照射ターゲット保持システム及び同位体を製造する方法

申请号 JP2010185694 申请日 2010-08-23 公开(公告)号 JP5798305B2 公开(公告)日 2015-10-21
申请人 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー; GE−HITACHI NUCLEAR ENERGY AMERICAS, LLC; 发明人 メリッサ・アレン; ニコラス・アール・ギルマン; へザー・ハットン; ウィリアム・アール・ラッセル,ザ・セカンド;
摘要
权利要求

原子炉計装管(50)の中に嵌合し且つ送り出しシステム(1000)の管(200)の中に嵌合するような寸法に形成され、且つ、 前記送り出しシステム(1000)のケーブルに接続され、前記ケーブル上で前記原子炉計装管(50)内で前記送り出しシステム(1000)の前記管(200)の中を移動自在な、 少なくとも1つの照射ターゲット保持構体(122)と、 前記少なくとも1つの照射ターゲット保持構体(122)の中に収納され、動作中の原子炉内部で中性子束に暴露され、放射性同位体に変換するように構成された少なくとも1つの照射ターゲット(130)と、 を具備することを特徴とする照射ターゲット保持システム。前記照射ターゲット保持構体(122)は、動作中の原子炉内部で中性子束に暴露されても物理的特性及び中性子特性を維持するように調製された材料から製造されることを特徴とする請求項1に記載のシステム。前記少なくとも1つの照射ターゲット保持構体(122)は、前記少なくとも1つの照射ターゲットから組み立てられることを特徴とする請求項1または2に記載のシステム。前記照射ターゲット(122)はモリブデン‐98、クロム‐63、銅‐63、ジスプロシウム‐164、エルビウム‐168、ホルミウム‐165、鉄‐58、ルテチウム‐176、パラジウム‐102、リン‐31、カリウム‐41、レニウム‐185、サマリウム‐152、セレン‐74、ナトリウム‐23、ストロンチウム‐88、イッテルビウム‐168、イッテルビウム‐176、イットリウム‐89、イリジウム‐191及びコバルト‐59のうち少なくとも1つであることを特徴とする請求項1から3のいずれかに記載のシステム。前記少なくとも1つの照射ターゲット保持構体(122)は、前記照射ターゲット保持構体(122)を貫通する少なくとも1つの穴(136)を規定し、前記穴(136)は、前記少なくとも1つの照射ターゲット保持構体(122)を前記送り出しシステム(1000)のワイヤ(124)に固着するように構成された直径を有することを特徴とする請求項1から4のいずれかに記載のシステム。前記少なくとも1つの照射ターゲット保持構体(122)は、ジルコニウム合金、ステンレス鋼、アルミニウム、ニッケル合金、ケイ素、黒鉛及びインコネルのうち少なくとも1つから製造されることを特徴とする請求項1から5のいずれかに記載のシステム。原子炉内部で照射ターゲット保持システムによって同位体を製造する方法において、 動作中の前記原子炉内部で中性子束に暴露され、放射性同位体に変換するように構成された少なくとも1つの照射ターゲット(130)を照射ターゲット保持構体(122)に挿入する工程と、 前記照射ターゲット保持構体(122)を送り出しシステム(1000)のケーブルに接続する工程と、 前記ケーブル上の前記照射ターゲット保持構体(122)を、駆動機構を用いて、前記送り出しシステム(1000)の管(200)の中に運ぶ工程であって、前記管は原子炉の計装管(50)に接続された、工程と 前記ケーブル上の前記照射ターゲット保持構体(122)を、前記駆動機構を用いて、前記計装管(50)に挿入する工程と、 前記少なくとも1つの照射ターゲット(130)を照射する工程と、 前記ケーブル上の前記照射ターゲット保持構体(122)を、前記駆動機構を用いて、前記原子炉から取り出す工程と、 前記照射ターゲット保持構体(122)から所望の同位体を回収する工程と、 を含む方法。前記ケーブル上の前記照射ターゲット保持構体(122)を前記計装管(50)に挿入する工程は、前記ケーブル上の前記照射ターゲット保持構体(122)を第1のガイド(400)を介して運ぶ工程を含み、前記第1のガイド(400)は、前記駆動機構と前記計装管(50)との間に位置する、請求項7に記載の方法。

