,其中电解质是包含引入六氟丙烯的聚(偏二 氟乙烯)共聚物的凝胶电解质。
6.根据权利要求1的电池,其中电解质是包含酸亚乙酯、碳酸亚丙 酯和LiPF6的电解质溶液。
7.根据权利要求1的电池,其中电解质是包含引入六氟丙烯的聚(偏二 氟乙烯)共聚物、碳酸亚乙酯、碳酸亚丙酯、LiPF6和碳酸二甲酯的凝胶电解 质,并且
该凝胶电解质提供在正极的两个表面上和负极的两个表面上用于形 成凝胶电解质层。
8.根据权利要求1的电池,其中电池元件进一步包含选自聚丙烯树脂 和聚乙烯树脂中的一种的聚烯烃材料的隔膜。
9.根据权利要求1的电池,其中电池元件进一步包含提供在正极和负 极之间的隔膜,
该电解质是凝胶电解质并且提供在正极的两个表面上和负极的两个表 面上以便形成凝胶电解质层,该凝胶电解质包含引入六氟丙烯的聚(偏二氟 乙烯)共聚物、碳酸亚乙酯、碳酸亚丙酯、LiPF6和碳酸二甲酯,并且
该电池元件是卷绕型电池元件,通过将提供有两层凝胶电解质层的正 极、提供有两层凝胶电解质层的负极、与提供在正极和负极之间的隔膜纵 向卷绕的步骤形成。
10.根据权利要求1的电池,进一步包括:提供在每一个电极端子的两 个表面上的密封剂层,
其中该电池元件进一步包含提供在正极和负极之间的隔膜,
该电解质是凝胶电解质并且提供在正极的两个表面上和负极的两个表 面上以便形成凝胶电解质层,该凝胶电解质包含引入六氟丙烯的聚(偏二氟 乙烯)共聚物、碳酸亚乙酯、碳酸亚丙酯、LiPF6和碳酸二甲酯,并且
该电池元件是卷绕型电池元件,通过将提供有两层凝胶电解质层的正 极、提供有两层凝胶电解质层的负极、与提供在正极和负极之间的隔膜纵 向卷绕的步骤形成,并且
该卷绕型电池元件通过在真空条件下热焊接来包装在层压膜中。

说明书全文

技术领域

发明涉及电池,并且尤其是涉及一种利用层压膜作为外包装材料形 成的电池。

背景技术

近年来,许多便携式电子设备诸如带有照相机的VTRs(磁带录像机)、 移动电话和膝上型电脑已经进入市场,并且已经确实地追求便携式电子设 备的小型化并且减少其重量的趋势。伴随着如上所述的趋势,用作便携式 电子设备的电源的电池需求快速增加,并且为了实现设备的小型化并且减 少其重量,已经要求电池设计减少电池的重量和厚度,并且使其能够有效 地容纳在便携式电子设备的有限空间内。作为能够满足上述要求的电池, 例如具有高能量密度和输出密度的锂离子电池可能被提到作为一种最优选 的电池。
在各种电池中,已经需要具有高的形状自由度的电池、具有大面积的 薄片型电池、具有小面积的薄卡型电池等;然而,只要应用使用金属壳作 为外包装材料的有关方法,难以制造薄电池。
为了克服上述问题,例如,已经研究了包含一种能赋予电解质粘结性 能的电池和包含聚合物凝胶电解质的电池。在上述电池中,电极和电解质 彼此紧密粘附在一起,并且因此确保其间的接触状态。因此,可以利用外 包装膜诸如层压膜制造薄电池。
在此以前,关于层压膜的应用,可提到的是例如食品、药物和膜;然 而由于上述产品的有效期,在很多情况下,可以不总是需要层压膜的长期 可靠性。另一方面,由于二次电池长时间使用,同时重复进行充电和放电, 尤其要求层压膜具有好的长期可靠性。
图1是显示一种使用层压膜作为外包装材料的电池的示意透视图。附 图标记1表示包装在层压膜中的电池。由于层压膜没有导电性,必须沿着 两部分层压膜互相重叠的一侧提供电极端子2使其延伸到外部。在如上所 述的状态中,配置两部分层压膜的内部树脂膜以彼此面对,并且沿着电池 元件的外围部分进行热焊接,以致于可以进行气密封。在这种情况下,当 通过热焊接密封的膜的宽度降低时,可以设计更大的电池元件,并且因此 可以获得更高容量的电池。
图2显示层压膜10的主结构的一个实例。在树脂膜12和树脂膜13之 间提供由附图标记11表示的金属箔,形成具有防潮性能和绝缘性能的多层 膜。作为提供在外面的树脂膜12,使用尼龙或聚(对苯二甲酸乙二醇酯),因 为其外观精细、韧性和柔性。金属箔11具有防止包装在层压膜中的内容物 进入分、和光的重要的作用,并且考虑到重量轻的性能、延伸性能、 价格和加工性能,最广泛的是使用铝(Al)。彼此相对的两部分内部树脂膜13 通过使用加热或声波熔化以便彼此焊接;因此优选使用聚烯树脂,并 且在许多情况下使用铸型用(cast)聚丙烯(CPP)树脂。当需要时,可以在金属 箔11和树脂膜12和13之间提供粘结层14。
当电池元件包装在层压膜10中,接着,进行热焊接时,内部的CPP层 熔化,并进行粘结。然而,从电池元件伸出的电极端子2的金属对CPP具 有差的粘结性能。因此,如图1和3所示,为了改善对CPP的粘结,在电 极端子2的两个表面粘结树脂材料。这种树脂材料称为密封剂3。
作为当将铝层压膜用作外包装材料时可能出现的问题,例如由于水分 易于渗入电池在其中产生不利的电解化学反应,可提到的是电池性能的下 降。水分不渗透过Al???层,而主要渗透过内部的树脂(CPP)部分。
渗入的水分量与渗透路径的横截面积(CPP层的横截面积)成比例,而与 其长度(密封宽度)成反比。因此,为了防止水分渗透,必须减少CPP层的厚 度以降低横截面积,或增加密封的宽度也就是路径长度。考虑到增加电池 容量,为了降低渗过的水分量,更优选的是通过降低CPP层的厚度使渗透 路径变窄。在这种情况下,因为减小了层压膜本身的厚度,整个电池的尺 寸可以设计得更大,并且结果是,可以增加其容量。
