全氟弹性体材料与表面粘合的方法

申请号 CN200880003269.8 申请日 2008-01-16 公开(公告)号 CN101611064B 公开(公告)日 2015-04-15
申请人 特拉华格林托德有限公司; 发明人 罗纳德·R·坎贝尔; 布赖恩·艾伦·乌克斯; 罗伯特·安东尼·雷伊; 加里·赖希尔; 卡尔明·夸尔塔佩拉; 克里斯托弗·科拉多;
摘要 本 发明 包括将全氟弹性体材料粘合于第一表面的方法,包括:(a)使第一表面 接触 包含可 固化 全氟 聚合物 和固化剂的 粘合剂 ;(b)使粘合剂固化以形成粘合于第一表面的全氟弹性体材料。在实施这种方法时,所述粘合剂可以是通过将可固化的全氟弹性体和固化剂溶解于 溶剂 而制备的溶液。在本发明的实施方案中,在步骤(b)中形成的全氟弹性体材料是涂层,或者,作为选择,所述第一表面是全氟弹性体元件的表面并且形成的全氟弹性体材料是全氟弹性体 焊接 件 。
权利要求

1.将全氟弹性体元件粘合于表面的方法,包括:
(a)使全氟弹性体元件的第一表面接触粘合剂,所述粘合剂包含:
固化的全氟聚合物,和
固化剂;
(b)将粘合剂布置为也接触所述第二表面;和
(c)将粘合剂固化,以形成在第一和第二表面之间的全氟弹性体焊接件,其中经固化,所述全氟弹性体焊接件包含与全氟弹性体元件基本上相同的全氟弹性体。
2.权利要求1的方法,另外包括将全氟弹性体焊接接头后固化。
3.权利要求2的方法,其中所述全氟弹性体焊接件95%固化。
4.权利要求1的方法,其中所述全氟弹性体元件和所述焊接件形成零件,并且所述方法另外包括将所述零件后固化。
5.权利要求4的方法,其中所述零件是密封件
6.权利要求4的方法,其中所述零件是同质的。
7.权利要求1的方法,其中所述全氟弹性体焊接件与所述全氟弹性体元件是同质的。
8.权利要求1的方法,其中所述第一和第二表面处于同一全氟弹性体元件上。
9.权利要求1的方法,其中在步骤(a)中,所述全氟弹性体元件75%到95%固化。
10.权利要求1的方法,其中步骤(b)另外包括:
将所述第一表面和第二表面置于夹具内;和
将所述第一表面、粘合剂和第二表面在夹具内定位,使得所述第一表面、粘合剂和第二表面相接触。
11.权利要求1的方法,其中步骤(c)另外包括加热所述粘合剂充分的时间段以有效固化所述粘合剂。
12.权利要求1的方法,其中步骤(c)另外包括将所述全氟弹性体粘合剂加热到
149℃(300°F)。
13.权利要求1的方法,其中所述粘合剂另外包含溶剂,并且通过用粘合剂涂覆第一表面使所述粘合剂接触所述第一表面。
14.权利要求13的方法,其中所述溶剂是氟化的溶剂。
15.权利要求1的方法,其中所述固化剂是双酚、四苯基、三嗪、和基于过化物的固化系统中的至少一种。
16.权利要求1的方法,其中所述粘合剂是通过以下步骤生产的,所述步骤包括:
将全氟弹性体制剂混合,以形成混合物;和
将所述混合物溶解在溶剂中,以形成溶液,其中通过用粘合剂涂覆第一表面使所述粘合剂接触所述第一表面。
17.权利要求16的方法,其中所述溶解步骤包括:
将混合物成形为小
向混合物的小块中添加70重量%至95重量%的溶剂,并且
在球磨上溶解所述小块的同时分散所述小块的微粒。
18.权利要求16的方法,其中所述溶剂的加入量为溶液的90重量%至95重量%。

说明书全文

全氟弹性体材料与表面粘合的方法

[0001] 相关申请的交叉参考
[0002] 本申请要求2007年1月26日提交的美国临时专利申请60/897,660和2007年1月26日提交的60/897,651的优先权,其每篇内容作为参考并入本文。

背景技术

[0003] 全氟弹性体已经容易地用来形成各种类型的O形环或密封件(seal)。这种密封件通常如下制造:首先制造具有所需密封件构造的完整密封件模具,然后将包含全氟聚合物的化合物与固化剂一起模压成型以形成完全固化的全氟弹性体密封件或其它部件。然而,随着对越来越大的密封件或不寻常构造的需要日益增长,成型出完整的部件变得越来越昂贵并且经济实用性降低。这是因为,为了形成这样的部件,不仅需要模具,而且需要足以操作较大或不寻常尺寸的模具的基础设施,包括与成型操作有关的压制机和
[0004] 为解决这一需要而开发的一种方法已经从杆形坯料制造密封件并将两个杆形坯料的末端拼接在一起以形成具有所需尺寸的密封件。常规的拼接技术被证明在全氟弹性体上不是非常成功的。使用胶粘剂(adhesive)进行拼接在密封件中提供易受侵袭的弱点,因为过去开发的胶粘剂一般不能满足全氟弹性体的耐化学性。
