可再循环复合材料及用于制造其的方法和成套工具

申请号 CN200880106608.5 申请日 2008-09-10 公开(公告)号 CN101801661A 公开(公告)日 2010-08-11
申请人 吉奥提斯·莫特萨诺斯; 麦茨·道尔伯格; 发明人 吉奥提斯·莫特萨诺斯; 麦茨·道尔伯格;
摘要 本 发明 涉及具有作为加强材料的天然 纤维 (4)和 碳 纤维(6)以及作为基质的环 氧 树脂 (8)的可再循环 复合材料 。优选地,天然纤维是大麻。此外,本发明涉及用于制造这样的可再循环复合材料的方法,该方法包括以下步骤:制备复合材料、将复合材料 真空 装袋并接着用加热 电缆 (12)加热复合材料。最后,本发明涉及一种成套工具,其具有 框架 (10)、加热电缆(12)以及具有恒温箱和热 传感器 的装置箱,并可用于执行根据本发明的方法。
权利要求

1.一种可再循环复合材料,其具有包括天然纤维(4)和纤维(6)的加强材料,其特征在于,所述纤维嵌入环树脂(8)基质中。
2.如权利要求1所述的可再循环复合材料,其特征在于,所述天然纤维(4)是大麻。
3.如权利要求1或2所述的可再循环复合材料,其特征在于,所述碳纤维(6)是单向的。
4.如权利要求1-3中任一项所述的可再循环复合材料,其特征在于,天然纤维用作所述复合材料的芯部(4),所述芯部(4)在两侧由至少一层碳纤维(6)围绕。
5.如权利要求1-4中任一项所述的可再循环复合材料,其特征在于,碳层(6)如果多于一层,则通过天然纤维,优选为大麻的插入物分离。
6.如权利要求4或5中任一项所述的可再循环复合材料,其特征在于,芯部(4)是大麻预浸料坯。
7.如前述权利要求中任一项所述的可再循环复合材料,其特征在于,碳纤维是预浸渍的碳纤维。
8.如权利要求1-6中任一项所述的可再循环复合材料,其特征在于,碳纤维是再循环的碳纤维。
9.如前述权利要求中任一项所述的可再循环复合材料,其特征在于,所述碳纤维是干纤维或干的、新的、再循环的和预浸渍的碳纤维的任何组合。
10.一种用于制造可再循环复合材料的方法,其用于制造如权利要求1-9中任一项所述的可再循环复合材料,所述方法包括以下步骤:
逐层制备所述复合材料,
将所制备的复合材料真空装袋,
将加热电缆(12)缠绕在所真空装袋的复合材料周围,
如果适合,将额外的加热电缆(12)缠绕在框架周围,
将所述加热电缆(12)连接到电源。
11.如权利要求10所述的方法,还包括用绝缘箔覆盖所真空装袋的复合材料和所述加热电缆(12)的步骤。
12.如权利要求10或11所述的方法,其中,制备所述复合材料的步骤包括用环氧树脂浸渍天然纤维的步骤。
13.如权利要求10-12中任一项所述的方法,其中,制备所述复合材料的步骤包括用环氧树脂浸渍碳纤维的步骤。
14.一种成套工具,其用于执行如权利要求10-13中任一项所述的方法,所述成套工具包括:框架(10)、加热电缆(12)以及具有恒温器和热传感器的装置箱。
15.如权利要求12所述的成套工具,还包括真空装袋部件。

说明书全文

发明技术领域

本发明涉及具有作为加强材料的天然纤维纤维的可再循环复合材料(recyclable composite)。此外,本发明还涉及用于制造这样的可再循环复合材料的方法。最后,本发明涉及可用于执行根据本发明的方法的成套工具。

