首页 / 国际专利分类库 / 作业;运输 / 用于实现物理或化学工艺过程的离心装置或离心机(采用离心力从液体或气体中分离物品一般入B01D,入B01D21/26, B01D43/00, B01D45/12) / (30)与工艺流体出口(20)和流出物出口(18)流具有涡流阻挡构件的水力旋流器 体连通;其中水力旋流器(10)还包括位于所述涡

(30)与工艺流体出口(20)和流出物出口(18)流具有涡流阻挡构件的旋流器 体连通;其中水力旋流器(10)还包括位于所述涡

申请号 CN201380028633.7 申请日 2013-05-22 公开(公告)号 CN104411379B 公开(公告)日 2017-01-25
申请人 陶氏环球技术有限责任公司; 发明人 S·D·琼斯; S·K·拉马林加姆;
摘要 流室和流出物分离室(24,30)之间的 涡流 阻挡构 水 力 旋流器 (10),其包含筒体(12),所述筒 件(34),其适合于在 流体 从 涡流室 (24)流到流出体具有流体入口(14)、过滤流体出口(16)、流出 物分离室(30)时干扰涡流流体流。物出口(18)、工艺流体出口(20)和围绕轴(X) 定位 并且包围多个排列的腔室的内周壁(22),所述筒体包括:i)与流体入口(14)流体连通的涡流室滤器组件(26)、从流体入口(14)并围绕 过滤器 组件(26)延伸的流体通路(28),所述流体通路适合于围绕过滤器组件(26)产生涡流流体流,其中滤液室(46)与过滤流体出口(16)流体连通,使得通过过滤器组件(26)的流体进入滤液室(46)并可以通过过滤流体出口(16)离开筒体(12),和ii)与涡流室(24)流体连通并且适合从其接收未过滤流体的流出物分离室(30),其中流出物分离室(24)、位于涡流室(24)内并包围滤液室(46)的过(56)对比文件WO 2011160087 A1,2011.12.22,DE 19914674 C1,2000.12.28,US 6251296 B1,2001.06.26,CN 2897388 Y,2007.05.09,
权利要求

1.旋流器(10),其包含筒体(12),所述筒体包括流体入口(14)、过滤流体出口(16)、流出物出口(18)、工艺流体出口(20)和围绕轴(X)定位并且包围多个轴向排列的腔室的内周壁(22),所述筒体包括:
i)与流体入口(14)流体连通的涡流室(24)、位于涡流室(24)内的包含对称位于轴(X)周围的外膜表面(44)并包围与过滤流体出口(16)流体连通的滤液室(46)的过滤器组件(26)、从流体入口(14)延伸并围绕过滤器组件(26)的流体处理通路(28),所述流体处理通路适合于在过滤器组件(26)周围产生涡流流体流,其中滤液室(46)与过滤流体出口(16)流体连通,使得通过过滤器组件(26)的流体进入滤液室(46)并被允许通过过滤流体出口(16)离开筒体(12),和
ii)适合于从涡流室(24)接收未过滤流体的流出物分离室(30),其中流出物分离室(30)与流出物出口(18)流体连通,以及管道(31),其位于流出物分离室(30)中并从位于轴(X)附近的入口(33)延伸至位于所述流出物分离室(30)中的工艺流体出口(20),以及同心围绕所述入口(33)定位的折流板(35),其阻断进入所述入口(33)的直线流体通路,其中水力旋流器(10)还包括位于所述涡流室和流出物分离室(24,30)之间的涡流阻挡构件(34),所述涡流阻挡构件适合于在流体从涡流室(24)流到流出物分离室(30)时干扰涡流流体流,并将在所述涡流室和流出物分离室(24,30)之间的大部分流体流引导到邻近于筒体(12)的内周壁(22)的位置;其中所述涡流阻挡构件(34)包括延伸到与筒体(12)的内周壁(22)邻近或与之接触的位置的外周缘(40),并且包括或不包括延伸穿过它的多个孔(42);
其中所述工艺流体是流出物分离室(30)中的剩余液体。
2.权利要求1的水力旋流器(10),其中所述涡流阻挡构件(34)包含延伸到邻近于筒体(12)的内周壁(22)的位置的外周缘(40),并且还包含多个延伸穿过它的孔(42)。
3.权利要求1的水力旋流器(10),其中所述涡流阻挡构件(34)包含延伸到筒体(12)的内周壁(22)的至少50mm以内的位置的外周缘(40)。
4.权利要求1的水力旋流器(10),其中所述涡流阻挡构件(34)具有盘形构造。
5.权利要求1的水力旋流器(10),其还包含围绕所述外膜表面(44)同心定位并可旋转地接合外膜表面(44)的清洁组件(50)。
6.权利要求1的水力旋流器(10),其还包括与所述工艺流体出口(20)和流体入口(14)流体连通的循环(Z)。