然而,当减小密封的宽度时,变得不利地难以确保密封部分的强度。 为了解决这个问题,可以要求利用具有大热容量的金属(block)加热器进行 热焊接。当使用具有通常厚度的有关层压膜时,由于内部树脂膜13具有一 定的厚度,即使当在热焊接中通过金属块加热器固定电极端子2时,树脂 膜13也可吸收由此引起的压。然而,当内部树脂膜13具有小的厚度时, 尤其对通过金属块加热器固定的电极端子2部分引起大的压力,并且结果, 可能剪切电极端子2或电极端子2可穿透树脂膜13导致与金属箔11短路
因此,如日本未审专利申请公开No.2000-348695所述,当在金属块加 热器20中在相应于电极端子2的位置形成凹槽21,并且进行热焊接,同时, 将凹槽21和电极端子2适当定位时,可解决如上所述的问题(见图4A和4B)。

发明内容

然而,除了上述问题以外,当减小CPP层厚度时,还可能出现其它问 题。例如,如图5所示,当在切割层压膜10时产生的切割毛刺(在下文中有 时候简称“毛刺”)30穿透CPP层时,在电极端子2和Al层之间可不利地产 生短路,导致在电池的负极和正极端子之间短路。
另外即使当毛刺30突出到电池外或者不存在时,如果在热焊接中金属 块加热器20的头部对层压膜10的边缘部分施加压力,也可能发生短路。
因此,考虑到上述问题,期望具有优越的安全性的电池,以致于在热 焊接中没有由毛刺和/或压力施加所引起的短路发生,并且没有由水分渗透 所引起的循环性能下降发生。
为了解决上述问题,根据本发明的实施方式,提供一种电池,具有: 包括具有带状金属箔和提供在其两个表面上的反应层的正极、具有带状金 属箔和提供在其两个表面上的反应层的负极、和电解质的电池元件;用于 包装该电池元件的层压膜,具有密封部分并且由外部树脂层、内部树脂层 和提供在外部层和内部树脂层之间的金属层构成,密封部分在除其边缘部 分以外的层压膜部分上热焊接,以便形成用于密封电池的热焊接部分;和 电连接到电池元件上并且穿过密封部分延伸到外部的电极端子。在上述电 池中,层压膜边缘部分的厚度为t2比热焊接部分的厚度t1大。
另外,根据本发明的另外一个实施方式,提供一种电池,具有:包括 具有带状金属箔和提供在其两个表面上的反应层的正极、具有带状金属箔 和提供在其两个表面上的反应层的负极、和电解质的电池元件;用于包装 该电池元件的层压膜,具有密封部分并且由外部树脂层、内部树脂层和提 供在外部层和内部树脂层之间的金属层构成,热焊接密封部分,以便形成 用于密封电池的热焊接部分;和电连接到电池元件上并且穿过密封部分延 伸到外部的电极端子。在上述电池中,包括电极端子的热焊接部分的厚度 为t4比没有包括电极端子的热焊接部分的厚度t3大。
根据本发明的实施方式,可以解决当将薄的层压膜用作外包装材料以 改善电池容量时可能出现的问题,并且能获得性能优异的电池,其中不发 生短路,也不发生水分渗透。

附图说明

图1是显示一种使用层压膜作为外包装材料的电池的示意性透视图;
图2是作为一个实例的层压膜的主结构的横截面图;
图3表示一种通过使用一种设置有防止电极端子和层压膜之间接触的 密封剂的电极端子形成的电池的横截面图;
图4A和4B是用于说明一种防止电极端子被施加大的压力的热焊接方 法的示意图;
图5是展示在切割层压膜中产生的Al切割毛刺穿透树脂层导致与电极 端子短路的状态的示意图;
图6是展示形成本发明实施方式的电池的电池元件的一个实例的示意 性透视图;
图7是展示当在除其边缘部分以外的层压膜部分上进行热焊接时加热 器头的接触位置的示意图;
图8是展示当在除其边缘部分以外的层压膜部分上进行热焊接时的状 态的示意图;
图9是当在除其边缘部分以外的层压膜部分上进行热焊接之后电池的 电极端子部分的横截面图;
图10是当在除其边缘部分以外的层压膜部分上进行热焊接之后不包括 电极端子的电池部分的横截面图;
图11是当不与加热器头接触的层压膜面积大时所获得的热焊接部分的 横截面图;
图12是通过在除其边缘部分以外的层压膜部分上进行热焊接所获得的 电池的电极端子部分的横截面图,该视图显示产生毛刺的状态;
图13是显示不包括电极端子的热焊接部分的厚度t3、包括电极端子的 热焊接部分的厚度t4、电极端子的厚度L和密封剂(一侧)的厚度S的示意图; 和
图14是展示将电池元件包装在铝层压膜中的状态的示意图。

具体实施方式

在下文中将详细描述根据本发明的实施方式的电池。
图6展示了形成本发明的实施方式的电池的电池元件的一个实例。这 个电池包括由彼此层压在一起并且纵向缠绕的带状正极41、隔膜43a、面对 正极41的带状负极42和隔膜43b形成的电池元件40。另外,在正极41和 负极42中每一个的两个表面上,涂覆凝胶电解质44。
[正极]
正极41是由正极集电体和提供在其两个表面上的正极活性材料层形成 的,活性材料层包含正极活性材料。作为正极集电体,例如可使用金属箔 诸如Al箔、镍(Ni)箔或不锈箔。
正极活性材料层例如由正极活性材料、粘结剂和导电剂构成。将上述 组成成分均匀混合在一起形成正极混合物,并且将如此制备的混合物分散 在溶剂中形成浆料。接着,利用刮片方法等将这种浆料均匀地涂覆到正极 集电体上,接着,在高温下干燥除去溶剂,以致于形成正极活性材料层。 在这个实施方式中,优选将上述正极活性材料、导电剂、粘结剂和溶剂均 匀地混合在一起,并且其混合比可以任选地确定。