说明书全文

本発明は、一般に同位体並びに原子炉において同位体を製造する装置及び方法に関する。

放射性同位体は、妥当な量及び種類の電離放射線を放射し且つ有用な娘生成物を形成する能があるために医療用及び工業用として種々の用途に使用されている。放射性同位体は、例えば、癌関連治療、医療分野での撮影及びラベル付け、癌及び他の疾患の診断、並びに医療滅菌に有用である。

数日程度の半減期を有する放射性同位体は、医療施設、工業施設又は付近の製造施設に設置された粒子加速器又は低出力研究用原子炉の中で安定した親同位体に現場で中性子を衝突させることにより従来製造されていた。それらの放射性同位体の崩壊時間は相対的に短く、特定の用途に対して厳密な量の放射性同位体が必要とされるので、放射性同位体は迅速に搬送される。更に、現場で放射性同位体を製造するには、操作が煩雑で高価な照射抽出機器が一般に必要であり、コスト、スペース及び/又は安全性の面で、同位体の最終使用施設での製造はきわめて難しいだろう。

短期間放射性同位体の製造及び寿命に問題があるため、特に癌治療などの放射性同位体が絶えず求められている分野で医療用及び工業用として価値の高い放射性同位体については、需要が供給をはるかに上回っている。

本発明は、商業炉及び関連装置の中で所望の同位体を製造する方法に関する。動作中の原子炉内部で発生する中性子束に照射ターゲットを暴露するために、本発明の方法は、原子炉容器の中で従来見られる計装管を利用する。中性子束によって、照射ターゲットの中に短期間放射性同位体が生成されてもよい。生成後、原子炉の動作を停止せずに又は化学的抽出処理を必要とせずに照射ターゲットを計装管及び原子炉格納容器から取り出すことにより、短期間放射性同位体は相対的に迅速且つ容易に回収されてもよい。その後、短期間放射性同位体は直ちに最終使用施設へ搬送されてもよい。

本発明の実施形態は、原子炉及びその計装管の中で放射性同位体を保持し且つ製造する構体を含んでもよい。実施形態は、1つ以上の照射ターゲットを収納する1つ以上の保持構体を含んでもよい。実施形態は、照射ターゲットを送り出す送り出しシステムと共に使用可能であってもよい。実施形態は、照射ターゲット及び照射ターゲットから製造される所望の同位体を収納しつつ、送り出しシステム及び従来の計装管を通って不都合なく移動するような大きさ及び形状に規定され、製造され且つ構成されてもよい。

単に例示を目的として示され、従って、実施形態を限定しない添付の図面を詳細に説明することにより、実施形態は更に明らかになるだろう。図面中、同じ要素は同一の図中符号により示される。

図1は計装管を有する従来の原子炉を示した図である。

図2は実施形態の照射ターゲット保持構体 を原子炉の計装管の中へ送り出すシステムの一実施形態を示した図である。

図3は図2の実施形態のシステムを詳細に示した図である。

図4は図3の実施形態のシステムを詳細に示した図である。

図5は従来の原子炉のTIPシステムを示した図である。

図6は実施形態の照射ターゲット保持構体 を原子炉の計装管の中へ送り出すシステムの別の実施形態を示した図である。

図7は照射ターゲット保持構体の第1の実施形態を示した図である。

図8は一実施形態の送り出しシステムの中のいくつかの実施形態の照射ターゲット保持構体を示した図である。

図9は照射ターゲット保持構体の第2の実施形態を示した図である。

本発明の実施形態のうち例示的な実施形態を詳細に開示する。しかし、以下に開示される特定の構造及び機能の詳細は、実施形態を説明するために示される代表的な構造及び機能であるにすぎない。しかし、実施形態は多くの代替形態で実施されてもよく、以下に説明される実施形態にのみ限定されると解釈されるべきではない。

本明細書において、種々の要素を説明するために「第1の」、「第2の」などの用語が使用されてもよいが、それらの要素はそれらの用語により限定されてはならないことが理解されるだろう。それらの用語は単に1つの要素を別の要素と区別するために使用されるだけである。例えば、実施形態の範囲から逸脱せずに第1の要素を第2の要素と呼び、同様に、第2の要素を第1の要素と呼ぶことは可能だろう。本明細書において使用される場合の用語「及び/又は」は、関連して挙げられている項目のうち1つ以上の項目のあらゆる組み合わせを含む。