说明书全文

具有涡流阻挡构件的旋流器

技术领域

[0001] 本发明总体涉及水力旋流器和流体的旋流分离。

背景技术

[0002] 水力旋流器通常用于从液体中分离悬浮的颗粒。在典型的实施方式中,加压的进料液体(如:废水)在腔室内产生涡流的条件下被引入圆锥形的腔室中。进料液体靠近圆锥形腔室的顶部引入,并且流出物流靠近腔室的底部排出。与涡流相关的离心力将较致密的颗粒推向腔室的外围。其结果是,位置靠近涡流中心的液体比在外围的液体具有更低的颗粒浓度。然后可以从水力旋流器的中心区域抽取这种“较清洁”的液体。在US3061098、US3822533、US3529724、US5104520、US5407584、US5478484、US6251296、US7998251、US2004/0211734和GB2007118中描述了水力旋流器的实例。可以通过在腔室之中包括过滤器以使得流向腔室中心的一部分液体通过该过滤器而提高分离效率。在这样的实施方式中,旋流分离与错流过滤相结合。在US7632416、US7896169、US8201697、US2011/160087、US2012/
154448、US2013/0126421、US2012/0010063和DE19914674中描述了这样的实施方式的实例。
虽然这样的混合设计提高了分离效率,但仍希望有进一步的改进。

发明内容

[0003] 本发明包括水力旋流器、包含水力旋流器的分离系统和用其进行流体分离的方法的多种实施方式。在一种实施方式中,本发明包括包含筒体的水力旋流器,所述筒体具有流体入口、过滤流体出口、流出物出口、工艺流体出口和以轴为中心并包围多个排列的腔室的内周壁,所述筒体包括:i)与所述流体入口流体连通的涡流室,和ii)与涡流室流体连通并且适合于从其接收未过滤流体的流出物分离 室,其中所述流出物分离室与所述工艺流体出口和流出物出口流体连通。所述水力旋流器还包括位于所述涡流室和流出物分离室之间的涡流阻挡构件,其适合于保持所述涡流室中的涡流流体流、在流体在腔室之间流动时干扰所述涡流和允许在所述流出物分离室内降低流体流动的旋转速度。过滤器组件位于所述涡流室内并包围滤液室。流体处理通路从流体入口延伸并围绕所述过滤器组件,并且适合于在所述过滤器组件周围产生涡流流体流。所述滤液室与过滤流体出口流体连通,致使通过所述过滤器组件的流体可以进入所述滤液室并可以通过所述过滤流体出口离开所述筒体。附图说明
[0004] 通过参考下面的描述连同附图可以更好地理解本发明的各个方面,其中在各种视图中始终使用类似的附图标记来指示类似的部件。该描述是说明性的,而不是意在按规定比例绘制,或者以其他方式限制本发明。
[0005] 图1A是显示本发明一种实施方式的正视图。
[0006] 图1B是沿着图1A的1B-1B线取的横截面图。
[0007] 图1C是图1B中示出的替代实施方式的横截面视图。
[0008] 图1D是图1B中示出的替代实施方式的横截面视图。
[0009] 图2是图1A和B中示出的实施方式的分解透视图。
[0010] 图3A是过滤器组件的部分剖视图。
[0011] 图3B是图2过滤器包括清洁组件的透视图。
[0012] 图3C是包括入口流护罩的图2组件的透视图。
[0013] 图4A是涡流阻挡构件的一种实施方式的透视图。
[0014] 图4B是涡流阻挡构件的替代实施方式的透视图。