作为正极活性材料,可以使用由锂和过渡金属组成的复合氧化物。尤 其是,例如可以提到的是LiCoO2、LiNiO2和LiMn2O4。另外,还可使用其 中用其它原子替换一些过渡金属元素的原子的固溶体。例如可以提到的是 LiNi0.5Co0.5O2和LiNi0.8Co0.2O2。
另外,作为导电剂,例如,可以使用材料诸如炭黑石墨。作为粘 结剂、例如,可以使用聚(偏二氟乙烯)或聚四氟乙烯。另外,作为溶剂,例 如,可以使用N-甲基吡咯烷
正极41具有通过点焊超声波焊接连接到电极末端部分的正极端子 (由图6所示的电极端子45表示)。这个正极端子优选由金属箔或网状金属 形成;然而只要从电化学和化学的观点看是稳定的并且具有导电性,还可 使用除金属以外的任何材料。作为正极端子的材料,例如,可以提到的是 Al。
[负极]
负极42是由负极集电体和提供在其两个表面上的负极活性材料层形成 的,活性材料层包含负极活性材料。作为负极集电体,例如可使用金属箔 诸如箔、Ni箔或不锈钢箔。
例如,负极活性材料层由负极活性材料构成,并且必要时还包含粘结 剂和导电剂。将上述组成成分均匀混合在一起形成负极混合物,并且将如 此制备的混合物分散在溶剂中形成浆料。接着,利用刮片方法等将这种浆 料均匀地涂覆到负极集电体上,接着,在高温下干燥除去溶剂,以致于形 成负极活性材料层。在这个实施方式中,优选将上述负极活性材料、导电 剂、粘结剂和溶剂均匀地混合在一起,并且其混合比可以任选地确定。
作为负极活性材料,可以使用碳材料或金属基材料和含碳材料的复合 物,也就是说能够掺杂和去掺杂(dedoping)锂金属化合物、锂合金或锂的材 料。尤其是,作为能够掺杂和去掺杂锂的碳材料,例如,可以提到的是石 墨、不可石墨化碳和可石墨化碳。作为石墨,例如可以使用天然石墨和人 造石墨诸如中间相碳微珠、碳纤维焦炭等。作为与锂形成合金的材料, 可以使用各种金属,并且在这些金属中,在许多情况下使用(Sn)、钴(Co)、 铟(In)、Al、(Si)和其合金。当使用锂金属时,并不总是需要将其粉末与 粘结剂一起加工形成涂层,并且也可以使用轧制的锂金属片。
另外,作为粘结剂、例如,可以使用聚(偏二氟乙烯)或丁苯橡胶。另外, 作为溶剂,例如,可以使用N-甲基吡咯烷酮或甲基乙基酮。
另外,如正极41那样,负极42具有通过点焊或超声波焊接连接到电 极末端部分的负极端子(由图6所示的电极端子45表示)。这个负极端子优 选由金属箔或网状金属形成;然而只要从电化学和化学的观点看是稳定的 并且具有导电性,还可以使用除金属以外的材料。作为负极端子的材料, 可能有提到的是铜或Ni。
正极端子和负极端子优选以相同的方向延伸;然而只要端子不导致短 路并且不导致电池性能下降,端子的延伸方向可以任选地选择。另外,只 要将正极端子和负极端子电连接到各自的连接位置,连接端子的位置和其 连接方法也特别限于上述举例的描述的那些。
[电解质]
作为电解质,可以使用通常用于锂离子电池的电解质盐和有机溶剂, 并且另外凝胶电解质和电解质溶液都可以使用。
作为非水溶剂,尤其可以提到的是例如碳酸亚乙酯、碳酸亚丙酯、γ- 丁内酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸二丙酯、碳酸乙丙 酯、从上述碳酸酯中通过用卤素原子替换其氢原子获得的溶剂。上述溶剂 可以单独使用或以预定的混合比组合使用。
作为电解质盐,可以使用溶解于上述非水溶剂中的电解质盐。例如, 可以提到的是LiPF6、LiBF4、LiN(CF3SO2)2、LiN(C2F5SO2)2和LiClO4。作 为电解质盐的浓度,可以使用通过将上述盐溶解在溶剂中而不导致任何问 题所获得浓度;然而,锂离子的量相对于1kg非水溶剂优选在0.4到2.0摩 尔的范围内。
在凝胶电解质的情况下,将上述电解质溶液与基体聚合物一起加工形 成凝胶电解质。关于基体聚合物,可以使用能溶解于由非水溶剂和溶解其 中的电解质盐构成的非水电解质溶液以便形成凝胶电解质的材料。作为上 述基体聚合物,举例来说可以提到的是包含重复单元的聚合物诸如聚(偏二 氟乙烯)、聚(环氧乙烷)、聚(环氧丙烷)、聚(丙烯腈)和聚(甲基丙烯腈)。上 述聚合物可以单独或组合使用。
在上述作为基体聚合物的那些聚合物中,特别优选的实例是聚(偏二氟 乙烯)和引入7.5%或更少的六氟丙烯的聚(偏二氟乙烯)的共聚物。上述聚合 物具有数均分子量在5.0×105到7.0×105(500,000到700,000)的范围内或具有 重均分子量在2.1×105到3.1×105(210,000到310,000)的范围内,并且该聚合 物的特性粘度设置在1.7到2.1的范围内。
[隔膜]
隔膜是由多孔聚烯烃薄膜诸如聚丙烯或聚乙烯或多孔无机膜诸如无纺 陶瓷织物形成的,并且也可以具有由至少两种上述多孔膜构成的层压结构。 在上述多孔膜中,最有效使用的是由聚乙烯或聚丙烯制成的多孔膜。
通常,优选使用厚度为5到50μm的隔膜;然而更优选使用厚度为7到 30μm。当隔膜太厚度时,由于活性材料的量降低,降低了电池容量,并且 另外由于离子导电性下降,降低了电流性能。另一方面,当隔膜太薄时, 降低了膜的机械强度。