1つの要素が別の要素「に接続される」、「に結合される」、「と嵌合する」、「に装着される」又は「に固定される」と説明される場合、その要素は他方の要素に直接接続又は結合されてもよいが、それらの2つの要素の間に介在する要素が存在してもよいことが理解されるだろう。これに対し、1つの要素が別の要素「に直接接続される」又は「に直接結合される」と説明される場合、介在する要素は存在しない。要素間の関係を説明するために使用される他の言葉も同様に解釈されるべきである(例えば、「の間に」と「の間に直接」、「に隣接する」と「に直接隣接する」など)。

本明細書において使用される用語は特定の実施例を説明するために便宜上使用され、実施形態を限定することを意図しない。本明細書における単数形は、特に明示して指示のない限り複数形も含むことを意図する。更に、本明細書において使用される場合の用語「具備する」及び/又は「含む」は、そこに挙げられている特徴、数字、ステップ、動作、要素及び/又は構成要素の存在を特定するが、1つ以上の他の特徴、数字、ステップ、動作、要素、構成要素及び/又はそれらの集合の存在又は追加を除外しないことが理解されるだろう。

尚、いくつかの代替実現形態において、そこに挙げられている機能/動作は、図中に示される順序以外の順序で実行されてもよい。例えば、続けて示される2つの図は、関連する機能/動作に応じて、実際には実質的に同時に実行されてもよいし、場合によっては逆の順序で実行されてもよい。

図1は、本発明の実施形態及び実施例の方法と共に使用可能な従来の原子炉圧力容器10を示した図である。原子炉圧力容器10は、世界中で発電用として従来使用されている少なくとも100Mweの商業軽炉において使用されてもよい。原子炉圧力容器10は、事故発生時に放射能を格納し且つ動作中の原子炉圧力容器10へのアクセスを防止する働きをする格納構造411の内部に配置されてもよい。ドライウェル20として周知である原子炉圧力容器10の下方の空胴は、ポンプ、ドレイン、計装管及び/又は制御棒駆動機構などの容器の動作に関わる機器を収納するために使用される。図1に示されるように、少なくとも1つの計装管50は原子圧力納容器10の中へ垂直に延出し、炉心15の内部まで到達するか又は炉心15を貫通する。炉心15は核燃料及び動作中に発生する相対的に大量の中性子束を収納する。計装管50は一般に円筒形であり、原子炉圧力容器10の高さに沿って幅が広がっていてもよいが、原子炉においては他の構造の計装管も一般に見られる。計装管50は、例えば、約0.3インチの内径及び/又は空隙を有してもよい。 計装管50は原子炉圧力容器10の下方のドライウェル20の中で終端してもよい。従来、計装管50は、ドライウェル20の中に位置する下端の開口を通して中性子検出器及び他の種類の検出器を挿入するために使用されてもよい。それらの検出器は、炉心15内部の状態を監視するために計装管50を通って上方へ延出してもよい。従来のモニタの種類は、例えば、広範囲領域検出器(WRNM)、中性子源領域モニタ(SRM)、中間領域モニタ(IRM)及び/又は局所出力領域モニタ(LPRM)を含む。 原子炉圧力容器10は商業沸騰水型軽水炉で一般に見られる構成要素と共に示されるが、本発明の実施形態及び方法は、計装管50又は原子炉の中へ延出する他の進入管を有するいくつかの異なる種類の原子炉と共に使用可能であってもよい。例えば、100MWe以下〜数GWeの範囲の出力定格を有し且つ図1に示される位置とは異なるいくつかの位置に計装管を有する加圧水型軽水炉、重水炉、黒鉛減速炉などが本発明の実施形態及び方法と共に使用されてもよい。従って、実施例の方法において使用可能な計装管は、炉心の周囲にあって、封入された状態で種々の種類の原子炉の炉心で発生する中性子束に接近可能な任意の形状の任意の突起構造であってもよい。 化学的分離又は同位体分離の必要なく且つ/又は商業炉の動作停止を待つ必要なく所望の同位体を迅速且つ継続的に大量に製造するために計装管を使用可能であると出願人は認識した。実施例の方法は、照射ターゲットを計装管の中に挿入することと、動作中に照射ターゲットを炉心に暴露することにより、動作中の炉心において一般に発生する中性子束に照射ターゲットを暴露することとを含んでもよい。炉心の中性子束は、医療分野で使用可能な短期間放射性同位体を含む有用な放射性同位体に照射ターゲットの大部分を変換してもよい。変換後、炉心の動作が継続中であっても、照射ターゲットは計装管から抜き取られ、医療用及び/又は工業用として取り出されてもよい。 送り出しシステムの実施例 後に詳細に説明される本発明の照射ターゲット保持構体の実施形態及びそれと共に使用可能な照射ターゲットと関連させて、送り出しシステムの実施例を以下に説明する。以下に説明される送り出しシステム以外の種類の送り出しシステムと組み合わせて実施形態の照射ターゲット保持構体が使用されてもよいことが理解される。