[0005] 使用热塑性全氟聚合物粘合剂(bonding agent)将固化的全氟弹性体与其自身相粘合的方法已被公开。然而,这种方法导致全氟弹性体末端熔融,得到中间的熔融层,即,熔融的全氟聚合物层。这在全氟弹性体部件内提供了非均质区段,即,熔融的全氟聚合物层。因此,熔融的全氟聚合物由于与全氟弹性体密封材料的其余部分相比,对化学或物理攻击的易感性增加、压缩变形增加和低温顺应性降低,因而可产生“弱”点。因此,本领域需要一种简单的和经济的改进方法,粘合和/或焊接全氟弹性体以及由其形成的部件,并且提供同质的成品部件,该成品部件基本保持了固体成品件的强度。
[0006] 然而,除了与联接全氟弹性体表面有关的挑战之外,注意到全氟弹性体由于它们通常如上所述被固化和形成的方式及其独特的硫化性质(包括物理性质和溶解性),其尚未被成功地适用于某些用途和应用,在这些用途和应用中,它们的耐化学性和弹性体性质本来是有利的,诸如表面钝化或其它涂层应用。
[0007] 尽管已经尝试在氟化溶剂诸如 FC-40、FC-75和FC-77中溶解可固化的全氟聚合物,以试图制备涂层,但是得到的涂层通常对流动或某些溶剂不具有抗性,因为所述涂层未交联。尝试掺入固化剂(curative)诸如有机过化物以及相关的助固化剂诸如三烯丙基异氰脲酸酯(TAIC)并不成功,因为这种含的固化剂在溶解未固化的全氟聚合物所需的高度氟化溶剂中的溶解性差。同样,基于联苯基的固化剂,例如二苯酚(BOAP),通常在溶解可用BOAP固化的全氟聚合物所需的这类高度氟化的溶剂中,也表现出溶解性差,所述全氟聚合物诸如具有包含氰基的固化位置单体的全氟聚合物。
[0008] 这种在溶液中不能固化高分子量的可固化全氟聚合物,将全氟弹性体涂层的应用限制到不重要的应用中,其中未固化材料的“流动”是可接受的。
[0009] 过去已经尝试过形成全氟弹性体涂层,然而,其应用以及形成为涂层的特定全氟聚合物系统有限。美国专利6,523,650提供了在静电印刷组件上应用全氟弹性体涂层作为外涂层的一个实例。该专利描述了将3-苯氧基丙基乙烯基醚与至少一种含氟的烯键式不饱和单体衍生的弹性体性DuPont 全氟弹性体,溶解在溶剂中并将其作为涂层进行施用。然而,该专利未描述该全氟弹性体当溶解时是否是固化状态和/或固化系统怎样受到溶解的影响。
[0010] 美国专利5,268,002教导了采用由低分子量全氟弹性体聚合物形成的涂层涂覆供光掩摸应用的表膜,所述涂层起到该表膜的抗反射涂层的作用。这样的表膜尤其具有聚合物例如例如硝化纤维素的核芯层。所述全氟弹性体聚合物包括四氟乙烯(TFE),全氟烷基乙烯基醚(PAVE)和固化点单体诸如全氟-(8-氰基-5-甲基-3,6-二氧杂-1-辛烯)(8-CNVE)。该专利使用这类聚合物,通过将上述弹性体进行热解,然后将低分子量聚合物溶解在氟烃溶剂例如 FC-40、 FC-75或 FC-77中,来形成具有这些组分的低分子量全氟弹性体。热解增强了溶解度,使得所得材料能够以涂层的形式使用。同样参见,美国专利5,256,747。
[0011] 另外,本领域需要一种易于形成的表面涂层及其制备方法,所述涂层可兼并标准全氟弹性体涂层的优点(与低分子量涂层相反),包括允许不用复杂的工艺步骤而使用标准固化系统和最终固化的全氟弹性体化合物,同时保持适合在加工设备等上使用的所需涂层性质。本文公开的发明解决了这一需要以及对上面公开的全氟弹性体联接或拼接的方法的需要。
[0012] 发明概述
[0013] 本发明的几个实施方案内包括的是将全氟弹性体材料粘合至第一表面的方法,所述方法包括:(a)使第一表面接触粘合剂,所述粘合剂包含可固化的全氟聚合物和固化剂;和(b)将粘合剂固化以形成粘合至第一表面的全氟弹性体材料。在实施这种方法时,所述粘合剂可以是通过将可固化全氟弹性体和固化剂溶解在溶剂中而制备的溶液。在本发明的一个实施方案中,在步骤(b)中形成的全氟弹性体材料是涂层,或者,作为替代,第一表面是全氟弹性体元件的表面并且所形成的全氟弹性体材料是全氟弹性体焊接件
[0014] 在该方法的一个实施方案中,第一表面是全氟弹性体元件的表面,粘合剂还与第二表面接触,并且步骤(c)另外包括将粘合剂固化以在第一和第二表面之间形成全氟弹性体焊接件。经固化,全氟弹性体焊接件包括与全氟弹性体元件基本相同的全氟弹性体。
[0015] 本发明的一个实施方案还包括形成全氟弹性体涂层的方法,包括:(a)将可固化全氟聚合物和固化剂溶解在溶剂中以形成溶液,(b)将溶液施用于表面;和(c)将全氟聚合物固化以在表面上形成固化的全氟弹性体涂层。另外,施用在基材的至少一个表面上、包含固化的全氟弹性体的涂层基材也在本发明的范围内。