用于包装上述电池元件40的层压膜具有如图2所示的横截面结构,以 致于用具有防潮性能和绝缘性能的层压膜覆盖并密封电池元件40。将电极 端子2连接到各自的正极41和负极42,并且固定在层压膜的密封部分,以 便延伸到外部。
作为具有尽管具有形成窄的热焊接部分的小的厚度但形成安全性高的 电池的合适性能的层压膜,发现优选的层压膜具有由作为外部层的厚度为 15±5μm的尼龙或PET膜、厚度为35±5μm的Al箔、和作为内部层的厚度 为30±5μm的CPP膜构成的结构。在这个结构中,可以如图2所示在Al箔 的两侧提供具有厚度为2到3μm的粘结层。
在本发明的该实施方式中,如图7所示,沿着电极端子延伸的层压膜 一侧,当利用加热器头在除其边缘部分以外的层压膜部分上进行热焊接时, 形成电池,使层压膜的边缘部分的厚度比密封部分的厚度大,并且因此可 以防止由毛刺引起的短路。另外,通过上述方法,还可以防止当加热器头 接触到层压膜的边缘部分时可发生的短路。图7是展示该电池元件的电极 端子延伸侧的示意性平面图,并且斜线显示的部分A是密封部分。
图8是展示当利用加热器头56在除其边缘部分以外的层压膜部分上进 行热焊接时的状态的示意图。层压膜50具有由Al层51、最外层的尼龙或 PET层52和内部的CPP层53构成的三层成层结构,并且具有防潮性能和 绝缘性能。在这个实施方式中,层压膜50的厚度和CPP层53的厚度分别 用t和p表示。
图9是在如此形成的电池的电极端子延伸侧的电极端子部分的横截面 图(沿如图7所示的线IX-IX)。附图标记54表示电极端子,并且电极端子 54涂覆有密封剂55,以便改善对CPP层的粘结。
由A表示的部分是其上通过加热器头进行热焊接的层压膜部分,且由 B表示的部分是其上没有通过加热器头进行热焊接的层压膜的边缘部分。由 于部分A通过加热器头加热并被压缩,CPP被熔化流向未压缩部分(部分 B)。因此,部分B从部分A到层压膜的边缘部分厚度逐渐增加。尽管没有 通过加热器头直接加热,在许多情况下,部分B的CPP被从部分A转移的 热量熔化,并且粘附到电极端子等上。即使当部分B的CPP没有粘附到电 极端子等时,也根本不发生任何问题。
另外,图10是不包括电极端子的热焊接部分的横截面图(沿着图7所示 的线X-X)。由A表示的部分是通过加热器头加热并被压缩的层压膜部分; 而由B表示的部分是没有通过加热器头加热和压缩的层压膜部分。如图7 所示的情况一样,由于CPP被熔化而流动,部分B也从部分A到层压膜的 边缘部分厚度逐渐增加。
当热焊接部分的厚度和层压膜边缘部分的厚度分别用t1和t2表示时, 并且如图8所示,当层压膜50的厚度和CPP层的厚度分别用t和p表示时, 满足以下公式。
t×2-p×2+5t1为了防止短路,进行热焊接,使边缘部分未被热焊接,并且结果,边 缘部分的厚度与位于内部的热焊接部分的厚度相比变大。
由于通过利用加热器头加热和压缩熔化的CPP流向层压膜的边缘部 分,与其原始厚度(等于两层层压膜的总厚度)相比,热焊接部分的厚度减小。 然而,当在热焊接中施加过大压力时,CPP流出过度,用于热焊接的树脂 的量变得不足,并且密封性能降低,以致于水分渗入电池。在这种情况下, 在电池中水分减少产生气体,并且结果,电池膨胀。当热焊接之后形成的 热焊接CPP层的厚度大于5μm时,也就是当热焊接部分的厚度t1大于 [t×2-p×2+5]μm时,CPP的量没有变得不足,并且结果,足以防止水分的渗 透。
另外,当热焊接部分的厚度t1过大时,有时候不能充分进行密封。同 样在这种情况下,水分渗入电池并且在其中减少以产生气体,并且结果, 电池膨胀。当热焊接之后形成的热焊接CPP层的厚度与CPP层的原始厚度 (等于两层CPP层的总厚度)相比减少5μm或更小时,CPP未充分熔化,并 且结果,密封性能不令人满意。也就是说,当热焊接部分的厚度t1小于 [t×2-5]μm时,CPP充分熔化用于密封,并且结果,可保持优异的循环性能。
另外,由于通过加热器头在除其边缘部分以外的层压膜部分进行加热 和压缩,层压膜边缘部分的厚度t2变得比热焊接部分的厚度t1大。因此, 可以防止当在层压膜的边缘部分产生的毛刺穿透密封剂时发生的短路,并 且另外,也可以防止当在热焊接中加热器头接触到层压膜的边缘部分时在 A1层和电极端子之间产生的短路。
在这种情况下,由于加热器头没有压缩层压膜的边缘部分,厚度t2不 会降低到小于原始厚度[t×2]μm(等于两层层压膜的总厚度)并且增加一定的 水平,该水平相应于从热焊接部分推出的CPP的量。然而,当与加热器头 没有接触的层压膜的面积大时,CPP没有被推出到膜的边缘部分,并且结 果,可形成如图11所示的横截面形状。在这种情况下,利用游标卡尺测定 层压膜边缘部分的厚度t2同时通过手指等使图11所示的两个延伸部分互相 重叠。由于被压缩,热焊接部分的厚度t1小于t×2,并且由于层压膜边缘部 分的厚度t2是t×2,满足t1通过上述方法,即使在图12所示的产生毛刺30的情况下,它们被厚 的CPP层堵塞,并且结果,可以制造不太可能发生短路的电池。
另外,除了上述方法以外,当使用下列方法时,能进一步制造更安全 的电池。
由于如过去的情况中那样电极端子部分通过金属加热器加热和压缩, 与施加到其它热焊接部分的压力相比较,在电极端子部分局部施加大的压 力。因此,利用在相应于电极端子的位置具有凹槽的加热器头进行热焊接。