図2〜図6は、本出願と同日に出願され且つ全内容が参考として本出願に取り入れられている名称「CABLE DRIVEN ISOTOPE DELIVERY SYSTEM」の同時係属出願第XX/XXX,XXX号に記載されている実施形態の照射ターゲット保持構体及び照射ターゲットを原子炉の中へ送り出すための関連システムを示した図である。実施形態の照射ターゲット保持構体は、図2〜図6に示される関連システムと共に使用可能であるが、実施形態の照射ターゲット保持構体と共に他の送り出しシステムが使用されてもよいことが理解される。

図2は、実施形態の照射ターゲット保持構体を原子炉圧力容器10(図1)の中へ送り出すために計装管50を使用してもよい関連するケーブル駆動同位体送り出しシステム1000を示す。ケーブル駆動同位体送り出しシステム1000は、照射ターゲット保持構体を挿入/取り出し領域2000から原子炉圧力容器10の計装管50へ搬送し且つ/又は原子炉圧力容器10の計装管50から挿入/取り出し領域2000へ搬送することが可能であってもよい。図2に示されるように、ケーブル駆動同位体送り出しシステム1000はケーブル100、管200a、200b、200c及び200d、駆動機構300、第1のガイド400及び/又は第2のガイド500を含んでもよい。管200a、200b、200c及び200dは、ケーブル100をそれらの管の中へ滑り込ませることができるような大きさ及び構成を有してもよい。従って、管200a、200b、200c及び200dは、ケーブル駆動同位体送り出しシステム1000の1つの場所からケーブル駆動同位体送り出しシステム1000の別の場所へケーブルを案内するように機能してもよい。例えば、管200a、200b、200c及び200dは、格納構造411(図1)の外側のある場所から格納構造411の内側の計装管50中のある場所までケーブル100を案内してもよい。

ケーブル100の一実施例が図3及び図4に示される。実施例のケーブル100は少なくとも2つの部分、すなわち、1)相対的に長い駆動部分110及び2)ターゲット部分120を有してもよい。ケーブル100の駆動部分110は、アルミニウム、ケイ素及び/又はステンレス鋼などの核反応断面積が小さい材料から製造されてもよい。ケーブル100の屈曲を更に容易にし且つケーブル100をリールなどに巻き付けられるようにケーブル100の可撓性及び/又は強度を向上するために、ケーブル100の駆動部分110は編組ケーブルであってもよい。ケーブル100を曲げるのは容易であるが、ケーブル100を座屈させずに管200a、200b、200c及び200dに挿入できるように、ケーブル100は更に軸方向に十分な剛性を有してもよい。

図4に示されるように、実施例のケーブル100のターゲット部分120は、複数の実施形態の照射ターゲット保持構体122を含んでもよい。ターゲット部分120は駆動部分110の第1の端部114に装着されてもよい。照射ターゲットの材料、実施形態の照射ターゲット保持構体の大きさ、ターゲットが暴露されると予測される放射線の量及び/又は計装管50の構造を含むいくつかの要因に応じて、ターゲット部分120は種々の長さを有してもよい。一例として、ターゲット部分120は約12フィートの長さであってもよい。

図3及び図4を参照すると、ターゲット部分120は、ターゲット部分120の第1の端部127に第1のエンドキャップ126を含み且つターゲット部分120の第2の端部129に第2のエンドキャップ128を含んでもよい。第1のエンドキャップ126は駆動部分110の第1の端部114に装着されるように構成されてもよい。第1のエンドキャップ126及び駆動部分110の第1の端部114は、急速脱着接続部を形成してもよい。例えば、第1のエンドキャップ126は、雌ねじ126aを有する中空部分を含んでもよい。駆動部分110の第1の端部114は、第1のエンドキャップ126の雌ねじ126aと係合するように構成された雄ねじを有するコネクタ113を含んでもよい。図3及び図4に示される実施例の接続部は螺合接続部として説明されるが、当業者は、ケーブル100のターゲット部分120をケーブル100の駆動部分110に接続する他の種々の方法を認識しているだろう。