[0016] 在本发明的另一个实施方案中公开了将全氟弹性体元件粘合至表面的方法。该方法包括(a)使全氟弹性体元件的第一表面与粘合剂接触,该粘合剂包括:可固化的全氟聚合物,和固化剂;(b)还将粘合剂与第二表面接触布置;和(c)将粘合剂固化以形成在第一和第二表面之间的全氟弹性体焊接件,其中经固化,所述全氟弹性体焊接件包括与全氟弹性体元件基本相同的全氟弹性体。
[0017] 在另一个实施方案中,公开了将全氟弹性体密封件粘合至压盖(gland)的方法,包括:将包含可固化全氟聚合物和固化剂的粘合剂布置在全氟弹性体密封件和压盖之间形成的间隙内;使粘合剂固化;其中经过固化,全氟聚合物形成与全氟弹性体密封件基本相同的全氟弹性体。附图说明
[0018] 图1是形成全氟弹性体涂层的方法实施方案的流程图
[0019] 图2是根据本发明的实施方案制备的全氟弹性体涂层的截面放大透视图;
[0020] 图3a和3b是常规的杆形坯料材料的透视图;
[0021] 图4是本发明的拼接夹具的实施方案的透视图;
[0022] 图4a是图3中杆形坯料材料的部分、放大、分解的侧视图;
[0023] 图4b是图4a中杆形坯料材料沿着图4中4b-4b线的部分截面图;
[0024] 图5是在压盖内的全氟弹性体密封件的平面图;
[0025] 图5a是图5的全氟弹性体密封件的截面图;
[0026] 图6是粘合全氟弹性体的方法的流程图;
[0027] 图7是将全氟弹性体密封件粘合至压盖的方法的流程图;和
[0028] 图8是根据本发明的实施方案制造的大型全氟弹性体密封件。
[0029] 发明详述
[0030] 本文描述了将全氟弹性体材料粘合至第一表面和任选的第二表面的方法。还包括使用所述方法制造的制品,例如密封件和涂层基材。本文使用的全氟弹性体材料可以是通过使全氟弹性体(如本文所定义)固化所得到的任何固化的弹性体材料,所述全氟弹性体包含具有允许固化的交联基团的可固化全氟聚合物。全氟弹性体是基本上氟化的,并优选在全氟聚合物主链上的原子完全被氟化。应该理解,由于氢在全氟弹性体中一些全氟弹性体制剂中的官能性交联基团中的用途,在交联结构内可能存在一些残余的氢。通常,一旦固化,全氟弹性体被用作例如由交联的聚合物形成的制品,诸如密封件。
[0031] 用于经固化时形成全氟弹性体材料的全氟聚合物自身是通过聚合一种或多种全氟化单体形成的,其中一种单体优选是具有允许固化的官能团的全氟化固化点单体。
[0032] 本文使用的全氟弹性体是一种聚合物组合物,其包含通过聚合两种或更多种全氟化单体形成的可固化全氟聚合物,所述全氟化单体包括具有至少一个可以固化的官能团的至少一种全氟化单体,即至少一种固化点单体。这样的全氟弹性体可包括至少一种含氟的烯键式不饱和单体诸如四氟乙烯(TFE)、全氟化烯烃诸如六氟丙烯(HFP)、和包括直链或支链的烷基并且包括一个或多个醚键的全氟烷基乙烯基醚(PAVE)诸如全氟(甲基乙烯基醚)、全氟(乙基乙烯基醚)、全氟(丙基乙烯基醚)和类似化合物的多种全氟化共聚物中的两种或更多种。有用的PAVE的实例包括在美国专利5,001,278中和在WO 00/08076中描述的那些,它们中涉及PAVE类型的公开内容作为参考被并入本文。其它合适的PAVE被描述在例如美国专利5,696,189和4,983,697中,其中涉及PAVE类型的公开内容也作为参考被并入本文。
[0033] 优选的全氟聚合物是在ASTM D-1418-05中列举为FFKM的、满足工业上合格规定的全氟弹性体,并且还优选是TFE、PAVE和至少一种全氟化固化点单体的三元共聚物或四元共聚物,所述固化点单体引入了允许所述三元共聚物交联的官能团,所述官能团中的至少一个是能够被本文所述的固化剂固化的固化点。
[0034] 用于本发明的优选的全氟弹性体聚合物或是作为可固化全氟聚合物进行市售的,或者已知由Daikin Industries,Inc.、Solvay Solexis、Dyneon、E.I.Du Pont de Nemours,Inc.、俄罗斯的Federal State UnitaryEnterprise S.V.Lebedev Institute of Synthetic Rubber和日本的NipponMektron制造和/或销售。
[0035] 在一个实施方案中,本发明包括作为全氟弹性体涂料的全氟弹性体材料,制造这种涂料的方法,以及作为用于将第一表面连接或拼接至第二表面的焊接件的全氟弹性体材料。
[0036] 包括这些的实施方案部分是通过固化剂进行全氟弹性体的固化形成的。优选过氧化物-可固化系统以及氰基-可固化系统。关于过氧化物-可固化系统,优选的聚合物包括下列构成的三元共聚物:TFE、PAVE诸如在美国专利5,001,278(相应部分作为参考并入本文)中描述的那些,和具有带过氧化物-可固化官能团的全氟化结构的固化点单体,所述官能团包括本领域已知的或待开发的那些,诸如卤代烷基和其它衍生物,和部分或完全卤代烃基。