在这种情况下,由于使用具有凹槽的加热器头,包含电极端子的热焊 接部分的层压膜的厚度比不包含电极端子的热焊接部分的层压膜的厚度 大。如图13所示,当层压膜、CPP层、电极端子、覆盖电极端子的密封剂 一侧的厚度分别用t、p、L和S表示时,不包含电极端子的热焊接部分的厚 度t3和包含电极端子的热焊接部分的厚度t4由以下公式表示,这是当电池 包装在膜中时获得的厚度。
t×2-p×2+5t×2-p×2+5+(L+S)不包含电极端子的热焊接部分的厚度t3和包含电极端子的热焊接部分 的厚度t4均降低到小于其各自的原始厚度,因为在通过利用加热器头加热 和压缩进行的热焊接中CPP熔化以流动。当热焊接之后形成的热焊接CPP 层的厚度大于5μm时,也就是,当不包含电极端子的热焊接部分的厚度t3 大于[t×2-p×2+5]μm时,CPP的量没有不足,可充分防止水分的渗透。另外, 当热焊接之后形成的热焊接CPP层的厚度从该CPP层的原始厚度(等于两层 CPP层的总厚度)减少5μm或更小时,CPP没有充分熔化,并且结果,密封 性能没有如此优越。也就是说,当不包含电极端子的热焊接部分的厚度t3 小于[t×2-5]μm时,CPP充分熔化,以致于很好进行密封,并且因此,可以 保持优异的循环性能。
另外,除了包含电极端子的热焊接部分的CPP层以外,覆盖电极端子 的密封剂也被熔化,并且因此密封剂的厚度降低。通过热焊接使密封剂的 树脂流动,并且将密封剂的厚度减少到大约一半。当进一步降低密封剂的 厚度时,它变得难以防止电极端子和层压膜之间的接触。另外,当密封剂 没有这样熔化时,不能充分进行层压膜和电极端子之间的热焊接,并且结 果,水分易于渗入电池。
然而,尽管大量的密封剂流动,当与CPP一起的总厚度在预定范围内 时,可充分进行密封。另外,尽管仅仅熔化少量的密封剂,当大量的CPP 熔化用于密封,且密封剂和CPP的总厚度在预定范围内时,密封也不会导 致任何问题。
如不包含电极端子的热焊接部分的厚度t3的情况那样,当热焊接之后 形成的热焊接CPP层的厚度大于5μm时,也就是,当包含电极端子的热焊 接部分的厚度t4大于[t×2-p×2+5+(L+S)]时,可充分防止水分的渗透。另外, 当厚度的减少小于5μm时,密封性能不充分。也就是说,当包含电极端子 的热焊接部分的厚度t4小于[t×2-5+(L+S)]时,CPP充分熔化用于密封,并且 结果,充分进行密封。
在这个实施方式中使用的层压膜中,由于相关CPP层的厚度为约45到 50μm,该CPP层的厚度设置为20到40μm。随着CPP层厚度降低,电池容 量增加;然而由于在热焊接中熔化的CPP流向不加压的部分,当CPP层太 薄时,密封性能下降。考虑到上述情况,CPP层厚度优选设置在20到40μm 的范围内。
当如上所述形成电池时,由于没有对电极端子局部施加压力,电极端子 没有破碎,电极端子没有穿透CPP层,并且必需量的CPP没有流走;因此 结果,可以防止短路。
用于热焊接的加热器头不局限于如上所述的那些,并且只要可以进行密 封同时满足上述条件,可以使用任选材料形成的并且具有任选形状的加热器 头。
实施例
在下文中将详细描述本发明的实施例。
[正极的形成]
首先,将92重量%的氧化钴锂(LiCoO2)、3重量%的聚(偏二氟乙烯) 粉末和5重量%的石墨粉一起均匀混合,并且将如此制备的混合物分散在 N-甲基吡咯烷酮中,以致于获得以浆料形式的正极混合物。将这种正极混 合物均匀涂覆到用作正极集电体的Al箔的两个表面上,接着,在100℃下 真空干燥24小时,以形成正极活性材料层。
接着,在通过利用辊压机将正极活性材料层压缩模塑形成正极片并且 然后切割成宽度为50mm且长度为300mm的带状正极之后,将作为电极端 子的Al带焊接到没有涂覆活性材料的正极部分。另外,将聚丙烯片粘附到 待通过铝层压膜保持的电极端子的两个表面。
[负极的形成]
首先,将91重量%的人造石墨和9重量%的聚(偏二氟乙烯)粉末一起 均匀混合,并且将如此制备的混合物分散在N-甲基吡咯烷酮中,以获得以 浆料形式的负极混合物。将这种负极混合物均匀涂覆到用作负极集电体的 铜箔的两个表面上,接着,在120℃下真空干燥24小时,以形成负极活性 材料层。
接着,通过利用辊压机将负极活性材料层压缩模塑形成负极片并且然 后切割成宽度为52mm且长度为320mm的带状负极之后,将作为电极端子 的Ni带焊接到没有涂覆活性材料的负极部分。另外,将聚丙烯片粘附到待 通过铝层压膜保持的电极端子的两个表面。
[凝胶电解质的形成]
将包含6.9%六氟丙烯的聚(偏二氟乙烯)共聚物、非水电解质溶液和作 为稀释溶剂的碳酸二甲酯(DMC)混合、搅拌,并且使其彼此溶解,以获得溶 胶电解质溶液。通过将0.8摩尔LiPF6和0.2摩尔LiBF4溶解于相对其为1kg 的混合溶剂形成电解质溶液,混合溶剂由碳酸亚乙酯和碳酸亚丙酯以重量 计为6对4的混合比组成。在聚(偏二氟乙烯)共聚物、电解质溶液和DMC 之间的混合比以重量计设置为1:6:12。接着,将如此获得的溶胶电解质 溶液均匀地涂覆到正极和负极中的每一个的两个表面上。随后,通过在50℃ 下干燥3分钟除去溶剂,在正极和负极中的每一个的两个表面上形成凝胶 电解质层。
[测试电池的形成]
在其两个表面上提供有凝胶电解质层的带状正极和在其两个表面上提 供有凝胶电解质层的带状负极与提供在它们之间的隔膜一起纵向缠绕,以 获得电池元件。作为隔膜,使用厚度为10μm且孔隙率为33%的多孔聚乙烯 薄膜。