操作員は、ケーブル100を所望の目的場所、例えば、挿入/取り出し領域200と計装管50との間の場所まで進入させるように第1のガイド400及び第2のガイド500を構成してもよい。

第1のガイド400及び第2のガイド500を構成した後、ケーブル100の駆動部分110の第1の端部114を挿入/取り出し領域200に配置するために、操作員は、管200a、第1のガイド400及び第2の管200bを通してケーブル100を進入させるように駆動機構300を操作してもよい。操作員は、ケーブル100と係合する駆動機構300のウォーム歯車を制御することにより、ケーブル100を進入させてもよい。ケーブル100に付されたマーク116によって、ケーブル100の駆動部分110の第1の端部114の場所を追跡してもよい。あるいは、駆動機構300に接続された変換器から収集される情報から、ケーブル100の駆動部分110の第1の端部114の位置を知ってもよい。

ケーブル100が挿入/取り出し領域2000に位置決めされた後、実施形態の照射ターゲット保持構体122は、以下に実施形態の保持構体に関連して説明されるようにケーブル100に接続されてもよい。操作員は、挿入/取り出し領域2000から管200b及び第1のガイド400を通してケーブル100を引っ張るように駆動機構300を操作してもよい。次に、ケーブル100及び実施形態の照射ターゲット保持構体122を原子炉圧力容器100内部へ送り込むために、操作員は第1のガイド400を再構成してもよい。第1のガイド400が再構成された後、操作員は、第3の管200c、第2のガイド500及び第4の管200dを通してケーブル100を所望の計装管50の中に進入させてもよい。ケーブル100に付されたマーク116によって、ケーブル100の駆動部分110の第1の端部114の場所を追跡してもよい。あるいは、駆動機構300に接続された変換器から収集される情報から、ケーブル100の駆動部分110の第1の端部114の位置を知ってもよい。

実施形態の照射ターゲット保持構体122が装着されたケーブル100が計装管50の中の適切な場所まで進入した後、操作員は計装管50の中でケーブル100を停止してもよい。この時点で、実施形態の照射ターゲット保持構体122の中の照射ターゲットは、原子炉内で適正な時間照射されてもよい。照射後、計装管50、第4の管200d、第2のガイド500、第3の管200c及び/又は第1のガイド400からケーブル100を引き抜くために、操作員は駆動機構300を操作してもよい。

ケーブル100の駆動部分110の第1の端部114及び実施形態の照射ターゲット保持構体122を挿入/取り出し領域2000に配置するように、操作員は、第1のガイド400及び第2の管200bを通してケーブル100を進めるように駆動機構300を操作してもよい。実施形態の照射ターゲット保持構体122はケーブル100から取り出され、搬送用キャスク又は別の所望の場所に格納されてもよい。照射済みターゲットを適切に遮蔽するために、搬送用キャスクの一実施例は鉛、タングステン及び/又は劣化ウランから製造されてもよい。操作員が動作中の機器を目視検査できるように挿入/取り出し領域2000に配置されたカメラを使用することにより、実施形態の照射ターゲット保持構体122の着脱を容易にしてもよい。

別の送り出しシステムは、従来のトランスバースインコアプローブ(TIP)システム3000の使用を含む。従来のTIPシステム3000は図5に示される。図5に示されるように、TIPシステム3000は、ケーブル3100を駆動する駆動機構3300、駆動機構3300とチャンバシールド3400との間の管3200a、チャンバシールド3400と弁3600との間の管3200b、弁3600とガイド3500との間の管3200c及びガイド3500と計装管50との間の管3200dを含んでもよい。ケーブル3100は、先に図2〜図4を参照して説明したケーブル100に類似していてもよい。従来のTIPシステム3000のガイド3500は、TIPセンサを所望の計装管50の中まで案内してもよい。チャンバシールド3400は、鉛ペレットで充填された樽に類似していてもよい。チャンバシールド3400は、原子炉圧力容器10内でTIPセンサが利用されない場合にTIPセンサを格納してもよい。弁3600はTIPシステム3000と共に利用される安全機能である。

