激光接合装置及激光接合方法

申请号 CN201480006331.4 申请日 2014-01-27 公开(公告)号 CN104968483B 公开(公告)日 2017-03-08
申请人 株式会社日立制作所; 发明人 角田重晴; 荒井聪;
摘要 本 发明 提供用于将由热塑性 树脂 形成的树脂筐体和金属材料接合的激光接合装置,是实现热传导的高效化并降低激光输出功率的激光接合装置。该接合装置面对金属材料(3)的该接合面的相反侧的面,对树脂筐体(7)和金属材料(3)的接合面进行激光照射,从而进行加热接合,通过上模具(1)和下模具(2)将树脂筐体(7)和金属材料(3) 定位 并固定,通过按压上模具(1),使树脂筐体(7)和金属材料(3)的接合面密合。此时,利用加热器(8)预先将金属材料(3)加热。然后,从上模具(1)的孔部(1a)照射激光。通过加热器度,并利用上模具(1)和下模具(2)对接合面进行加压,能够实现利用激光对金属材料(3)进行的加热的高效化,降低激光的输出功率,大幅度减少接合所需要的成本。(8)将树脂筐体(7)和金属材料(3)加热至规定温
权利要求

1.一种激光接合装置,是将树脂筐体和金属材料进行加热接合的接合装置,其特征在于,具备:
从所述金属材料的与所述树脂筐体的接合面相反侧的面,对所述金属材料照射激光的加热接合用的激光照射机构,
用于将所述树脂筐体以及所述金属材料定位并进行加压的加压固定模,和加热该加压固定模的加热机构;
所述加压固定模由可动模和固定模构成,在所述可动模与所述固定模之间,将所述树脂筐体和所述金属材料夹入规定的位置,通过所述加热机构将所述可动模加热,并且通过所述可动模向着所述树脂筐体给所述金属材料加压,通过所述激光照射机构照射激光来进行所述树脂筐体和所述金属材料的接合。
2.如权利要求1所述的激光接合装置,其特征在于,由激光照射机构对要进行接合的所述金属材料直接照射激光。
3.如权利要求1或2所述的激光接合装置,其特征在于,在所述激光照射机构和所述金属材料之间,配置由与金属材料不同的另一种材料形成的加压材料以与所述金属材料密合,对所述加压材料的表面照射激光,通过向所述金属材料热传导而与所述树脂筐体接合。
4.如权利要求3所述的激光接合装置,其特征在于,由与所述金属材料不同的另一种材料形成的所述加压材料是由与所述金属材料相比激光吸收率高的材料形成的。
5.如权利要求3所述的激光接合装置,其特征在于,由与所述金属材料不同的另一种材料形成的所述加压材料是由与所述金属材料相比导热系数小的材料形成的。
6.如权利要求3所述的激光接合装置,其特征在于,由与所述金属材料不同的另一种材料形成的所述加压材料是由与所述金属材料相比耐热性高的材料形成的。
7.如权利要求1所述的激光接合装置,其特征在于,所述固定模也具备加热体。
8.一种激光接合方法,是将树脂筐体和金属材料进行加热接合的接合方法,其特征在于,
在加压固定模的可动模和固定模之间,将所述树脂筐体和所述金属材料夹入规定位置以进行定位,
通过加热机构对所述加压固定模进行加热,并且通过所述可动模向着所述树脂筐体给所述金属材料加压,
通过加热接合用的激光照射机构,从所述金属材料的与所述树脂筐体的接合面相反侧的面对所述金属材料照射激光,进行所述树脂筐体和所述金属材料的接合。
9.如权利要求8所述的激光接合方法,其特征在于,在利用激光照射进行加热接合之前,通过所述加热机构使所述金属材料的温度处于比所述树脂筐体的温度高的状态。
10.如权利要求8所述的激光接合方法,其特征在于,在所述激光照射机构和所述金属材料之间,配置由与金属材料不同的另一种材料形成的加压材料以与所述金属材料密合,对所述加压材料的表面照射激光,通过向所述金属材料热传导而与所述树脂筐体接合。

说明书全文

激光接合装置及激光接合方法

技术领域

[0001] 本发明涉及通过激光将树脂和金属加热接合的装置及方法。

背景技术

[0002] 由于热塑性树脂具有优异的加工性且其形状的自由度大,广泛地用于汽车电机设备、医疗生物设备等一般产业用途,已普及到可以说不存在没有使用热塑性树脂的领域的程度,成为人们身边的材料。随着近年来的CO2排放限制、低成本化的潮流,正逐渐进行热塑性树脂的高功能化以及对金属的替代,在对金属的替代中,含有纤维的热固性树脂也正在普及。然而,热塑性树脂和热固性树脂有与一般的金属相比耐热温度、机械强度低的倾向。此外,由于一般使用的热塑性树脂、热固性树脂相比于金属,具有热膨胀系数大、容易变形、分解、容易溶于有机溶剂、容易由于分而导致溶胀等缺点,因此处于难以完全替代的情况。