相关技术描述

复合材料的益处是有许多文件证明的。从体育器材到高性能宇航部件的各种各样的应用使其非常普遍。复合材料的优点是它们具有低重量、极大的强度和高硬度。

碳纤维作为复合材料中的加强材料的使用在很长时间以来是已知的。通常,热塑性塑料或环树脂基质或粘结材料用于将纤维粘合在一起。存在制造复合材料的很多方法。如果粘结材料是热塑性塑料,则需要高温和高压来制造复合材料。因此,必须使用复杂且非常昂贵的模具,这也在尺寸上受到限制。单个模具需要比通过真空可得到的更高的压,因此,将需要在热压器中加热。因此,使用双侧压模(double-sided press mould)是优选的。该方法将提供高的生产量,但用于制造工具的成本很高。

制造复合材料的另一方法是通过湿叠层(wet lamination)。在该方法中,例如碳纤维的逐个层每次铺设一层,且环氧树脂基质在下一层碳纤维被铺设之前滚在每层碳纤维上。第一层纤维通常铺设在工具中或半模具中,以便给复合材料提供期望的形状。当所有的层完成时,整个封装被真空装袋,并放置到炉或热压器中,以便复合材料固化

当制造复合材料时使用所谓的“预浸料坯”也是已知的。预浸料坯是在它用于层压之前使用基质例如环氧树脂预浸的纤维。这是一种更干净的过程,因为预浸料坯已经是半固化的。与湿叠层比较,这意味着人们可省略将湿环氧树脂滚在纤维上的步骤。这些层靠着工具或模具铺设,被真空装袋,并接着在炉中或在热压器中加热,以固化复合材料。

今天使用的最常见的基于碳纤维的复合材料是碳纤维连同热塑性塑料或环氧树脂。如上所述的,热塑性塑料填料对大规模生产是优选的。说到更复杂的结构,使用环氧树脂作为填料是优选的。使用环氧树脂也将使得在最终产品中获得按体积计较高的纤维含量,即,大约70%而不是大约30-50%成为可能,大约30-50%的纤维含量在使用热塑性塑料时是普遍的。较高的纤维含量当然也将使最终产品坚固得多。代替碳纤维,可使用诸如玻璃纤维、芳族聚酰胺纤维、聚酯纤维、纤维等的纤维。

使用天然纤维也是已知的。根据关于环境负荷的正在进行的讨论,这是令人感兴趣的方法。天然纤维的例子是黄麻、大麻、剑麻、亚麻及类似物。为了构造复合材料主体,将天然纤维与热塑性合成材料纤维混合,或直接用热塑性塑料粘合剂浸渍天然材料,并将天然材料预先形成为纤维垫。纤维垫可接着通过在正使用的合成材料的模具温度时在模子中压制而形成期望的形状。使用天然纤维的问题是天然纤维的低的热稳定性,即,它们不能被加热到250℃之上,或它们可能被损坏。为此,使用具有低熔化温度的粘合剂,例如聚丙烯、聚乙烯、乙烯-醋酸乙烯酯等。

US 7,067,443描述了包括热塑性塑料层和热塑性合成材料层的多层复合材料主体,以便制造部件,特别是用于机动交通工具的部件。该发明的基本概念是加强插入物(reinforcing insert)连同天然纤维的使用,以便提高最终产品的强度特性。加强插入物可为聚酯纤维、玻璃纤维或碳纤维。

US 2004/0235376描述了用在交通工具顶棚的层压制品中的结构加强层。顶棚包括碳纤维和天然纤维中的至少一个,且热塑性粘合剂用于将纤维彼此粘在一起。该发明还描述了包括碳纤维的层压材料,该碳纤维具有高于其它复合材料的焚化点的熔点和/或劣化点(degradation point)。这将使包含在复合材料中的碳纤维是可再循环的。层压制品被加热到低于碳纤维的熔点和/或劣化点并高于其它复合材料的焚化点的温度,以将其它复合材料还原到灰烬,并留下碳纤维用于进一步的使用。碳纤维被再循环但为了这么做需要相当大量的能量是确实的。