TIPシステム3000は、ケーブル3100を計装管50の中まで案内する管系3200a、3200b、3200c及び3200d及び/又はガイド3500を含むので、それらのシステムは、実施形態の照射ターゲット保持構体及びその中に格納されている照射ターゲットを送り出す機構の一実施例として使用されてもよい。

図6は、変形TIPシステム4000を含む送り出しシステムの一実施例を示す。図6に示されるように、変形TIPシステム4000は図5に示される従来のTIPシステム3000に類似するが、従来のTIPシステム3000のチャンバシールド壁3400と弁3600との間にガイド4100が挿入されている。ガイド4100は、例えば、ケーブル100などのケーブルを変形TIPシステム4000の中へ挿入するための導入場所として機能してもよい。図6に示されるように、変形TIPシステム4000の駆動機構3300と並列して駆動機構300(図2)が配置されてもよい。駆動機構300は、ケーブル100を巻き付けるためのケーブル保管リール320を含んでもよい。管200aは、駆動機構3300からケーブル100を所望の場所まで誘導する第1のガイド400まで延出してもよい。例えば、管200bの第2の端部を適切な出口と整列するように第1のガイド400の回転シリンダを制御することにより、操作員は、管200bを介してケーブル100を挿入/取り出し領域2000まで案内するように第1のガイド400を構成してもよい。ケーブル100を第2のガイド500(図2)まで誘導する取り出し場所を有するのではなく、ケーブル100をガイド4100まで誘導するように、変形TIPシステム4000の第1のガイド400は構成されてもよい。このように、第1のガイド400は、ガイド4100を介してケーブル100をTIPシステムの管3200a、3200b、3200c及び3200dの中へ案内してもよい。

ケーブル100は、実施例の送り出しシステムの既存の管と共に機能し且つ実施形態の照射ターゲット保持構体の通過を可能にするような大きさに形成される。例えば、管3200a、3200bなどの内径は約0.27インチであってもよい。従って、ケーブル100は、ケーブル100の横方向寸法が0.27インチを超えないような大きさに規定されてもよい。 照射ターゲット保持構体の実施形態 送り出しシステムの実施例を説明したので、次に、送り出しシステムと共に使用可能な照射ターゲット保持構体の実施形態を説明する。実施形態の照射ターゲット保持構体は、先に説明した実施例の送り出しシステムと相互に作用するように構成され/大きさを規定され/形状を規定されるなどしてもよいが、原子炉内で照射ターゲットを照射するために、照射ターゲット保持構体が他の送り出しシステム及び他の送り出し方法で使用されてもよいことが理解される。

図7は、第1の実施形態に係る照射ターゲット保持構体122aを示した図である。図7に示されるように、照射ターゲット保持構体122aは、従来の原子炉で使用される計装管50(図1)に挿入可能であり且つ/又は送り出しシステムで使用される管を通過可能な寸法を有する。例えば、照射ターゲット保持構体122aは1インチ以下の最大外径137を有してもよい。照射ターゲット保持構体122aは円筒形として示されるが、照射ターゲット保持構体122aとして、六面体、円錐及び/又は三柱を含む種々の適正に寸法を規定された形状が使用されてよい。

本実施形態の照射ターゲット保持構体122aは、上端/上面138から軸方向に構体122aの中まで一部延出する1つ以上の孔135を含んでもよい。あるいは、孔135は周囲から又は他の位置から構体122aの中へ延出してもよい。実施形態の照射ターゲット保持構体の構造の一体性が維持されるならば、孔135は任意のパターン及び任意の数で配置されてよい。孔135自体は種々の寸法及び形状を有してもよい。例えば、孔135は上面138から次第に先細になる形状であってもよく且つ/又は孔の底部及び縁部に丸みが付けられていてもよい。実施形態の照射ターゲット保持構体122aは、動作中の原子炉で発生する中性子束に暴露された場合に構造の一体性を保持するように調製された材料から製造されてもよい。例えば、実施形態の保持構体122aはジルコニウム合金、ステンレス鋼、アルミニウム、ニッケル合金、ケイ素、黒鉛及び/又はインコネルなどから製造されてもよい。