[0003] 特别是,近年来由于产品结构复杂化,因此在进行发挥热塑性树脂以及热固性树脂和金属各自的特长的设计,其二次加工技术变得越来越重要。其中,由于半导体激光的普及,越来越多地探讨使用激光将树脂和金属接合的方式。
[0004] 专利文献1中记载了通过加热将树脂和金属接合的方法,其中,一边将树脂和金属的接合界面加热至某一温度范围,同时将其相反侧的面冷却来进行接合。记载了由此能够得到充分的接合强度。
[0005] 专利文献2中示出了,在将由热塑性树脂形成的成型体与金属叠合的状态下,通过从金属侧照射激光,即使在成型体不透过激光的情况下也能够牢固地接合。此外还记载了,对金属的接合面侧的表面进行表面处理对提高接合强度有效。
[0006] 现有技术文献
[0007] 专利文献
[0008] 专利文献1:日本国特开2010-46831号公报
[0009] 专利文献2:日本国特开2008-21356号公报

发明内容

[0010] 发明所要解决的课题
[0011] 专利文献1所公开的技术中,采用了在将树脂和金属加热至特定的温度范围进行接合时,为了防止接合面的温度的过度升高而从相反侧的面同时进行冷却的方式,其构成复杂,难以进行节能化。尤其在该技术中,记载了替代为点焊机构成、将加热体形成为辊状来进行板状物的接合的方法等,因此,存在的课题是难以应用于在接合面的形状为复杂且小型的情况。
[0012] 此外,还公开了利用激光的加热方式,但其是从透明树脂侧进行入光,在非透明的热塑性树脂的情况下无法应用。由以上可知,存在难以在接合面是复杂的形状的情况下应用这些构成的课题。
[0013] 在专利文献2所公开的技术中示出了从金属侧照射激光,另外将用于加热的激光同时照射至接合面,将热塑性树脂和金属接合的方案,但没有记载关于在接合面的加压方法。此外记载了,在接合面热塑性树脂到达热分解温度,产生大量的气泡,从而实现接合强度的提高。然而,接合面的气泡对于需要长期可靠性的产品而言,有可能成为弱点。尤其是,存在的课题是难以在优先确保气密性的产品中应用。
[0014] 用于解决课题的方法
[0015] 为了解决上述课题,本发明的激光接合装置是将树脂筐体和金属材料进行加热接合的接合装置,其特征在于,具备:
[0016] 从所述金属材料的与所述树脂筐体的接合面相反侧的面对所述金属材料照射激光的加热接合用激光照射机构、用于将所述树脂筐体以及所述金属材料定位并进行加压的加压固定模和加热该加压固定模的加热机构,
[0017] 所述加压固定模由可动模及固定模构成,在所述可动模和所述固定模之间,将所述树脂筐体和所述金属材料夹入规定的位置,利用所述加热机构加热所述可动模,并且通过所述可动模向着所述树脂筐体给所述金属材料加压,通过所述激光照射机构照射激光来进行所述树脂筐体和所述金属材料的接合。
[0018] 进而,本发明的激光接合装置的特征在于,由激光照射机构对要进行接合的所述金属材直接照射激光。
[0019] 进而,本发明的激光接合装置的特征在于,在所述激光照射机构和所述金属材料之间,配置由与金属材料不同的另一种材料形成的加压材料,以与所述金属材料密合,对所述加压材料的表面照射激光,通过向所述金属材料热传导而与所述树脂筐体接合。
[0020] 进而,本发明的激光接合装置的特征在于,在所述激光照射机构和所述金属材料之间,配置由与金属材料不同的另一种材料形成的加压材料,以与所述金属材料密合,对所述加压材料的表面照射激光,通过向所述金属材料热传导而与所述树脂筐体接合。
[0021] 进而,本发明的激光接合装置的特征在于,由与所述金属材料不同的另一种材料形成的所述加压材料是由与所述金属材料相比激光吸收率高的材料形成的。
[0022] 进而,本发明的激光接合装置的特征在于,由与所述金属材料不同的另一种材料形成的所述加压材料是由与所述金属材料相比导热系数小的材料形成的。
[0023] 进而,本发明的激光接合装置的特征在于,由与所述金属材料不同的另一种材料形成的所述加压材料是由与所述金属材料相比耐热性高的材料形成的。
[0024] 进而,本发明的激光接合装置的特征在于,所述固定模也具备加热体。