[0037] 关于氰基-可固化系统,最优选是WO 00/08076中所述的全氟聚合物或其它类似结构,所述申请作为参考并入本文。在WO 00/08076的四元共聚物中的单体包括四氟乙烯、全氟甲基乙烯基醚和两种固化点单体,即,仲氰基固化点单体CF2=CFO(CF2)3OCF(CF3)CN和伯氰基固化点单体CF2=CFOCF2CF(CF3)O(CF2)2CN。优选的化合物是具有的粘度(Mooney viscosity)(在 viscTECH TPD-1585粘度计上100℃下测量)为约45至约95、优选约45至约65的那些化合物。
[0038] 用于基于过氧化物固化系统的主要固化剂可以是本领域已知的或待开发的任何已知过氧化物固化剂和助固化剂,诸如有机过氧化物和二烷基过氧化物。对于基于氰基聚合物,优选的主要固化剂包括如美国专利公布US-2004-0214956-A1()所述的单脒类和单偕胺肟类,所述专利的公开内容合并到本文中作为相关部分的参考。尽管这些单脒类和单偕胺肟类在现有技术中被描述为潜在的固化促进剂或固化剂,但在本发明中它们优选被用作主要的固化剂(curing agent)。
[0039] 基于脒和基于偕胺肟的材料包括下文进一步描述的下式(I)的单脒类和的单脒类和单偕胺肟类可以由式(I)表示:
[0040] (I)
[0041] 其中Y可为具有约1到约22个碳原子的取代的烷基、烷氧基、芳基、芳烷基或芳烷氧基或者未取代或取代的完全或部分卤代的烷基、烷氧基、芳基、芳烷基或芳烷氧基。Y还可以是,并且优选是1至约22个碳原子的全氟烷基、全氟烷氧基、全氟芳基、全氟芳烷基或全氟芳烷氧基,更优选是约1至约12个碳原子并更优选1至9个碳原子的全氟烷基或全氟烷氧基;R1可以是氢或被取代的或未被取代的1至约6个碳原子的低级烷基或烷氧基、氧(从而NHR是NOH基团)或氨基。R2可以独立地是上述关于R1所列的任一基团或羟基。Y、R1或R2的取代基团包括但不限于卤代烷基、全卤代烷基、卤代烷氧基、全卤代烷氧基、硫基、胺、亚胺、酰胺、酰亚胺、卤素、羧基、磺酰基、羟基等。如果R1和R2二者都被选为氧和羟基,使得在化合物上有两个NOH基团(可使用二肟),并且在该情况下,式(I)可被进一步修饰以提供其中碳原子和Y基团一起形成居间芳环并且其中NOH基在芳环上彼此位于邻位、对位或间位的二肟式,诸如对苯醌二肟。
[0042] 优选的实施方案包括根据式(I)的那些,其中R2是羟基、氢或者取代或未取代的1
1-6个碳原子的烷基或烷氧基,更优选羟基或氢。还优选的实施方案是其中R 是氢、氧、氨
1 2
基或取代或未取代的1-6个碳原子的低级烷基,同时R2是氢或羟基。最优选其中R 和R二者都是氢的实施方案。其它优选的实施方案包括其中Y是具有上述链长的全氟烷基、全
1 2
氟烷氧基、取代或未取代的芳基和取代或未取代的卤代芳基的那些,特别优选R 和R 二者都是氢并且Y是CF3(CF2)2-(即当化合物是七氟丁脒时)或类似的偕胺肟化合物。
[0043] 根据式(I)的示例性的基于单脒和基于单偕胺肟的熟化剂包括全氟烷基脒类,芳基脒类,全氟烷基偕胺肟类,芳基偕胺肟类和全氟烷基氨基腙。具体实例包括全氟辛脒,七氟丁脒,苄脒,三氟甲基苄胺肟和三氟甲氧基苄胺肟,最优选七氟丁脒。根据式(I)的固化剂可单独或组合使用,诸如组合使用上述优选的和/或示例性的化合物与次要固化剂一起。
[0044] 根据式(I)的固化剂优选能够使全氟弹性体组合物固化,特别是具有至少一种氰基固化点单体的那些。
[0045] 其它固化剂可包括全氟弹性体制剂,其可包括双酚及其衍生物,四苯基,三嗪,基于过氧化物的固化系统(例如有机过氧化物,诸如二烷基过氧化物)或其组合。其它合适的固化剂包括有机金属化合物及其氢氧化物,特别是有机锡化合物,包括烯丙基-、炔丙基-、三苯基-和丙二烯基锡;包含氨基的固化剂,诸如二胺和二胺氨基甲酸酯,诸如N,N′-二亚肉桂基-1,6-己二胺,三亚甲基二胺,亚肉桂基三亚甲基二胺,亚肉桂基乙二胺,和亚肉桂基六亚甲基二胺,六亚甲基六亚甲基二胺氨基甲酸酯,双(4-氨基环己基)甲烷氨基甲酸酯,1,3-二氨基丙烷一氨基甲酸酯,乙二胺氨基甲酸酯,三亚甲基二胺氨基甲酸酯;双氨基硫酚,双偕胺肟和双氨基腙。最优选使用过氧化物固化系统(包括任何必要的助剂)。