在上面引用的技术中使用的方法使用压模,以便制造复合材料。结合本发明,这不是优选的方法,因为本发明目的在于制造在低系列中的复杂形状和具有大表面积的物体。即使使用压模制造更复杂的形状和具有大表面积的物体是可能的,制造这样的工具也非常昂贵。

GB 2322823描述了用于制造在真空装袋系统(vacuum baggingsystem)中使用的膜的方法。此外,它描述了如何使用用于制造复合材料的真空装袋系统。真空装袋是用于当树脂在固化且固结发生时在复合材料上产生压力的方法。真空袋由一对橡胶膜形成,其间夹有加热器垫。加热器垫上设置有电连接,加热器垫可连接240/110伏电源。当制造复合材料时,它铺设在半模具中,且真空袋放置在其上,其边缘对模具是密封的。真空在袋中产生,且电压被施加到加热垫,以将复合材料加热到其固化温度。该方法的极大益处是固化可发生在任何地方,即,固化没有被约束到炉或热压器的使用。然而,缺点是真空袋的尺寸必须适合于待制造复合材料的尺寸。这使得必须在很多不同尺寸上制造具有集成加热垫的真空袋。

US 2,267,147公开了用于制造大结构部件例如纤维加强合成材料的船和游泳池的方法。不透气箔被密封在预浸渍的纤维材料层上。接着,箔下面的空气被排空,以便产生压力并靠着模具压制各层。为了固化合成材料,使用类似于电毯的大加热电。通常,加热垫不覆盖整个物体,且它们必须四处移动,以便固化完整的物体。也建议使用几个加热垫来克服这个问题。尽管这样,该方法在不同的时间固化的区域之间的边界处有问题,如果不注意这些区域可能不能固化。如果使用几个加热垫且它们重叠,则可能影响加热垫的使用寿命。

US 6,355,203示出用于重新构成或重建有缺点的复合材料物体的方法,其中用于固化用来改进缺点的基质的热源是辐射源,其的发射包括红外辐射。该热源只用于固化复合材料物体上的小点。

因此,如果有用于固化复合材料的热源将非常好,该热源灵活且适用于复合材料的个别形式,而没有重叠区域的问题或必须使热源适应待制造的特定复合材料。

制造可再循环的复合材料而不必使用大量能量来再循环它也是合乎需要的。

发明概述

因此,本发明的目的是提供一种可再循环复合材料,其中,碳纤维容易再循环,且不需要大量能量来启动该处理。

这个目的使用具有包括天然纤维和碳纤维的加强材料的复合材料来解决,且其中,纤维嵌入环氧树脂基质中,如果可能,在未来基于可再生资源。

在优选实施方式中,复合材料包括单向碳纤维,且天然纤维是大麻。使用大麻作为天然纤维有很多益处。大麻具有高能含量、高强度和低密度。复合材料适合于在一个步骤中模制的纯层压制品以及夹层板,即,蜂窝或其它芯部材料。

本发明的另一目的是提供用于在不使用炉或热压器的情况下制造可再循环复合材料的方法。这通过使用加热电缆的方法来解决,该电缆缠绕在待固化的复合材料物体周围。加热电缆的使用具有以下优点:一条足够长的加热电缆可用于所提供的物体的几乎任何尺寸和几何结构,额外的电缆以适当的方式维护。

此外,本发明的目的是提供可用于执行根据本发明的方法的成套工具。这通过提供包括加热电缆和特别开发的框架的成套工具来解决,该框架适合于以有组织的方法维护额外的电缆。

附图描述

当结合附图阅读优选实施方式的以下描述时,本发明及其很多目的和优点将变得更清楚,其中:

图1示出根据本发明的可再循环复合材料的例子。

图2示出用于缠绕额外的加热电缆的框架。

图3示出图2中描绘的框架的侧视图。

优选实施方式的描述

现在转到附图,其中相似的参考数字标识相同或相应的元件,且特别是其中的图1,示出了可再循环复合材料2的例子。在其基本形式中,复合材料2包括天然纤维,例如黄麻、大麻、剑麻、亚麻及类似物的芯部4。在优选实施方式中,大麻用作天然纤维。存在大麻作为芯部的几个环境益处。首先,大麻可在很多不同的气候中生长,这使在本地收集大麻从而减小由运输引起的环境负荷成为可能。其次,大麻是从土壤除去害虫的唯一植物,因此当种植大麻时不需要使用杀虫剂。第三,大麻有高能含量,这在根据本发明再循环复合材料时是有用的。

大麻的另一优点是它具有低密度、相对高的强度和吸收能量的高容量。这些特性结合碳纤维6的非常高的强度和硬度将给出在很多不同的应用中有用的非常好的复合材料。

因此,在优选实施方式中,芯部4由大麻,优选地由大麻预浸料坯制成。如果使用或不使用大麻预浸料坯理论上不影响最终复合材料物体的质量和性能,但在执行根据本发明的方法时提供优点,如将在下面详细描述的。然而,在实践中,在使用预浸料坯大麻和干大麻之间存在不同。当使用干大麻时,制造具有确切的预定数量的基质的最终复合材料几乎是不可能的。因此,当使用干大麻时,确定最终复合材料的特性将是非常困难的。因此,通过使用大麻预浸料坯而不是干大麻,影响产品的最终质量是可能的,因为所使用的基质的数量容易控制。

在大麻的芯部4的两侧上提供了至少一层碳纤维6。图1中示出两层6。应注意,图1所示的碳纤维6的方位在最接近于芯部4的第一层和第二外层之间相差90°。碳纤维6的目的是加固大麻,因而加固方位,可用各种不同的方法产生碳纤维6的层数和放置,取决于最终产品中期望的特性,如本领域技术人员所公知的。此外,碳纤维6可为干碳、干的可再循环或预浸(预浸渍)碳纤维或其任何组合,并优选地是单向的,这增强了最终复合材料2的再循环特性以及还有复合材料的最终强度。

为了将天然纤维和碳纤维粘合在一起,使用了环氧树脂8基质。环氧树脂使大麻纤维成为优良的疏保护,这优于当使用热塑性塑料和树脂塑料时可能得到的。此外,碳纤维6显示非常低的水吸收。因此,在大麻的芯部4周围设置碳纤维6给出了优良的蒸汽隔离层。环氧树脂8的使用也使最大纤维体积接近于最佳限制成为可能。与当使用热塑性塑料和树脂塑料作为基质或填充材料时可达到的30-50%的纤维体积比较,环氧树脂8的使用将给出大约70%的纤维体积。这当然对复合材料的强度有积极的影响,并对环境也是较有利的,因为最终复合材料中的不可再生材料的数量减少了。

应注意,术语环氧树脂应被广泛地解释。即使今天的环氧树脂基于常见的石化石油,也设想,它在未来可由任何可再生或生物材料制造,因此术语环氧树脂应在该意义上解释。

如上所述,单向碳纤维较容易再循环,然后是编织碳纤维。碳纤维和大麻的组合在焚化出现时将便于碳纤维容易释放。复合材料的焚化非常容易开始,并可与蜡烛的焚化比较(灯芯效应)。大麻将起燃料的作用,而碳纤维起灯芯的作用。如所述,需要最低量的能量来启动释放复合材料的内部存储的能量的过程。因此,当复合材料被焚化而不是需要能量时,它将恢复能量,这对普通碳纤维/环氧复合材料是常见的。在分区加热工厂及类似工厂中可维护所释放的能量。

为了进一步增强复合材料带或天然纤维层的可再循环性,例如大麻设置在每层单向碳纤维之间。应理解,合成纤维的薄布带或非编织垫也可用于分开不同的碳纤维层,以便使它是更可再循环的。