最后,如图14所示,将电池元件60包装在由提供在两层树脂膜之间 的Al箔构成的铝层压膜61中,并且在真空条件下沿着铝层压膜61的外围 部分进行热焊接,以进行密封。形成电池的平台部分的宽度(图7、9和10 所示的A+B)约为2.5mm。
通过利用如此形成的测试电池,对以下进行评估。
<实施例1>
通过改变加热器头的宽度形成实施例1-1到1-3和对比例1-1到1-7的 电池,并且还在热焊接中改变加热器头的温度和压力,以使得改变热焊接 部分的厚度t1和层压膜边缘部分的厚度t2。通过利用宽度为2.0mm的加热 器头形成实施例1-1到1-3和对比例1-1和1-2的电池,利用宽度为3.0mm 的加热器头形成对比例1-3到1-7的电池,并且使用厚度为85μm的铝层压 膜用于各个电池的外包装,该膜由厚度为15μm的尼龙层、厚度为3μm的 粘结层、厚度为35μm的铝层、厚度为2μm的粘结层和厚度为30μm的CPP 层以此顺序由外到内构成。另外,作为电极端子,使用宽度为4mm且厚度 为70μm的铝带,并且将宽度为6mm且厚度为50μm的聚丙烯片粘附到待 通过铝层压膜固定的电极端子的两个表面上。
在使用如上所述的层压膜的情况下,当所有的CPP失去时热焊接部分 的厚度是110μm,且当它根本没有被压缩时热焊接部分的厚度为170μm, 并且当树脂从另一部分向此处流动时,热焊接部分的厚度进一步增加。
当热焊接部分的厚度、层压膜的边缘部分的厚度、层压膜的厚度和CPP 层的厚度分别用t1、t2 t和p表示时,并且当热焊接部分的厚度t1和层压膜 边缘部分的厚度t2满足下列公式时,可以防止由毛刺所引起短路、由加热 器头施加压力所引起的层压膜的Al层和电极端子之间短路和由水分渗透所 引起的气体产生。
t×2-p×2+5t1因此,在此时使用层压膜的情况下,当满足115μm实施例1-1到1-3和对比例1-1到1-7中的每一个的电池的热焊接部分 的厚度t1、层压膜边缘部分的厚度t2和加热器头的宽度如下表1所示。另外, 如上所述热焊接部分的厚度的上限和下限也如表1所示。在表中所示的热 焊接部分的厚度t1和层压膜边缘部分的厚度t2中,具有下划线的数值在合 适的范围之外。
表1

在每个实施例和每个对比例中形成10个如上所述的测试电池,并且测 定发生短路的电池数目。另外,对于没有发生短路的电池,测定由电池内 部气体产生所引起的电池膨胀(厚度增加)(mm)和循环性能(%)。
为了检测短路,测定正极和负极之间的电阻。刚组装之后的电池具有 足够高的串联电阻,且当发生短路时,电阻减少到毫欧级水平。作为短路 的原因,例如,可以提到的情况是:其中电极端子或其毛刺穿透用作外包 装材料的铝层压膜的最里面的CPP层并且到达Al箔层。
另一方面,当在热焊接中对不包含电极端子的部分施加大的压力时, CPP流动,密封性能下降,并且结果,水分渗入电池。在这种情况下,在 电池中水分减少以产生气体,因此电池膨胀。尽管有时候由于电解质中存 在水分,电池可膨胀,但是膨胀不明显。测定组装后和首次充电之后的电 池厚度,并且当厚度增加为0.1mm或更大时,认为该电池是有缺陷的产品, 而当厚度小于0.1mm时,认为该电池是好的产品。
而且,不管热焊接部分是否包含电极端子,当热焊接部分的厚度过大 时,有时候不能充分进行密封。在这种情况下,水分渗透入电池并且然后 减少以产生气体,并且结果,电池膨胀。如上所述情况那样,在测定组装 和首次充电之后的电池厚度,当厚度增加为0.1mm或更大时,认为该电池 是有缺陷的产品,而当厚度小于0.1mm时,认为该电池是好的产品。
对于循环性能的测量,进行标准充电和1C-3V截止恒流放电,并且对 每一循环测量放电容量的变化。在这个实施例中,检测500次循环之后容 量的保持率,并且认为保持率为80%或更大的电池是好的产品。80%或更大 的保持率是被认为对于当前便携式电子设备规格来说通常需要的并且充分 的数值。当水分渗入电池时,由于副反应,循环性能降低。通过下列公式 计算循环性能。
循环性能=100×(第500循环的放电容量)/(第一次循环的放电容量)(%)
单独实施例的电池结构和上述评估结果如表2所示。在表中所示的热 焊接部分的厚度t1和层压膜边缘部分的厚度t2中,具有下划线的的数值在 在合适的范围之外。
表2
  热焊接 部分 t1(μm) 加热器 头宽度 (mm) 边缘部 分 (μm) 发生短路 的电池数 目(电池) 气体 膨胀 (mm) 循环性 能(%) 实施例1-1 120 2.0 220 0 0.02 88 实施例1-2 140 2.0 190 0 0.03 85 实施例1-3 160 2.0 170 0 0.02 86 对比例1-1 110 2.0 230 10 - - 对比例1-2 168 2.0 170 0 0.23 72 对比例1-3 110 3.0 110 10 - -
  对比例1-4 120 3.0 120 10 - - 对比例1-5 140 3.0 140 10 - - 对比例1-6 160 3.0 160 10 - - 对比例1-7 168 3.0 168 0 0.22 68