[0025] 本发明的激光接合方法是将树脂筐体和金属材料进行加热接合的接合方法,其特征在于,
[0026] 在加压固定模的可动模和固定模之间,将所述树脂筐体和所述金属材料夹入规定的位置以进行定位,
[0027] 通过加热机构加热所述加压固定模,并且通过所述可动模向着所述树脂筐体给所述金属材料加压,
[0028] 通过加热接合用的激光照射机构,从与所述金属材料的所述树脂筐体的接合面相反侧的面,对所述金属材料照射激光,进行所述树脂筐体和所述金属材料的接合。
[0029] 进而,本发明的激光接合方法的特征在于,在利用激光照射进行加热接合之前,通过所述加热机构使所述金属材料的温度处于比所述树脂筐体的温度高的状态。
[0030] 进而,本发明的激光接合方法的特征在于,在所述激光照射机构和所述金属材料之间,配置由与金属材料不同的另一种材料形成的加压材料,以与所述金属材料密合,对所述加压材料的表面照射激光,通过向所述金属材料热传导而与所述树脂筐体接合。
[0031] 进而,本发明的激光接合方法是将树脂筐体和金属材料进行加热接合的接合方法,其特征在于,
[0032] 在通过加热接合用的激光照射机构,对与所述金属材料的所述树脂筐体的接合面进行接合时,在所述树脂筐体的接合部设置凸状部分,
[0033] 将所述金属材料的接合部的表面形状设为,
[0034] (1)粗糙化面为Ra:0.4μm~2.5μm,
[0035] (2)或者,槽形状为槽的宽度:0.05mm~0.2mm、槽的深度:0.05mm~0.2mm,[0036] (3)或者,孔形状为直径:0.05mm~0.2mm、孔的深度:0.02mm~0.2mm[0037] 中的任一种,
[0038] (4)或从(1)(2)(3)中组合两种以上,
[0039] 从所述接合部的相反侧的面对所述金属材料照射激光,进行所述树脂筐体和所述金属材料的接合。
[0040] 发明的效果
[0041] 根据本发明,不太受金属表面的光吸收率所左右,能够以短的生产间隔时间进行高强度且可靠性高的树脂和金属的激光接合。此外,通过预先将树脂筐体和金属材料加热至规定的温度,能够大幅度的减少接合所需要的激光功率,从而有助于装置、产品成本的大幅度降低。进而,能够大幅度降低材料的限制。附图说明
[0042] 图1是表示本发明的树脂筐体和金属材料的激光接合装置的实施例的立体图例。
[0043] 图2是表示图1的详细构成的A-A截面图。
[0044] 图3是表示接合面图案的一个例子的俯视图。
[0045] 图4是表示树脂筐体和金属材料的激光接合装置的其他实施例的立体图例。
[0046] 图5是表示图4的详细构成的A-A截面图。
[0047] 图6是表示本发明的树脂筐体和金属材料的激光接合装置的其他实施例的截面图。
[0048] 图7是表示本发明的树脂筐体和金属材料的激光接合装置的其他实施例的截面图。
[0049] 图8是表示本发明的树脂筐体和金属材料的激光接合装置的其他实施例的截面图。
[0050] 图9是表示本发明的树脂筐体和金属材料的激光接合装置的其他实施例的截面图。
[0051] 图10是表示本发明的树脂筐体和金属材料的激光接合装置的其他实施例的截面图。
[0052] 图11是表示本发明的树脂筐体和金属材料的激光接合装置的其他实施例的截面图。
[0053] 图12是示意性地表示本发明对树脂筐体和金属材料进行激光接合的激光接合装置的所需部的立体图。
[0054] 图13是用于制作通过本发明激光接合装置而接合的试验片的加热加压夹具的所需部的截面图。
[0055] 图14是在室温时和150℃时将在同一激光照射条件下进行激光接合的试验片的接合强度进行对比的曲线图。
[0056] 图15是表示激光接合时的加热温度与激光功率的关系的曲线图。
[0057] 图16是表示激光接合时的加热温度与激光照射装置的移动速度的关系的曲线图。
[0058] 图17A是表示施加了槽加工的金属材料的接合部的俯视图。
[0059] 图17B是图17A的A-A面截面图。
[0060] 图18A是表示施加了孔加工的金属材料的接合部的俯视图。
[0061] 图18B是图18A的A-A面截面图。
[0062] 图19是表示在同一室温下将不同表面形状的材接合时的接合强度的曲线图。
[0063] 图20是表示将与图13所示的树脂试验片形状不同的树脂试验片和铝材接合时的加热加压夹具的截面图。