现在将描述用于制造复合材料的方法。如上所述,根据本发明的方法结合具有复杂的几何结构的复合材料的制造是最有利的。该方法可简单地被描述为电加热的真空装袋技术。如上所述的真空装袋是用于制造复合材料的通常使用的技术,并且是本领域技术人员公知的,因此不详细描述。当复合材料被制备和被真空装袋时,它将需要热,以便固化。通常,炉或热压器用于该目的。然而,这非常耗费能量。根据本发明,加热电缆12用作热源。加热电缆12可直接连接到电源,即,240/110电压源。因此,使用加热电缆12将使复合材料的制造灵活得多,因为复合材料可在存在电源的任何地方制造。炉和热压器的使用稳定得多。

当使用加热电缆12时,重要的事情是电缆的热生成是可控制的。加热电缆12缠绕在待加热的物体周围,并可使用带、优选地带紧固,每绕组之间有预定的距离。每绕组之间的距离由加热电缆12的容量和固化复合材料所需要的加热量确定。优选地,50mm的距离用于优化加热效应,但较短的距离当然将给正被固化的物体提供更多的热,而较长的距离将提供较少的热。为了减少能量消耗,加热电缆12用绝缘箔层覆盖,以将热保持在正制造的复合材料中。加热电缆的长度可为50米或任何其它适当的长度。在本发明的优选实施方式中,加热电缆12可串联连接,以便增加其长度。

当使用加热电缆12时,电缆不与本身交叉或与本身邻接很重要,因为这将实质上减少加热电缆12的使用寿命。根据本发明的优选实施方式,加热电缆12的多余部分可因此储存在图2和图3所示的特别设计的框架10上。图2和图3示出框架10,加热电缆12缠绕在环状物或眼状物14周围。框架10包括两个纵向腿和两个垂直腿,并由木材或另一耐热材料制成。框架10设置有环状物或眼状物14、螺钉或钉、在下文中的绕组支持装置(winding support means),额外的加热电缆12通过该这些装置引导,使得它缠绕在框架10周围。在图2所示的框架10上,可能缠绕两层加热电缆12,在附图中只使用一层。图2中示出的第一层缠绕在绕组支持装置14周围,绕组支持装置14设置在框架10的纵向腿上。未示出的第二层可缠绕在绕组支持装置16周围,绕组支持装置16设置在框架10的垂直腿上。存在将绕组支持装置14、16布置和设置在框架10的腿上的不同方法。例如,图3示出设置在框架10的垂直腿的侧面上的眼状物16,而图2示出设置在垂直腿的顶部上的眼状物16。绕组支持装置之间的距离可为大约50mm,但也可为任何其它距离,取决于加热电缆12的热容量。较大的容量当然需要较大的距离,或加热电缆12可能被损坏。

将木框架称为耐热的可能看起来奇怪,但应理解,根据本发明的用于层压优选的复合材料的方法通常使用大约100-150℃的温度来固化层压制品。温度依赖于用作基质的环氧树脂系统的类型。根据本发明,可能使用高达220℃的温度。因此,在这方面,木材被视为耐热的。当然,可对框架使用其它材料,重要的事情是它们是耐热的和非传导的。

为了执行根据本发明的方法,提供了有用的成套工具。成套工具包括优选地被接地的加热电缆12和具有恒温器和热传感器的装置箱(apparatusbox)。因此,加热电缆12准备被使用,而没有来自用户的任何介入。此外,成套工具包括用于维护额外的加热电缆的上述框架,如果可适用的话。

在本发明的另一实施方式中,成套工具还包括执行根据本发明的方法的真空装袋步骤所必需的所有部件。这样的部件可为不同的释放铝和绝缘箔、密封化合物、铝带和数字温度计。它还可包括波状纸板或类似物,其上放置有框架和额外的加热电缆,以便保护它所铺设的地板或桌子。合并在成套工具中的其它部件可为用于形成工具、真空、软管等的材料。

虽然参考优选实施方式描述了本发明,但是应理解,在由所附权利要求最佳限定的本发明范围内的其它实施方式和变形同样是可能的。

QQ群二维码
意见反馈