从上表可清楚看出,在实施例1-1到1-3的电池中,其中使用宽度为 2.0mm的加热器头,该宽度小于平台部分的宽度,当在除其边缘部分以外 的层压膜部分上进行热焊接时,热焊接部分的厚度t1在预定的范围 (115另一方面,尽管使用宽度小于平台部分宽度的加热器头,并且在除其 边缘部分以外的层压膜部分上进行热焊接,当热焊接部分的厚度t1不在预 定范围内时,如此获得的测试电池工作不佳。在对比例1-1中,尽管使用宽 度为2.0mm的加热器头,并且热焊接部分的厚度t1减少到110μm,由于通 过施加过大的压力进行密封,电极端子破碎,并且结果,发生短路。另外, 在对比例1-2中,尽管使用宽度为2.0mm的加热器头,并且热焊接部分的 厚度t1增加到168μm,由于通过施加过小的压力进行密封,密封性能不充 分,水分渗入电池,并且结果,发生气体膨胀。
而且,如在对比例1-3到1-6中的那样,当使用宽度为3.0mm的加热器 头时,由于通过加热器头压缩了层压膜的边缘部分,电极端子和Al层引起 短路,或其毛刺穿透CPP层并且与电极端子引起短路。另外,如在对比例 1-7中那样,当利用宽度为3.0mm的加热器头施加小的压力进行密封时,没 有发生短路;然而,由于热焊接部分的厚度t1和层压膜边缘部分的厚度t2 大,水分渗入电池以产生气体,并且除了电池膨胀外,循环性能下降。
如上所述,当设置层压膜的边缘部分的厚度大于热焊接部分的厚度时, 可以制造不发生短路也不由于气体引起膨胀的电池。
<实施例2>
通过改变用作电池元件的外包装材料的层压膜的结构和热焊接中加热 器头的温度与压力,改变热焊接部分的厚度t3和电极端子部分的厚度t4,以 形成各种测试电池。作为用作外包装材料的层压膜,使用下列层压膜的一 种。也就是说,使用由厚度为15μm的最外尼龙层、厚度为3μm的粘结层、 厚度为35μm铝箔、厚度为2μm的粘结层和厚度为30μm的CPP层构成的 总厚度为85μm的铝层压膜或除CPP层厚度为20μm以外具有如上所述相同 结构的总厚度为75μm的铝层压膜(厚度为15μm的尼龙层、厚度为3μm的 粘结层、厚度为35μm铝箔、厚度为2μm的粘结层和厚度为20μm的CPP 层)。另外,当电极端子延伸一侧被热焊接时,使用宽度为2.0mm的加热器 头,并且包括通过从热焊接部分转移的热粘附到电极端子等的部分的密封 部分的宽度设置为2.2mm。
将具有宽度为4mm且厚度为70μm的Al带用作实施例2-1到2-14和对 比例2-1到2-12中每一个电池的电极端子,并且均具有宽度为6mm且厚度 为50μm的聚丙烯片粘附到部分通过铝层压膜固定的电极端子的两个表面 上。另外,在实施例2-15和2-16和对比例2-13到2-16中,将宽度为4mm 且厚度为100μm的Al带用作电极端子,并且将均具有宽度为6mm且厚度 为60μm的聚丙烯片粘附到部分通过铝层压膜固定的电极端子的两个表面 上。
在实施例2中,在使用总厚度为85μm的层压膜的情况下,当所有的 CPP失去时,热焊接部分的厚度是110μm,且当该层压膜根本没有被压缩 时热焊接部分的厚度为170μm,并且当树脂从另一部分向此处流动时,热 焊接部分的厚度进一步增加。
另外,当使用总厚度为75μm的层压膜时,当所有的CPP失去时热焊 接部分的厚度为110μm,当该层压膜根本没有被压缩时热焊接部分的厚度 为150μm,并且当树脂从另一部分向此处流动时热焊接部分的厚度进一步 增加。
当不包含电极端子的热焊接部分、包含电极端子的热焊接部分、层压 膜、CPP层、电极端子和覆盖电极端子的密封剂一侧的厚度分别用t3、t4、 t、p、L和S表示时,并且不包含电极端子的热焊接部分的厚度t3和包含电 极端子的热焊接部分的厚度t4满足如下所示的公式时,它是当电池包装在 膜中时所获得的厚度,可以获得以下效果。
t×2-p×2+5t×2-p×2+5+(L+S)也就是说可以防止由毛刺引起的短路、由通过加热器头施加压力引起 的层压膜Al层和电极端子之间的短路和由水分渗透引起的气体形成。因此, 当在单独的实施例和对比例中满足下列条件时可以获得实用的电池。
(1)在使用总厚度为85μm的层压膜、厚度为70μm的电极端子和厚度(一 侧)为50μm的密封剂(实施例2-1到2-12和对比例2-1到2-8)的情况下,满 足115μm(2)在使用总厚度为75μm的层压膜、厚度为70μm的电极端子和厚度(一 侧)为50μm的密封剂(实施例2-13和2-14和对比例2-9到2-12)的情况下, 满足115μm(3)在使用总厚度为85μm的层压膜、厚度为100μm的电极端子和厚度 (一侧)为60μm的密封剂(实施例2-15和2-16和对比例2-13到2-16)的情况 下,满足115μm层压膜的厚度、CPP层的厚度、不包含电极端子的热焊接部分的厚度 t3和包含电极端子的热焊接部分的厚度t4如以下表3所示。在表中所示的厚 度t3和厚度t4中,具有下划线的的数值在如上所述的合适范围之外。另外, 在表3中,不包含电极端子的热焊接部分的厚度t3和包含电极端子的热焊 接部分的厚度t4分别由热焊接部分和电极端子部分表示,并且还示出热焊 接部分和电极端子部分的上限和下限。
表3


在每个实施例和每个对比例中形成10个如上所述的测试电池,并且测 定发生短路的电池数目。另外,对于没有发生短路的电池,测定由电池内 部气体产生所引起的电池膨胀(厚度增加)(mm)和循环性能(%)。其测量方法 与实施例1中的那些方法相同。