[0064] 图21是表示将图20所示的树脂试验片和铝材在150℃且将激光功率设为0.3来进行接合时的接合强度的曲线图。

具体实施方式

[0065] 以下说明本发明的激光接合装置的实施方式。本发明中所使用的热塑性树脂包括非结晶性或结晶性树脂。作为非结晶性树脂,可列举:聚苯乙烯(PS)、丙烯腈-苯乙烯(AS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚醚酰亚胺(PEI)、聚碳酸酯(PC)、聚芳酯(PAR)、聚甲基丙烯酸甲酯(PMMA)、环烯聚合物(COP)、环烯烃共聚物(COC)、聚砜(PSF)、聚醚砜(PES)、聚氯乙烯(PVC)、聚偏氯乙烯(PVDC)等。作为结晶性树脂,可列举:聚乙烯(PE)、聚丙烯(PP)、聚甲(POM)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丙二醇酯(PTT)、聚对苯二甲酸丁二醇酯(PBT)、聚二甲酸乙二醇酯(PEN)、聚苯硫醚(PPS)、尼龙6(PA6)、尼龙66(PA66)、尼龙6T(PA6T)、聚醚醚(PEEK)、液晶聚合物(LCP)、聚四氟乙烯(PTFE)等。此外,这些中的含有合金材料、玻璃纤维等无机物、特殊添加剂的热塑性树脂也成为对象。一般而言,关于成型性、透明性,非结晶性树脂是优异的,而相对于此,结晶性树脂的耐热性、耐药品性优异。此外,不仅是热塑性树脂,也可以是环系树脂等热固性树脂。
[0066] 尤其,就本发明而言,由于将金属材料和树脂加热并且利用夹具进行加压,从金属材料侧照射激光,因此热塑性树脂、热固性树脂的着色状态可以是任何状态。此外,也可以隔着激光吸收率高的部件对金属材料进行加热。
[0067] 作为接合的金属,可列举:、铝、、镍、金、、合金(不锈黄铜铝合金、磷青铜等)、压铸件(die cast)等,而进行了金属被膜(层、蒸镀膜等)的材质也成为对象。此外,不仅是金属,陶瓷也可以接合。
[0068] 用于将接合金属材料高效地加热的激光吸收率高的部件,需要以铁、铝、铜、镍、金、钛、合金(不锈钢、黄铜、铝合金、磷青铜等)、压铸件(die cast)、各种陶瓷等材料作为基材,并需要对入射激光波长的表面吸收率达到70%以上。
[0069] 关于用于激光接合的光源,从成本方面看来,有效的是包括半导体激光、YAG激光、光纤激光的具有红外区域波长的激光,但为了应对加热的金属材料的光吸收,可以是其他波长。此外,激光源的强度分布可根据附带的透镜不同而呈高斯(Gaussian)型、平顶(top hat)型、环型等各种各样的强度分布。
[0070] 关于激光接合的条件,鉴于树脂和金属的加热温度,并考虑金属材料的对激光照射波长的光吸收率、导热系数、耐热性、刚性等来决定激光光斑尺寸、功率、照射时间、加压
[0071] 以下,使用图1~图8说明实施例。
[0072] 实施例1
[0073] 图1是表示本发明的树脂筐体和金属材料的激光接合装置的实施例的立体图例。本实施例的构成为:作为加压固定模,在边框状的可动模即上模具1与固定模即下模具2之间夹入接合体(树脂筐体和金属材料),进行加压、加热。
[0074] 图2是表示图1的详细构成的A-A截面图。在此,作为一个例子,对将传感器部件6接合的情况,使用示意图来进行说明。图2处于通过上模具1和下模具2将安装有电子部件5的传感器部件6和树脂筐体7夹持的状态,其中,所述电子部件5由粘接剂4等固定在金属材料3上。为了使激光聚光单元部11能够接近金属材料3,上模具1中形成有孔部1a并成为边框状。上模具1的孔部1a的内周,从上向下逐渐突出,形成锥状。由此可以将来自上模具1和下模具
2的压力有效地施加于金属材料3的与树脂筐体7对应的对接部,即接合面9。由此可以使树脂筐体7与金属材料3的接合面9密合,保持气密性,并且,在接合面9没有产生气泡等的可能性。