照射ターゲット130は、任意の数及び/又は任意のパターンで1つ以上の孔135に挿入されてもよい。照射ターゲット130は種々の形状及び物理的形態を有してもよい。例えば、照射ターゲット130は小さな充填材、丸形ペレット、ワイヤ、液体及び/又は気体であってもよい。照射ターゲット130は孔135に嵌合するような寸法を有してもよく且つ/又は孔135の形状及び寸法は照射ターゲット130を収納するように規定される。更に、実施形態の照射ターゲット保持構体122aは、それ自体が照射ターゲットになるように照射ターゲット材料から製造され且つ/又は内部に照射ターゲット材料を収納してもよい。更に、照射ターゲット130は、動作中の原子炉内で中性子束に暴露された場合に物理的特性及び/又は中性子特性をほぼ維持するように調製された材料から成る密封容器であってもよい。実施形態の照射ターゲット保持構体122aの中の照射ターゲット130に対して第3の格納層を形成するように、容器は固体、液体及び/又は気体の照射ターゲット及び/又は生成された放射性同位体を格納してもよい。

キャップ131は上端/上面138に装着され、孔135の中に照射ターゲット130を密封してもよい。キャップ131はいくつかの周知の方法で上端138に装着されてもよい。例えば、キャップ131は上面138に直接溶接されてもよい。あるいは、キャップ131は、実施形態の保持構体122aに形成されたねじ山及び/又は個々の孔135の内側に形成されたねじ山によって上端138にねじ留めされてもよい。キャップ131は1つの孔135を覆うような大きさで示されているが、複数の孔135の中にある照射ターゲット130を密封するように、キャップがいくつかの孔135又はすべての孔135を覆ってもよいことが理解される。例えばキャップ131は環状であってもよく、実施形態の保持構体122aに半径方向に配置されたすべての孔135を密封するが、中央に密封されないままの孔135又は穴136を残してもよい。これらの装着方法のいずれにおいても、照射ターゲット130から生成される所望の固体、液体又は気体状の放射性同位体及び娘生成物の格納及び回収のために、キャップ131は照射ターゲット130を孔135の中に保持し且つキャップ131の取り外しは容易である。

図7に示されるように、第1の実施形態に係る照射ターゲット保持構体122aは、構体122aを貫通する穴136を更に含んでもよい。穴136は、ワイヤ124(図4)を捕捉し且つワイヤ124に沿って実施形態の保持構体122aを滑り込ませることができるような大きさに形成されてもよい。同様に、穴136は、照射ターゲット保持構体122aをケーブル100(図2)に接合し且つ/又はケーブル100に沿って照射ターゲット保持構体122aを移動するためのねじ山又は他の内側形状を有してもよい。このような構造によって、図2〜図6に示されるように、1つ以上の照射ターゲット保持構体122aが送り出しシステムに配置され、照射ターゲットを照射するために計装管50の中へ問題なく送り出されてもよい。

図8は、組み合わせて使用されてもよい複数の実施形態の照射ターゲット保持構体122aを示した図である。図8に示されるように、いくつかの照射ターゲット保持構体122aは、ワイヤ124又は送り出しシステムに装着するための他の装着機構に連続して配置されてもよい。実施形態の照射ターゲット保持構体122aは、ワイヤ124に沿って他の照射ターゲット保持構体122aと密接に積み重ねられてもよい。更に、可撓性接着テープ139により実施形態の照射ターゲット保持構体122aが可撓性をもって一体に保持されてもよい。可撓性接着テープ139は、管200a、200b、200c、200dにおける屈曲に対応して実施形態の照射ターゲット保持構体122aの若干の相対運動を可能にしてもよい。更に、実施形態の照射ターゲット保持構体122aは、摩擦によって管200a、200b、200c、200dの中で詰まることなく管の屈曲部を通り抜けられるような長さを有してもよい。

実施形態の保持構体122aのスタックがケーブル124に沿って互いにほぼ平らに並んでいる場合、孔135は照射ターゲット保持構体122aを貫通していないので、すぐ下に積み重ねられている別の照射ターゲット保持構体122aに対して格納シールを容易に形成するように、各構体の底面はほぼ平坦であってもよい。このように、追加のキャップ131の使用の有無に関わらず、照射ターゲット130は孔135の中に格納されてもよい。

図9は、第2の実施形態に係る照射ターゲット保持構体122bを示した図である。図9に示されるように、本実施形態の照射ターゲット保持構体122bは、1つ以上の照射ターゲット130を格納するほぼ中空の密封管であってもよい。更に高いレベルの格納を実現し且つ/又は異なる種類のターゲット及び生成される娘生成物を分離するように、照射ターゲット130は照射ターゲット保持構体122bの中に配置された格納装置により更に密封されてもよい。照射ターゲット130を所定の場所に保持するために、照射ターゲット130は照射ターゲット保持構体122bの側壁133に装着されてもよい。照射ターゲット130を側壁133に接合するために、任意の種類の周知の固着/接合装置が使用されてよい。