[0046] 所述固化系统不需要、但是也可以任选包括各种第二固化剂,例如基于联苯基的固化剂和它们的衍生物、四苯基锡、三嗪、基于过氧化物的固化系统(例如,有机过氧化物,诸如二烷基过氧化物)(如果没有用作主剂或者如果与过氧化物组合使用)、或者这些系统的组合。其它适合的第二固化剂包括有机金属化合物及其氢氧化物,特别是有机锡化合物,包括烯丙基-、炔丙基-、三苯基-和丙二烯基锡;包含氨基的固化剂,例如二胺和二胺氨基甲酸酯,例如N,N′-二亚肉桂基-1,6-己二胺、三亚甲基二胺、亚肉桂基三亚甲基二胺、亚肉桂基乙二胺、和亚肉桂基六亚甲基二胺、六亚甲基二胺氨基甲酸酯、双(4-氨基环己基)甲烷氨基甲酸酯、1,3-二氨基丙烷单氨基甲酸酯、乙二胺氨基甲酸酯、三亚甲基二胺氨基甲酸酯和双氨基硫酚。
[0047] 用于各种全氟弹性体制剂的其它任选添加剂可以包括添加填料,例如石墨、碳黑、粘土、二氧化、聚合的石墨、含氟聚合物微粒(例如,TFE均聚物和共聚物微粉)、硫酸钡、二氧化硅、二氧化、酸接受剂、固化促进剂、玻璃纤维、或聚芳酰胺纤维例如 、增塑剂、或全氟弹性体领域已知的或待开发的其它添加剂。然而,对于用于半导体和其它微粒敏感性应用的涂料组合物来说,优选不使用这种任选的填料,或者使用纯净的填料(二氧化硅、硫酸钡、或含氟聚合物微粒)。
[0048] 结合于第一表面和/或第二表面(特别是用于形成焊接件型连接)的粘合剂,包括可固化全氟聚合物和固化剂。可以将粘合剂的组分分别地溶解,然后合并,随后进行就地的固化周期。然而,首先将各组合混合、然后将混合物溶解于溶剂中也在本发明范围内。混合粘合剂组分的方法可以根据本领域中任何已知技术或任何待开发的技术,并且对于混合和加工方法的详细说明对于完全理解本发明不是必要的。例如,混合的常规方法描述在International Plastics Handbook,3rd Edition(国际塑料手册,第三版),Saechtling,p.54-55中。然而,优选将主要的个体组分各自溶解于溶剂,然后进行合并。
[0049] 在进行组分或制剂的溶解时,用于溶解可固化全氟聚合物的优选的溶剂是至少能够溶解可固化全氟聚合物组分的含氟溶剂,并且更优选还能够溶解固化剂的含氟溶剂。具有所需特征的溶剂是本领域中已知的,并且包括可购自3M的 FC-87,FC-84,FC-75,FC-77和/或FC-43,以及任何类似的溶剂。然而,应该理解,尽管优选这样的氟化溶剂,但是在本发明范围内可以使用已知或待开发的任何溶剂,所述溶剂能够溶解混合的可固化全氟聚合物,并且优选能够溶解混合的全氟弹性体制剂中的固化剂和/或主要组分(即,除了任何添加剂以外的全氟聚合物和固化剂)。
[0050] 优选,所用的溶剂的总量为固化前终溶液的约70重量%至约95重量%,更优选约90%重量%至约95重量%,并且最优选约94%重量%至约95重量%。
[0051] 优选可固化全氟聚合物在终溶液中的存在量,以基于终溶液的总重量计,为约1重量%至约25重量%,更优选约1重量%至约10重量%,并且最优选为约1重量%至约5重量%。优选,固化剂的存在量,基于固化前终溶液的总重量,为约0.01重量至约5重量%,更优选约0.01重量至约1.5重量%,并且最优选为约0.25重量至约1重量%。优选终溶液中的全氟聚合物与固化剂的重量百分数比例为约30∶1至约10∶1,并且更优选为约20∶1。
[0052] 在制备终溶液时,首先将粘合剂混合,以形成混合的粘合剂,然后将其按照上述优选的百分比溶解于溶剂中。在这种方法中,混合的含氟聚合物可以通过例如冲模形成为小,虽然也可以使用适合预定用途的任何其它模切机、刀、剪刀、或类似的切割设备。优选,所述小块的尺寸范围为约0.010英寸至约0.250英寸,并且更优选平均为约0.030英寸。所述小块可以任选被研磨成更细小尺寸的小块。优选,然后将所述小块加入到例如上述的溶剂中,然后混合。在溶剂的存在下在例如球磨上混合小块有助于全氟聚合物制剂溶解在溶剂中。
[0053] 更优选,首先将粘合剂的每种主要组分溶解于溶剂中。在这种方法中,如下形成第一溶液(溶液A):将可固化全氟聚合物以基于第一溶液的总重量为约2至约50重量%、更优选为2至约20重量%、并且最优选为5至约10重量%的量与溶剂合并。如下形成单独的溶液(溶液B):将固化剂以基于第二溶液的总重量为约0.02%至约10重量%、更优选为约0.02%至约3重量%并且最优选为约0.50%至约2重量%的量与溶剂合并。然后如下将两种溶液合并:取等份的每种溶液并将它们合并,以达到可固化全氟聚合物和固化剂在终溶液中的所需百分比。如果使用了添加剂,它们可以根据具体的方法加入到两种起始溶液的任一种中或者终溶液中。