具体实施方式

[0015] 本发明一般地涉及水力旋流器过滤装置及进行旋流分离的相关方法。用于本说明书的目的,术语“水力旋流器”是指其中至少部 分地依靠由涡流流体流所产生的离心力以从流体混合物分离成分的过滤装置。其实例包括从液体混合物(例如水性混合物)中分离固体颗粒和分离包括不同密度的液体(如油和水)的混合物。在一种实施方式中,本发明在作为分离系统的一部分的再循环回路内结合了旋流分离、错流过滤和颗粒沉降(例如沉淀或絮凝)。在本文中使用时,术语“系统”是指部件的互连组件。本发明在各种应用中具有效用,包括处理:造纸厂机产生的纸浆废水、油和气体开采所产生的工艺水、舱底水以及生活和工业废水。
[0016] 本发明的一种实施方式在图1和2中示出,其包括总体以10显示的水力旋流器,所述水力旋流器包括筒体(12),所述筒体具有可卸式盖(13)、流体入口(14)、过滤流体出口(16)、流出物出口(18)、工艺流体出口(20)和围绕轴(X)定位并且包围多个排列的腔室的内周壁(22)。虽然描绘为包括两个室,即涡流室(24)和流出物分离室(30),但也可以包括其它的室。类似地,也可以包括其它的流体入口和出口。虽然显示为具有圆筒形上段和截头圆锥形底部,但筒体(12)可以具有其他构造,包括纯粹圆筒形的形状。虽然显示为沿着中心轴(X)竖直排列,但所述涡流室和流出物分离室可以沿着其他轴、例如沿着水平轴依次排列。
[0017] 过滤器组件(26)优选居中位于腔室(24)内并且与筒体(12)的内周壁(22)等距间隔。如图3A中最佳显示的,过滤器组件(26)包括圆筒形外膜表面(44),所述外膜表面围绕所述轴(X)对称定位并且包围与过滤流体出口(16)流体连通的滤液室(46)。虽然显示为圆筒形形状,但可以使用其他构造,包括阶梯形和圆锥形过滤器。过滤器组件(26)包括可以由多种材料制造的外膜表面(44),包括多孔聚合物、陶瓷和金属。在一种实施方式中,所述膜比较薄,例如0.2-0.4mm,并且由下面的刚性框架或多孔载体(未显示)支撑。代表性的例子在US2012/0010063中描述。膜(44)的孔尺寸(例如1至500微米)、形状(例如V形、圆筒形、有槽缝的)和均匀性可以根据应用而改变。在许多优选实施方式中,膜(44)包含耐 腐蚀金属(例如电铸成形镍网),其包括尺寸均一的孔,尺寸从10至100微米。这样的材料的代表性例子描述于US7632416,US7896169,US2011/0120959,US 2011/0220586和US2012/0010063中。
[0018] 如图1B中最佳显示的,流体处理通路(28)从流体入口(14)延伸并在腔室(24)的内周壁(22)与膜表面(44)之间限定涡流区(25)。流体处理通路(28)通过流出物分离室(30)继续到达工艺流体出口(20)。
[0019] 所述水力旋流器(10)还可以包括清洁组件(50),其用于从过滤器组件(26)的膜表面(44)除去残渣。代表性的实施方式在图3B示出,其中组件(50)围绕膜表面(44)同心定位并可旋转地接合膜表面(44),并且包括径向向外延伸的一个或多个辐条(52)。刷子(54)从辐条(52)末端向下延伸并接合(例如触及或非常接近)膜基底(44)的表面。虽然显示为刷子(54),但可以包括替代清洁工具,包括刮板(wiper)、刮刀(squeegee)或刮净器(scrapper)。大多数实施方式中使用2到50个刷子,并优选18到24个刷子。如弯箭头所表示,清洁组件(50)围绕过滤器组件(26)旋转,致使刷子(54)清扫膜基底(54)的表面并除去残渣,例如通过在所述表面附近产生紊流或通过直接接触所述表面。一个或多个叶片(56)可以安装在至少一个辐条(52)的末端,使得流入涡流室(24)的流体围绕过滤器组件(26)旋转清洁组件(50)。绕过滤器组件均匀间隔的叶片(56)提高了清洁组件(50)旋转运动的稳定性并可以帮助保持涡流室(24)中的涡流流体流。虽然显示为从膜基底的表面(44)径向向外延伸,但所述叶片可以偏斜(例如与径向轴成-5°至-30°或5°至30°)以增加旋转速度。在所述过滤器和清洁组件(26,50)之间可以使用轴承以在不阻碍涡流流体流的情况下进一步促进旋转。在未显示的替代实施方式中,清洁组件(50)可以通过可选手段驱动,例如电动达、磁力等等。在又一种实施方式中,所述过滤器组件可以相对于固定的清洁组件移动。