单独实施例的电池的结构和上述测试结果如以下表4所示。另外,在 表中所示的不包含电极端子的热焊接部分的厚度t3和包含电极端子的热焊 接部分的厚度t4中,具有下划线的的数值在合适的范围之外。另外,在表4 中,不包含电极端子的热焊接部分的厚度和包含电极端子的热焊接部分的 厚度分别用热焊接部分的t3和电极端子部分的t4表示。
表4
  热焊接 部分t3 (μm) 电极端子 部分t4 (μm) 发生短路的 电池数目 (电池) 气体膨 胀(mm) 循环性能 (%) 实施例2-1 117 240 0 0.03 85 实施例2-2 140 240 0 0.02 84 实施例2-3 162 240 0 0.03 85 实施例2-4 117 270 0 0.02 84 实施例2-5 140 270 0 0.02 88 实施例2-6 162 270 0 0.02 86 实施例2-7 120 245 0 0.02 86 实施例2-8 120 260 0 0.02 84 实施例2-9 120 275 0 0.03 86 实施例2-10 150 245 0 0.02 85 实施例2-11 150 260 0 0.03 83 实施例2-12 150 275 0 0.02 84 实施例2-13 120 240 0 0.02 85 实施例2-14 120 240 0 0.03 85 实施例2-15 140 300 0 0.03 84 实施例2-16 140 300 0 0.02 86 对比例2-1 112 240 0 0.17 75 对比例2-2 168 240 0 0.18 72 对比例2-3 112 270 0 0.16 77 对比例2-4 168 270 0 0.17 75 对比例2-5 120 220 10 - - 对比例2-6 120 300 0 0.18 73 对比例2-7 150 220 10 - -
  对比例2-8 150 300 0 0.19 71 对比例2-9 102 240 10 - - 对比例2-10 148 240 0 0.20 69 对比例2-11 120 210 10 - - 对比例2-12 120 270 0 0.22 63 对比例2-13 112 300 10 - - 对比例2-14 168 300 0 0.21 66 对比例2-15 140 260 10 - - 对比例2-16 140 340 0 0.23 68
从上表可清楚看出,当包含电极端子的热焊接部分的厚度适当大于不 包含电极端子的热焊接部分的厚度时,可以形成具有优异性能的电池。表 中所示的实施例2-1到2-16是如上所述的实施例。
作为有缺陷的产品,例如,可以提到的是其中不包含电极端子的热焊 接部分的厚度大的电池。在这种情况下,由于水分渗透路径的横截面积增 加,并且渗入的水分在电池中转化成气体,电池可膨胀或其循环性能可下 降。例如,在对比例2-2、2-4和2-14中可以观察到上述问题。在不包含电 极端子的热焊接部分中,当两部分层压膜重叠时总厚度为170μm;然而, 在对比例2-2、2-4和2-14中,热焊接之后的厚度为168μm,并且CPP层没 有充分熔化,以致于不能令人满意地进行密封。因此,水分渗入电池,并 且产生气体,以致于气体膨胀大,如在对比例2-2、2-4和2-14中分别为0.18、 0.17和0.21mm。
另一方面,当不包含电极端子的热焊接部分太薄时,可形成有缺陷的 电池。例如,在对比例2-1和2-3中,不包含电极端子的热焊接部分的厚度 t3是112μm。由于当层压膜折叠并且其两部分重叠时总厚度为170μm,且以 上两部分中的每一部分的CPP膜具有厚度为30μm,即使当CPP膜全部熔 化并且流出时,可获得110μm的总厚度。也就是说,由于对比例2-1和2-3 中熔化并且流动之后所获得的热焊接CPP层的厚度变得非常小如2μm,并 且用于粘结的树脂的量不足,水分渗入电池,并且电池性能下降。
而且,例如,如对比例2-5和2-7的情况那样,当包含电极端子的热焊 接部分的厚度t4太小时,电极端子引起短路,并且不能形成电池。另外, 例如,如对比例2-6和2-7的情况那样,当包含电极端子的热焊接部分的厚 度t4太大时,水分渗入电池,并且因此循环性能下降。
如上所述,考虑到当使用薄的层压膜以便改善电池容量时可发生的短 路的可能性和不足的密封性能,当使用如上所述形成电池的方法时,可以 获得具有优异安全性和高性能的电池。
在此以前,已经详细说明了本发明的一个实施方式;然而本发明不局 限于上述实施方式,并且可以做各种修改而不脱离本发明的精神和范围。
例如,在上述实施方式中,描述了这样的情况,其中与提供在其间的 隔膜层压的带状正极和负极纵向缠绕形成作为电池的电极体;然而本发明 不限于此且可以应用于由彼此层压的正极和负极构成的层压电极体或其中 正极和负极不缠绕而是折叠数次的折叠电极体。
另外,如上所述的实施方式的电池的形状可以是圆柱形、方形等,并 且没有特别的限制,并且另外可以任选地形成各种尺寸如薄型和大型电池。
本领域普通技术人员应该理解,在所附权利要求书和其等价物的范围 内,可以根据设计要求和其它因素进行各种修改、组合、再组合和变化。
相关申请的交叉引用
本发明包含涉及2004年12月10日向日本专利局提交的日本专利申请 JP 2004-357820的主题,其全部内容在本文中引用作为参考。
QQ群二维码
意见反馈