[0054] 在其中将粘合剂施加于全氟弹性体元件的表面上的实施方案中,本发明实施方案的粘合剂是使用与用于生产准备被焊接的杆形坯料相同或基本上相同的全氟弹性体制剂制成的。在本实施方案中,粘合剂可以包括上述的任何混合的全氟弹性体制剂,所述混合的全氟弹性体制剂包含固化剂。
[0055] 在一个实施方案中,本发明包括将全氟弹性体材料粘合于第一表面的方法,是通过使第一表面接触包含可固化全氟聚合物和固化剂的粘合剂,并且使粘合剂固化,以形成粘合于第一表面的全氟弹性体材料,使得形成的全氟弹性体材料是一个涂层。在这种实施方案中,粘合剂可以是能够通过许多常规方法,例如喷涂浸涂、刷涂、成层等,施加于基材表面的溶液。参考图2,统称为10的涂层基材是通过对无涂层基材12施加终溶液形成的。一旦施加了粘合剂溶液,将其就地固化,以形成涂层14。一旦基材被涂覆,就进行加热周期。
加热周期根据针对固化剂使用的具体全氟弹性体制剂而变化,然而,加热周期可以设置以足量的时间提供足量的热,以便有效地将粘合剂固化。可以使用的可供选择的固化包括紫外线、红外线或其它放射固化方法,以及任选使用压。尽管本发明不应局限于任何具体的固化或固化周期,但是优选使用在149℃(300°F)加热约八分钟。然而,固化温度根据用于全氟弹性体制剂中的全氟聚合物以及固化剂的类型而变化。这样的固化温度范围可以为约
138℃(280°F)至约177℃(350°F),并且优选为约149℃(300°F)至约177℃(350°F)。
本领域普通技术人员应该理解,固化条件随弹性体系统变化,并且这样的温度范围不是旨在限制本发明的范围,因为可以使用多种全氟弹性体制剂。
[0056] 在加热固化之后,根据期望得到的性质,可以任选但不是必要地在约180℃(356°F)或其它适合的后固化温度实行后固化,进行约七到八小时或其它适合的固化周期时间。然后可以任选再进行一小时的冷却时间。
[0057] 尽管已经描述了涂覆单个基材本发明的实施方案,但是所述方法也可以作为在例如层压结构或者其它多层结构中两个相对表面(未示出)之间的粘合剂或就地形成的粘合层,用于将两个基材粘合在一起。其还可以用于粘合在三维的、非平面表面上。
[0058] 本发明实施方案的应用不限于任何特定的基材表面类型,而是可以用于在任何类型的固体表面上形成全氟弹性体涂层。这种全氟弹性体涂层可用于涂覆泡沫材料、金属、金属合金、玻璃、弹性体、塑料、复合材料等。由于这种涂层的独特弹性体特征和惰性特征,它们在多种领域中具有应用,包括半导体加工零件、门、和设备;表面钝化;操纵或机械工具;医疗设备和装置;汽车和航空航天零件和表面、经受高腐蚀的设备(例如,油田和催化工艺设备)等。另外,形成的涂层是高度化学惰性的并且是不溶性的。
[0059] 所述涂层还可以用于在其中对于常规的成型密封零件来说太小的器件的应用中实现密封,例如在“芯片上的实验室”应用中,其中必需用耐热和耐化学的材料密封非常薄的二氧化硅或塑料层。所述材料涂层还可以用作金属表面上的密封剂,例如在飞机发动机零件中,其中的实际应用条件超过其它弹性体例如腈类或标准氟弹性体(例如 )的温度范围。
[0060] 在压力或温度超过典型的弹性体密封件的能力时,目前的使用的是金属-金属密封件。然而,这些密封件必须是高度抛光的,以便实现密封。这显著提高了形成这种密封件的成本。然而,在这种基材上应用本文中所述的薄涂层可以使用较少抛光和较廉价的金属表面在金属零件之间实现密封。
[0061] 这种溶液和固化的涂层还可以用于修复或粘附于昂贵的全氟弹性体成型部件(例如,O形环、密封件、垫圈等)的表面。
[0062] 在一个实施方案中,本发明提供粘合全氟弹性体(“FFKM”)元件来例如从杆形坯料形成密封件(例如,O形环或类似形状的密封件)的方法(如图6中所示)。本文中使用的术语“杆形坯料”是指可用于形成密封件的任何预成形的坯料,与形状或截面结构无关。
[0063] 使用任何常规的成型工艺例如挤出或模压成型来预成形杆形坯料11、20(图3a和3b)。这种成型工艺是本领域中公知的并且其详细说明对于完全地理解本发明来说不是必需的。在典型挤出的预成形工艺过程中,对模具施加的一些热,至少部分使混合的全氟弹性体制剂固化,使全氟聚合物转变为至少部分固化的全氟弹性体。其余的固化通常在后-预成形工艺期间发生,例如压缩成型或烘箱后固化。
[0064] 参考图3a和3b,最初由混合的全氟弹性体制剂形成全氟弹性体预成形件或杆形坯料11、20(如图3a和3b中所示)。优选全氟弹性体杆形坯料11、20至少约25%至约95%固化。混合全氟弹性体制剂的方法可以根据本领域中任何已知技术或待开发的任何技术进行,并且对于混合和加工方法的详细说明对于完全理解本发明是不必要的。例如,常规的混合方法描述在International Plastics Handbook,3rd Edition(国际塑料手册,第三版),Saechtling,p.54-55中,其内容并入本文。