[0075] 此外,在下模具2中,为了防止传感器部件6和树脂筐体7被上模具1按压而产生错位,形成有定位用的凹部2a。通过该凹部2a,即使树脂筐体7被上模具1按压,也能防止树脂筐体7产生变形。在图2所示的状态下,金属材料3处于由设置于边框状上模具1的加热体即加热器8加热至规定温度的状态。通过加热金属材料3来促使树脂筐体7在接合部软化,实现接合部之间的密合度的提高。关于树脂筐体7,将其温度降低至低于加热的金属材料3,从而防止树脂筐体7自身因加热而引起的变形等。关于加热方式,除了加热器加热之外,不言而喻还可以是IR灯、LED等任何方式。此外,为了抑制对激光聚光单元部11产生温度变化,可以在上部及外周部具有隔热结构(未图示)以减少来自上模具1的放热。进而,将金属材料3与树脂筐体7的接合面9保持并固定于施加有规定压力的状态。在该状态下,从激光聚光单元部11将激光10照射至金属材料3,在沿着规定的图案进行扫描的同时,将金属材料3与树脂筐体7的接合面9连续地接合。
[0076] 图3是表示接合面的图案的一个例子的俯视图。作为接合顺序20,例如按照C1→C2→C3→C4的顺序进行连续照射,在接合面9上形成连续的轨迹21,将金属材料3和树脂筐体7气密密封。
[0077] 通常,在从金属材料3照射激光10的情况下,光吸收率小的金属材料,例如对于面对红外光的铝、铜而言,需要对接合金属材料的激光照射面实施增大光吸收率的处理,成本的增加就成为课题。此外,根据产品的形态,存在无法实施那样的处理的情况,有接合性变差的可能性。进而,根据产品的形态,还存在无法应用利用激光10的接合方式。此外,由于从金属材料3侧进行激光照射,为了避免因金属材料3的反射所引起的激光源的劣化,因此需要例如相对于接合的金属材料3将激光源倾斜10~15°左右来照射激光10。然而,有时也会有在倾斜10~15°左右时,与未倾斜时相比激光接合面难以变得均匀这样的问题。
[0078] 另一方面,树脂筐体中,关于热塑性树脂,通常会通过射出成型等来形成筐体形状。此时,树脂成型制品中,有可能由于成型时所产生的内部应力,导致成形品的外形产生弯曲、歪曲、扭曲或成型表面的缩痕等。出于这些原因,有可能产生树脂筐体的接合面形状的不均匀性。在将金属材料和树脂筐体接合时该接合面的不均匀性有可能导致接合状态的偏差,在确保可靠性上成为重要的课题。
[0079] 针对这些,本申请的发明中,如图1所示,在接合之前将上模具1和金属材料3加热至规定的温度,通过上模具1和下模具2对接合物进行加压,从而发挥软化树脂筐体的接合面、将容易在接合面产生的弯曲、歪曲、扭曲、表面的缩痕等矫正的效果。此外,利用接合的金属材料进行加热、加压,从而产生追随金属材料的接合表面的效果。由此,接合界面的密合度提高,从而可以高效率地进行热传导,能够高强度且均匀地接合。此外,通过上模具1及下模具2将金属材料3和树脂筐体7按压,提高密合度,使得热传导效率提高,发挥减少接合所需要的激光照射能量的效果。
[0080] 尤其对于光吸收率小的金属材而言,例如对于面对红外光的铝、铜而言,通过加热,发挥大大减少激光照射能量的效果。此外,作为成为对象的产品,不仅对安装有电子部件6的产品的筐体部有效,而对生态芯片、电子控制单元(ECU)、连接器、电源模等产品以及可激光接合的全部产品的整体有效。
[0081] 实施例2
[0082] 图4是表示树脂和金属的激光接合装置的其他实施例的立体图例。图1、图2的树脂和激光接合装置中,对在已说明的图1中示出的、具有赋予同一符号的构成和功能的部分,省略其说明。
[0083] 本实施例中,对树脂筐体和金属材料的接合形状大型化时的例子进行说明。即,其构成如下:在边框状的上模具1的中央部具备用于均匀地加压金属材料3的加压用模块30和用于固定上模具1和加压用模块30的透明材质31(例如,玻璃等)。激光10透过透明材质31。
[0084] 图5是表示图4的详细构成的A-A截面图。其构成如下:具备用于固定上模具1和加压用模块30的透明材质31。通过设置加压用模块30,对大型化时的金属材料3的中央部加压,从而发挥防止金属材料3的变形、保持接合面的密合度的效果。虽未图示,但根据接合形状,可以在加压用模块30设置加热部并进行加热,设为即使是大型形状也能够均匀地加热的构成。
[0085] 作为该加热用模块30的材质,不言而喻可以使用各种金属材料、各种陶瓷。此外,根据接合形状,也可以使用隔热材料来防止金属材料加热时的放热,实现加热温度的稳定化。
[0086] 实施例3