[0020] 可优化进料流体入口压力和过滤器组件(26)的外周与筒体(12)的内周壁(22)之间的间距以在腔室(24)内产生并保持涡流流体流。为了进一步促进涡流流体流的产生和保持,流体入口(14)优选将进入的进料流体引导到围绕涡流室的切线路径上,如图1A中指示的。即使按着这样的切线路径,加压的进料流体也可能直接冲击过滤组件(26)的膜表面(44)并导致过早磨损或结垢——特别是对于具有高固体含量的进料流体。为了保护膜表面(44),入口流护罩(58)可以位于流体入口(14)和膜表面(44)之间,例如绕过滤器组件(26)同心定位。非限制性实施方式在图2和3C中示出。如所示的,护罩(58)优选包含材料(例如塑料)的无孔圆筒形带,其阻挡从流体入口(14)流入腔室(24)中的至少一部分流体以避免直接冲击(碰撞)膜表面(44)。所述带可以由连续的材料环或通过独立的弧形物形成。在优选实施方式中,护罩(58)具有的高度接近于膜表面(44)的高度,致使护罩(58)和膜表面(44)形成同心圆筒体。在优选实施方式中,所述护罩可以可折卸地安装于清洁组件(50)上。作为非限制性例子,清洁组件(50)的叶片(56)可以包括用于接收护罩(58)的竖直狭槽(60)。
[0021] 涡流阻挡构件(34)优选位于所述涡流室和流出物分离室(24,30)之间。涡流阻挡构件(34)设计成保持涡流室(24)中的涡流流体流,当流体从涡流室(24)流入流出物分离室(30)中时干扰涡流,和减少流出物分离室(30)内的旋转流体流。涡流阻挡构件(24)通过引导所述涡流室和流出物分离室(24,30)之间的流体流动到邻近筒体(12)的内周壁(22)的位置来实现这种目的。在图1B示出的优选实施方式中,涡流阻挡构件(34)包括延伸到与筒体(12)的内周壁(22)邻近(例如在50mm、25mm或甚至10mm内)或与之接触的位置的外周缘(40),并且可以任选包括位置在所述周缘(40)附近并延伸穿过它的多个孔(42)。孔(42)的大小与形状没有特别的限制,例如扇形、狭缝、椭圆形等等。一些代表性的例子在图4-B中示出。在又一种未示出的实施方式中,涡流阻挡构 件(34)可以包括不包含孔并且延伸到邻近于(例如在50mm、25mm或甚至10mm内)筒体(12)的内周壁(22)的位置的外周缘。涡流阻挡构件(34)设计成控制流体流过所述筒体(12)的腔室,其中大部分(例如优选至少50%、75%和在一些实施方式中至少90%)的体积流量优先引导到筒体(12)的内周壁(22)附近(例如在至少50mm、25mm或甚至10mm内)的位置。这表明,少部分(例如小于50%和更优选小于75%和甚至更优选小于90%)的所述流体流可以出现在其他位置,包括中央位置。尽管所示出的实施方式具有板或盘式构造,所述涡流阻挡构件可以采取其他构造,包括具有一定度或弯曲表面的构造,例如锥体或碗形。
[0022] 流出物分离室(30)适合于通过降低和重定向流体速度来增强颗粒的分离。流出物分离室(30)设计为使得流体主体沿着流体处理通路(28)流动通过流出物分离室(30)内的区域,在其中它们从流出物出口(18)加速离开,并且在该区域中它们的运动从朝向流出物出口(18)流动改变为远离流出物出口(18)而流动。在优选实施方式中,这至少部分通过包括流体处理通路(28)来完成,所述流体处理通路遵循从涡流室(24)到流体出口(20)的曲折路径,其促进颗粒的分离和由于重力而从主体流体流中沉降。即,通过阻断流出物分离室(30)内的直接或接近直线(linear)的流体通路,固体倾向于从更加动态的流体流中沉降出来,从而经由工艺流体出口(20)离开筒体(12)。
[0023] 如图1B所示,水力旋流器(10)还可以包括任选的管道(31),所述管道包括位于流出物分离室(30)内的轴(X)附近(例如位于中央)的工艺流体入口(33),所述工艺流体入口与工艺流体出口(20)流体连通。如图1C和图1D所示,工艺流体入口(33)可以在它的入口处包括比管道(31)更宽的区域以利于颗粒收集并且该较宽的区域如图1D所示可以是倾斜的。水力旋流器(10)还可以包括围绕入口(33)(例如同心地)布置的任选折流板(35)。折流板(35)通过阻断直接通路来限制进入入口(33)的固体的量。通过阻断来自涡流室 (24)的直接或接近直线的流体通路,固体倾向于从进入入口(33)的更加动态流体流中沉降出来。在图1B、1C和1D的实施方式中,轴(X)是竖直排列的并且流体入口(33)在流出物分离室(30)的中央附近竖直朝上。在这种构造中,流体处理通路(28)遵循从涡流室(24)到流体出口(20)的曲折路径。重要的是,所述路径倒转了路线,开始总的向下流动,然后向上,最后在管道(31)内向下。沿着该路径流动的主体流内的颗粒倾向于被牵引向下到流出物出口(18)并且由于重力不能逆转流向。虽然未示出,但也可以使用替代布置,其中入口(33)朝下,并且折流板从流出物分离室(30)的底部向上并绕入口(33)同心地延伸。使用任选的折流板(35)增强了分离。虽然折流板(35)显示为具有圆筒形结构,但阻断直接通路的其他结构也可以使用。