[0065] 杆形坯料11具有第一末端13a,优选的截面表面15的形状一般为圆形。作为选择,截面形状可以是符合预定用途的任何其它形状,例如椭圆形、正方形、矩形等。杆形坯料11还具有第二末端13b,其截面表面15一般为圆形的形状。
[0066] 本文中使用的术语“焊接件”是指广泛地包括通过在两个表面之间使用粘合剂,无论是液体或固体的“插塞(plug)”形式,两个表面物理结合在一起的任何结合,并且优选在各自要被焊接的两个相对表面的每一个之间使用可固化的化学交联和/或键合,以及粘合剂,然而,应该理解,所述两个相对表面不一定是由相同的材料形成的。杆形坯料11的第一末端13a可以被焊接到杆形坯料11的第二末端13b上,以形成圆形环。或者,可以将第一末端13a焊接于具有末端22a、22b的第二杆形坯料20(如图3a所示)上,所述第二杆形坯料20可以由与杆形坯料11相同的全氟弹性体制剂形成。用于联接全氟弹性体杆形坯料的各个末端的焊接件是通过对杆形坯料的至少一个末端涂覆或者施加粘合剂来形成的。
[0067] 粘合剂以用于形成固体“插塞”的全氟弹性体制剂的挤出预成形件形式或混合的全氟弹性体制剂溶液的形式使用。作为溶液,将其施加于杆形坯料11的表面上。然后使粘合剂接触要被焊接的至少一个表面。其可以作为液体形式的涂料施加于单个表面例如13a,或者施加于要被焊接在一起的两个相对的表面,例如13a、13b或22a、22b。作为固体的“插塞”,可以只将其插入在要被焊接的两个表面之间,其方式使得插塞经随后的固化和加工后接触所述表面。作为插塞,所述预成形件定位于紧邻例如杆形坯料11表面,优选接触所述表面。
[0068] 在操作中,当使用溶液形式的粘合剂来将全氟弹性体杆形坯料的两个末端焊接在一起例如形成O形环时,首先用粘合剂涂覆所述末端之一的至少一个表面,例如13a。所述涂层可以通过许多常规方法施加,例如,喷涂、浸涂、刷涂、成层等。在焊接同一杆形坯料的两个末端时,还可以任选用粘合剂涂覆杆形坯料11的第二末端13b。然后将涂层的杆形坯料13的两个末端置于夹具30(例如,图4中所示的拼接夹具)中,将一个端部13a固定为邻接或接触杆形坯料10的第二末端13b(如图4a中所示)。夹具30可以构造为容纳杆形坯料11以便定大小和对齐,并且允许对杆形坯料11施加热和压力,以便将它们保持在夹具30内的适当位置。加热和压力通常由压力机提供,所述夹具安装在所述压力机中并工作。
夹具30可以任选用于对粘合剂实施加热固化周期。
[0069] 夹具30包括底部部分32和顶部部分34。顶部34和底部32部分分别包括通道36a、36b,用于安置杆形坯料。铰链38连接顶部34和底部32部分,允许夹具30打开和关闭并且使通道36a、36b的顶部和底部部分对齐。
[0070] 在涂层的杆形坯料10置于夹具30中之后,将夹具30关闭并且施加加热周期。加热周期根据用于固化剂的具体全氟弹性体制剂而变化,然而,加热周期可以设置为以足量的时间提供足量的热,从而有效地将粘合剂固化。有效固化的粘合剂是指产生至少部分固化的全氟弹性体(优选固化大于约75%的全氟弹性体)的固化粘合剂。粘合剂典型地固化约75%至约95%,或者最高为约99%。在本发明的实施方案中,加热周期包括在约300°F加热约8分钟。然而,加热周期的固化温度根据在全氟弹性体制剂中所用的全氟聚合物和固化剂的类型而变化,并且示例性的温度在上面涂层的内容中已有详述。本领域技术人员应该理解,固化条件随弹性体系统变化,并且这样的温度范围不是用于限制本发明的范围,因为可以使用各种各样的全氟弹性体制剂。
[0071] 该加热周期有助于基本上完成,如果不是完全完成,粘合剂内的全氟聚合物和固化剂的固化反应,其随后产生与杆形坯料的全氟弹性体相同或基本上相同的全氟弹性体。在加热周期之后,可以在约180℃(356°F)或其它合适的后固化温度下,对拼接的末端进行后固化约七到八小时或其它适合的固化周期时间。然后可以任选再进行一小时的冷却时间。优选,如上所述,形成全氟弹性体拼接的粘合剂固化到约95%。除了加热固化周期之外,使用红外线、UV、或其它辐射固化技术也在本发明范围内。
[0072] 这种焊接工艺可以用于具有多个末端的各种杆形物,以便形成不同尺寸、形状和结构的各种密封环。得到的密封件与一步成型操作法整体形成的密封件相比,能够尺寸很大,具有固化的、不可区别的、和同质的焊接件。也就是说,所述全氟弹性体焊接件具有与全氟弹性体杆形坯料相同或基本上相同的化学组成。这样有利地产生自始至终具有相同的高度抗化学性组成的密封件。因此,没有比杆形坯料本体密封材料更易受化学和/或物理侵袭的弱点或焊接端部。