[0087] 图6是表示本发明的树脂和金属的激光接合方法的其他实施例的截面图。其构成如下:在待接合的金属材料3的上表面部分设置有接合的光吸收率大的另一种材料40(金属材料、陶瓷等)。由此发现了,隔着另一种材料40在接合的金属材料3中产生热传导,从而树脂筐体7和金属材料3可以高强度且均匀地接合。例如,希望将铝、铜接合时,通过使用在红外域的激光吸收率大且导热系数小的不锈钢材料等,可发挥利用较少的激光照射能量就能够高强度且均匀地接合的效果。即,通过使用导热系数小的另一种材料40,使得加热时对接合部照射的能量不广泛扩散,因此在窄小的范围内变成高温。因此,利用较少的照射能量就成为高温,可发挥通过热传导可以高效地加热金属材料的效果。此外,作为另一种材料40,优选的方式是选择与接合的金属3相比刚性、耐热性、融点高的材料,进行组合。
[0088] 实施例4
[0089] 图7是表示本发明的树脂和金属的激光接合方法的其他实施例的截面图。本实施例中,对树脂和金属的接合形状大型化时的例子进行说明。即,其构成如下:在待接合的金属材料3的上表面部分设置接合的光吸收率大的另一种材料40(金属材料、陶瓷等)。由此发现了,隔着另一种材料40在接合的金属材料3中引起热传导,能够将树脂筐体7和金属材料3高强度且均匀地接合。优选的方式是选择与接合的金属3相比刚性、耐热性、融点高的材料,进行组合。
[0090] 例如,希望将铝、铜接合时,通过使用在红外域的激光吸收率大的不锈钢材料等,可发挥利用较少的激光照射能量就能够高强度且均匀地接合的效果。
[0091] 实施例5
[0092] 图8是表示本发明的树脂和金属的激光接合方法的其他实施例的截面图。其方式中,为了加热树脂筐体3,在下模具2设置有与上模具1同样的加热器8。这是使用高热传导性的树脂材料等作为筐体材料时的例子。通过在下模具2设置加热器8,可发挥将接合面加热并保持于规定温度的效果。
[0093] 实施例6
[0094] 图9是表示本发明的树脂和金属的激光接合方法的其他实施例的截面图。对树脂和金属的接合形状大型化且使用高热传导性的树脂材料等作为筐体材料时的例子进行说明。其是,为了加热树脂筐体3,在下模具2设置有与上模具1同样的加热体8的方式。通过在下模具2设置加热器8,发挥即使使用高热传导性的树脂材料等作为筐体材质也可将接合面加热并保持于规定温度的效果。此外,不言而喻,关于在实施例3及实施例4中所说明的结构,通过在下模具2设置加热器8,也可发挥同样的效果。
[0095] 实施例7
[0096] 图10是表示本发明的树脂和金属的激光接合方法的其他实施例的截面图。本实施例的特征在于,在金属材料3的接合面9上部的激光照射面侧形成细微的凹凸45,从而提高激光吸收率。由此,能够减少接合所需要的激光功率,高效率地进行激光接合。予以说明的是,为了保持高热传导性,希望上模具1等所接触的金属部分46的粗糙度尽可能小。
[0097] 实施例8
[0098] 图11是表示本发明的树脂和金属的激光接合方法的其他实施例的截面图。对当树脂和金属的接合形状大型化且使用高热传导性的树脂材料等作为筐体材料时的例子进行说明。本实施例的特征在于,在设置于金属材料3上部的另一种材料40上部的激光照射面侧形成细微的凹凸45,提高激光吸收率。由此,能够减少接合所需要的激光功率,进行高效率的激光接合。另外,为了保持高热传导性,希望上模具1、加压用模块30等所接触的金属部分46的粗糙度尽可能小。此外,不言而喻,关于在实施例3及实施例4中所说明的结构,通过在激光照射面侧设置细微的凹凸45,也可发挥同样的效果。
[0099] 实施例9
[0100] 图12是示意性地表示了本发明的对树脂和金属进行激光接合的激光接合装置的所需部的立体图。在此,对将驱动单元部54驱动且在台56上固定有加热加压夹具55的例子进行说明,其中,所述驱动单元部54中,在X轴方向53、Y轴方向52、Z轴方向51的3轴驱动单元的Z轴上固定有激光聚光单元50。即,驱动单元按照预先输入的程序,描绘规定的图案。此外,在Z轴方向51上固定的激光聚光单元50移动至可对焦于接合体的高度。
[0101] 另一方面,在进行加热加压的夹具内,设置有由树脂筐体和金属材料构成的接合体。作为加热,有直接在夹具内进行加热的方式或在另行的工序中预先进行预热,然后设置于夹具内的方法等。通过该方式,发挥可进行稳定生产且能够制造可靠性高的产品的效果。