[0024] 在操作中,加压的进料流体(例如,优选从4至120psi)通过流体入口(14)进入筒体(12),并沿着流体处理通路(28)流动,其在过滤器组件(26)周围产生涡流。离心力将更致密的物质推向筒体(12)的内周壁(22),而密度较小的液体径向向内地流向过滤器组件(26)。一部分该液体通过过滤器组件(26)流入滤液室(46)中和随后可以经由过滤流体出口(16)作为“滤液”离开筒体(12)。剩余的“非滤液”从涡流室(24)流向流出物分离室(30)。涡流阻挡构件(34)将大部分(例如,优选至少50%、75%,和在一些实施方式中,至少90%)体积的这种流引导至沿筒体(12)的内周壁(22)或与其邻近(例如在至少50mm、25mm或甚至10mm内)的位置。这种安排被认为将涡流维持在涡流室(24)中,而在流体进入流出物分离室(30)时干扰涡流。流体流在流出物分离室(30)中减速且较致密的物质(例如颗粒)优先朝向流出物分离室(30)的中心沉降并进入流出物开口(38)中,并且然后可以经由流出物出口(18)离开筒体。流出物出口(18)可任选地包括(37)(例如,单向止回阀或)以选择性地控制流出物从筒体(12)移除。流出物分离室(30)中的剩余液体(以下称为“工艺流体”) 通过工艺流体出口(20)离开筒体(12)。在大部分应用中,工艺流体表示中等级产物,其可以再利用、处置或再循环回到流体入口(14)供进一步处理。“滤液”通常表示可以再利用或处置的高等级产物。“流出物”表示可以进一步处理或处置的低等级产物。然而,应该理解,在一些应用中,流出物可以表示有价值的产物。
[0025] 在另一种实施方式中,所述水力旋流器(10)形成分离系统的部分,所述分离系统包括进料泵(Y)和循环泵(Z),所述进料泵(Y)与流体入口(14)流体连通并适合用于将液体混合物(进料)引入流体入口(14)中,所述循环泵(Z)与工艺流体出口(20)和流体入口(14)流体连通。循环泵(Z)适合用于将工艺液体从工艺流体出口(20)引到流体入口(14)。循环泵(Z)与工艺流体出口(20)、流体入口(14)和流体处理通路(28)一起合起来限定了再循环回路(A)。
[0026] 利用进料泵(Y)和循环泵(Z)二者提供了优于单个泵设计的更高效率,其利用通过再循环回路的多轮来除去颗粒而允许经济的运行。当通过流出物分离室(30)的每一轮具有相对低的颗粒回收率时,平均需要通过所述系统的几轮来除去各种颗粒。在涡流室(24)内,压力必须超过跨膜压力,并且当针对较高的跨膜压力设计系统时,更容易达到沿着流体处理通路(28)的均匀通量。因为与每轮相关的压降是累积的,根据单个泵设计的系统由于每一轮的再加压可具有显著的效率损失。相比之下,如果进料泵(Y)用于向由第二个泵(Z)驱动的加压再循环回路提供加压液体,则避免了与向跨膜压力和任何滤液背压的再加压有关的连续轮次的能量损失。循环泵(Z)只需要供应能量来驱动流体通过所述再循环回路,并且在一些实施方式中,在膜表面(44)和清洁组件(50)之间产生相对运动。在优选实施方式中,循环泵(Z)适合用于将一定体积的工艺液体引入流体入口(14)中,所述体积是由所述进料泵(Y)引入的进料液体的体积的至少两倍,更优选三倍。虽然未显示,但系统(10)可以包括其它的泵和相应的阀来促进液体和固体的移动。
[0027] 与以往的设计相比,所述水力旋流器提供了优异的分离效率。这样的效率使得水力旋流器可用于更广泛的应用中,特别是在工艺流体被再循环和任选地与补充的进料流体共混的实施方式中。概括地说,在单一装置内使进料流体经历多个分离过程的协同组合。具体而言,对进料流体进行至少部分地基于密度的旋流分离,使得较致密的物质(例如,颗粒、液体)被推向筒体的内周缘。通过过滤器组件的流体另外进行错流过滤。所述入口进料护罩防止用于错流过滤的膜经受由于与旋流分离有关的进料压力和进料含量的过度磨损或结垢。本文中参考文献提到的美国专利中每一个的全部主题内容通过引用完全并入本文。
QQ群二维码
意见反馈