[0073] 尽管已经针对粘合同一杆形坯料的两个表面或由相同全氟弹性体制成的两个不同的杆形坯料件描述了本发明的实施方案,但是本发明不只限于粘合这样的材料。本发明还可以用于焊接由不同全氟弹性体、例如任何上述全氟弹性体制成的两个不同的杆形坯料件。另外,本发明可用于粘合或焊接非杆状的各种其它类型的全氟弹性体表面,片状、成型形式、层合形式和各种其它形状。
[0074] 在另一个实施方案中,本发明使用任何上述实施方案所述的粘合剂,提供如图5和7所示的罐封全氟弹性体密封件40的方法。如本文中使用的和图5a中所示的,术语“罐封(potting)”意思是指填充密封件40和密封件压盖44之间的间隙42或空间。所述密封件压盖44典型地是由高度耐受化学侵袭的材料例如和不锈形成的。在这个实施方案中,将粘合剂置于密封件40和密封件压盖44之间的间隙42内。在罐封所述粘合剂之后,将整个构造,即,密封件40、密封件压盖44、和罐封的粘合剂,加热到约149℃(300°F)约八分钟。所述加热使粘合剂固化并且由此在密封件40和密封件压盖44之间形成全氟弹性体粘合。本实施方案的优点在于然后全氟弹性体密封件40牢靠地粘合于密封件压盖44,这有利地减少了由于来自焊接体的其它全氟弹性体引起的主要密封材料的粒化或降解,并且由此在之后使颗粒化可以迁移通过的密封件40和压盖之间的间隙最小化。另外,所述粘合消除了密封件和压盖之间的相对运动并且由此消除了磨损,进一步有助于降低粒化。
[0075] 本发明实施方案的应用不限于紧靠具有任何特定组成的压盖罐封例如密封件,而是可用于在例如由金属、金属合金、塑料、复合材料等形成的各种压盖表面上,罐封全氟弹性体密封件。然而,金属和金属合金表面是这种应用的用途中最典型遇到的。这种罐封用途可用于各种粘合压盖应用,包括半导体门、门电路、和其它预粘合的表面密封应用,并且在这种应用经历高腐蚀例如半导体生产条件时特别有用。
[0076] 实施例1
[0077] 在这个实施例中,使用已经固化但未后固化的 成型子部件(molded subsections)生产大的全氟弹性体密封件。一个部件的结构是矩形的,其中所述矩形具有圆。制备两个其它圆形部件。将所述矩形部件沿矩形的长边部分横向切开。在切开之后,形成了两个半-矩形的末端件。然后将所述圆形部件切开,使得形成杆状物,并且缩短成适当长度以形成两个期望长度的直部件。使用粘合剂和拼接夹具,将得到的两个矩形末端件联接于两个直部件,以便形成具有图8所示形状的产物零件。
[0078] 使用的粘合剂是如下制备的:首先将具有以下组分的全氟弹性体制剂混合,所述组分以重量份表示:
[0079]组分 重量份
可固化全氟聚合物 100
二氧化硅 9
基于过氧化物的固化剂 1.5
基于过氧化物的固化系统助剂 4
硫酸钡 32
[0080] 在混合之后,使用模切机将混合的制剂切成最大尺寸为约0.25英寸大小的小块。然后将所述小块加入到具有 FC-77溶剂的罐中。加入溶剂,使得补足总溶液的
94重量%。然后将罐置于罐式磨机上并且连续地辗压约四十八小时,以便形成粘合剂。
[0081] 将粘合剂涂覆在第一杆形坯料元件的一个末端上并且置于例如图4中所示的密封夹具内,准备焊接于第二杆形坯料元件。将第二杆形坯料元件也涂层并且定位,使其末端抵靠第一杆形坯料元件的涂层末端。然后将密封夹具关闭并且加热到约149℃(300°F)约八分钟,以使粘合剂固化。在每个期望的焊接件进行这个焊接过程四次,以形成成品零件并产生用于形成大的成形密封件的焊接件。图8中所示的成品零件的总矩形尺寸为约2.1米长×0.17m宽,横向的截面直径(在横向结构上大体上为圆形)为约0.6cm(焊接件处形成的形状不是完美的圆形,但是非常接近)。然后将所述零件在180℃(356°F)后固化7.25小时,随后是一小时的冷却时间。
[0082] 实施例2
[0083] 通过形成第一溶液(溶液A)制备全氟弹性体涂层。通过将100重量份根据WO00/08076制备的可固化的氰基可固化全氟聚合物(具有主要和次要氰基固化点的全氟弹性体胶)溶解在900重量份3M的 FC-43流体溶剂中形成溶液A。通过将作为
固化剂的5重量份七氟丁脒溶解在995重量份用于形成溶液A的相同溶剂中制备第二溶液(溶液B)。然后将溶液A和B以等重量份合并,形成涂料终溶液。将涂料终溶液施加在金属基材表面上并且经历100℃(212°F)的热固化周期约四小时。得到的固化的全氟弹性体涂层是透明的。还在玻璃、塑料和合成橡胶上制备了类似的涂层。
QQ群二维码
意见反馈