[0102] 予以说明的是,本发明不限于上述实施例,而包含各种变形例。例如,在上述实施例中为了将本发明说明得易懂而进行了详细的说明,不一定限于具备所说明的全部构成。此外,可以将某一实施例的构成的一部分替换成其他实施例的构成,也可以在某一实施例的构成中加入其他实施例的构成。对各实施例的构成的一部分,可以进行其他构成的追加、削除、替换。例如,为了说明利用上模具1及下模具2进行加压的优势,将树脂筐体7的形状设为箱型,但不限于此,也可以为了穿通端子、线而在树脂筐体7形成缺口部、孔部。此时,对未与金属材料3对接而未形成接合面的部位,无需照射激光。此外,关于加热器8可以使用通过使电流流通电阻大的元件来发热的电阻加热、通过远红外线进行加热的红外加热等各种加热机构。
[0103] 使用以下附图,对在实施例1~8中加热加压所带来的激光输出功率的降低效果进行说明。作为一个例子,将在实施例1、实施例2、实施例5、实施例6、实施例7中进行的金属材料和树脂筐体的树脂作为试验片。图13表示用于制作测定接合强度的试验片的加热加压夹具的截面。在此,采用了在上模具1设置有加热器8的结构。作为试验片105,使用铝材100(A5052P),作为PBT树脂使用例如Polyplastics株式会社制的DURANEX(注册商标)PBT树脂7407,进行制备。以试验片105的尺寸20mm×70mm×1mm、试验速度1mm/分进行。作为激光照射侧的铝材表面,采用抛光面(Ra:0.4μm左右),作为粗糙化面采用80#喷砂处理面(Ra:2.5μm程度)、400#喷砂处理面(Ra:1.3μm程度),接合面均为抛光面。以后,称为抛光面、粗糙化面,但在用Ra表示处理面的粗糙度程度的情况下,有时会将抛光面的表面状态和粗糙化面的表面状态包含在一起来表示。
[0104] 图14是在使激光照射条件(激光功率:350W,激光照射装置移动速度:3mm/秒)相同时的室温时与150℃加热时的接合强度的比较例。相对于室温,150℃加热时的接合强度为相对值=1.9,即提高至约2倍。但,在加热至150℃时发生了树脂的断裂,实际的界面接合强度可以说是更强。因此,由加热加压效果可判断,产生了接合强度的大幅度提高。
[0105] 图15示出利用加热器8的加热温度与激光功率的关系。在此,示出将激光照射装置的移动速度设为固定,铝材表面设为抛光面,在将室温(25℃)下的接合强度设为基准值=1时,与该值成为等同时的激光功率的值。由图14示出,随着加热温度变高,激光功率减少的倾向。例如,如果在加热温度150℃进行比较,则与室温时相比成为相对值=0.3,表示室温时的1/3的程度的激光功率即可,发挥大幅度的降低效果。此外,可知如果使用激光吸收率高的粗糙化面,则降低效果更大,成为约1/10。
[0106] 由以上可知,在金属材料的温度与室温相同时,和预先将金属材料加热时这两种情况下,将激光照射装置的移动速度分别设为相同来进行接合时,在预先将金属材料加热的情况下,可以更多地减少为了得到相同的接合强度而所需要的激光功率。因此,通过将金属材料加热后进行激光接合,能够抑制激光功率,可以实现制造时的成本降低以及节能化。
[0107] 图16表示利用加热器8的加热温度与激光照射装置的移动速度的关系。在此,将激光功率设为固定,作为铝材表面采用抛光面,示出当将在室温(25℃)下的接合强度设为基准值=1时,与该值成为等同时的激光照射装置的移动速度的值。由图示出,随着加热温度变高,激光照射装置的移送速度变快的倾向。例如,如果在加热温度150℃进行比较,则与室温时相比成为相对值=15,表示室温时的15倍的激光照射装置移动速度即可,表示可以大幅度地高速化制造工序。此外,可知如果使用激光吸收率高的粗糙化面,则可以进一步高速化,成为约58倍。
[0108] 根据以上内容,通过根据产品的接合距离的长短或生产量的不同适宜地构成接合装置,能够实现激光功率的降低、激光照射装置移动速度的高速化等合理的制造工序。不言而喻,在实施例3、实施例5也可发挥同样的效果。
[0109] 接着,作为粗糙化面的例子,对在图17及图18的两种情况进行的实验进行说明。图17A以及图17B表示在纵横方向上施加了槽加工的金属材料即铝材的接合部。图17A是俯视图,图17B是A-A截面图。槽的宽度X为0.05mm~0.2mm左右,槽的深度希望为0.05mm~0.2mm左右。
[0110] 图18是代替纵横方向的槽加工,在铝材接合部进行孔加工的示意图。图18A是俯视图,图18B是A-A截面图。关于孔的形状,希望直径为0.05mm~0.2mm左右、孔部的深度为0.02mm~0.2mm左右。不言而喻,在钻穿有该孔的表面也同样地,树脂会浸入至凹部。此外,作为突起部分115的形状,不仅是槽形状,也可以是钻穿有孔部的如图19那样的形状。作为孔的形状,不仅是方柱,即使形成为圆柱状也没有任何问题。这些形状可以鉴于由加热导致的向凹部的浸入效果,适宜地选择。
[0111] 在此,作为一个例子,在带有槽的铝材110的接合部分,在纵向和横向施加了槽的宽度X:约0.1mm、槽的深度L:约0.1mm的加工。加工方法可以适宜地选择激光加工、机械加工等。此外,在此,突起部分115为方柱,是约0.1mm×0.1mm×0.1mm的形状。不言而喻,槽的方向也可以是一个方向。
[0112] 如上所述,在作为本发明的实施例的将树脂筐体和金属材料加热接合的接合方法中,
[0113] 通过加热接合用的激光照射机构,将所述金属材料的与所述树脂筐体的接合面接合时,在所述树脂筐体的接合部设置凸状的部分,
[0114] 将所述金属材料的接合部的表面形状设为
[0115] (1)粗糙化面为Ra:0.4μm~2.5μm,
[0116] (2)或者,槽形状为槽的宽度:0.05mm~0.2mm、槽的深度:0.05mm~0.2mm,[0117] (3)或者,孔形状为直径:0.05mm~0.2mm、孔的深度:0.02mm~0.2mm,[0118] 中的任一种,
[0119] (4)或从这些(1)(2)(3)中组合两种以上,
[0120] 从与所述接合部相反则的面对所述金属材料照射激光,进行所述树脂筐体和所述金属材料的接合。
[0121] 图19表示在同一条件下在室温下对抛光面和槽加工面的不同表面形状的铝材进行接合时的接合强度的关系。使用图13所示的加热加压夹具进行加压。将抛光面的接合强度设为1.0时,在槽加工面降低至相对值=0.7左右。此外,通过破坏面以及截面的观察,确认了断裂在界面产生,树脂没有填充至槽部(凹部)。从而可以判断,由于树脂没有通过激光照射而浸入至槽加工面的槽部(凹部),因此接合强度降低。从而,接下来示出考虑到加热以及容易在成型制品产生的缩痕、扭曲、弯曲变形而将树脂试验片的形状改变的例子。
[0122] 图20表示改变树脂试验片的形状而将树脂试验片和铝材接合时的加热加压夹具的截面。树脂试验片120中仅有接合部分形成凸状125。在此,将突起的形状设为高度1mm左右、宽度20mm。形状可以适宜地改变。设置了在上表面形成有槽部的铝试验片,从上方照射激光10。
[0123] 图21表示在加热温度为150℃、激光功率与室温相比小至0.3时,即,在与图15所示的加热温度150℃时相同的激光照射条件时的、根据铝材表面形状而不同的接合强度的关系。可知与带有突起部的树脂试验片进行组合时,与抛光面相比,槽加工面的接合强度的相对值高至1.1。使铝材为抛光面时,成为等同的强度,相对于此,槽加工面时确认了强度的提高。可认为这是因为通过激光照射,树脂浸入至槽加工面的槽部(凹部),从而接合强度提高。
[0124] 由这些可知,通过考虑成型品的缩痕、扭曲、弯曲变形等而在接合部分设置突以及并用加热加压,即使对如上述槽加工面那样具有大的凸凹部的表面也发挥充分熔敷并增大接合强度的效果。
[0125] 符号说明
[0126] 1   上模具(可动模)
[0127] 1a   孔部
[0128] 2   下模具(固定模)
[0129] 2a   槽部
[0130] 3   金属材料
[0131] 4   接合剂
[0132] 5   电子部件
[0133] 6   传感器部件
[0134] 7   树脂筐体
[0135] 8   加热器(加热体)
[0136] 9   接合面
[0137] 10   激光
[0138] 11   激光聚光单元部(激光照射手段)
[0139] 20   接合顺序
[0140] 21   连续的轨迹
[0141] 30   加压用模块
[0142] 40   光吸收率大的另一种材料
[0143] 45   在激光照射面侧的细微的凹凸
[0144] 50   激光聚光单元
[0145] 55   加热加压夹具
[0146] 100  铝材
[0147] 105  树脂试验片
[0148] 110  带有槽的铝材
[0149] 115  突起部分
[0150] 120  树脂试验片
[0151] 125  凸状部
QQ群二维码
意见反馈