本実施形態の照射ターゲット保持構体122bは、従来の原子炉で使用される計装管50(図1)に挿入可能であり且つ/又は送り出しシステムで使用される任意の管200a、200b、200c、200dを通り抜けられるような寸法を有する。例えば、照射ターゲット保持構体122bは1インチ以下の最大外径を有してもよい。照射ターゲット保持構体122bは円筒形として示されるが、照射ターゲット保持構体122bとして、六面体、円錐及び/又は三角柱を含む種々の適正に寸法を規定された形状が使用されてよい。同様に、照射ターゲット保持構体122bは、管200a、200b、200c、200dの中で詰まることなく管の任意の屈曲部を通り抜けられるような長さを有してもよい。

本実施形態の照射ターゲット保持構体122bは、動作中の原子炉内部で発生する中性子束に暴露された場合に構造の一体性を保持するように調製された材料から製造されてもよい。例えば、照射ターゲット保持構体122bはアルミニウム、ケイ素、ステンレス鋼などから製造されてもよい。あるいは、本実施形態の照射ターゲット保持構体122bは、例えば高温プラスチックを含めて、管200a、200b、200c、200dの屈曲部を通るときに若干の屈曲/変形を可能にする可撓性材料から製造されてもよい。あるいは、本実施形態の照射ターゲット保持構体122bは照射ターゲット材料自体から製造されてもよい。

本実施形態の照射ターゲット保持構体122bは、照射ターゲット保持構体122bをケーブル100(図3)の駆動部分110に接合するように構成された第1のエンドキャップ126を更に含んでもよい。例えばケーブル100の対応するねじ端部コネクタ113に接合するために、第1のエンドキャップ126に雌ねじ126aが形成されてもよい。このように、本実施形態の照射ターゲット保持構体122bは、図3に示される実施例の送り出しシステムに接合され、動作中の原子炉内部で照射ターゲットを照射するために計装管50の中へ送り込まれてもよい。

照射ターゲット保持構体122の実施形態において、各構体122にいくつかの異なる種類及び段階の照射ターゲット130が配置されてもよい。いくつかの照射ターゲット保持構体122a、122bは計装管50の中の厳密な軸方向高さに配置可能であるので、計装管50の中の特定の軸方向高さに配置される照射ターゲット130の量/種類を更に正確に規定してもよい。動作中の原子炉の内部の軸方向中性子束プロファイルはわかっているので、実施形態の照射ターゲット保持構体の中に配置された照射ターゲット130において有用な放射性同位体を更に精密に生成し且つ測定することが可能になるだろう。照射ターゲット保持構体の実施形態を説明したので、保持構体の中で使用可能な照射ターゲットの実施例を以下に説明する。 照射ターゲットの実施例 照射ターゲットは、放射性同位体を生成するために照射されるターゲットである。従って、原子炉により照射されて放射性同位体を生成する場合もあるセンサは、放射性同位体の生成ではなく原子炉の状態を検出することを目的としているので、本明細書において使用される場合の用語「ターゲット」の範囲内に含まれない。

本発明の実施形態及び方法において、いくつかの異なる放射性同位体が生成されてもよい。実施形態及び方法は、商業炉の動作停止、多くの費用を必要とする可能性がある処理並びに危険で長時間を要する同位体処理及び/又は化学的抽出処理の必要なく、生成される放射性同位体の半減期と比較して相対的に短い時間で短期間放射性同位体を生成し且つ回収することが可能であるという特定の利点を有してもよい。本発明に係る構体及び方法によって、診断及び/又は治療に応用される短期間放射性同位体を生成可能であるが、工業用の放射性同位体及び/又は半減期の長い放射性同位体が生成されてもよい。更に、動作中の商業炉の炉心で起こる核連鎖反応を実質的に妨害しないように、照射ターゲット130は相対的に小さな核反応断面積に基づいて選択されてもよい。

例えば特定の量の中性子束に暴露された場合、モリブデン‐98が約2.7日の半減期を有するモリブデン‐99に変換されることは周知である。モリブデン‐99は約6時間の半減期を有するテクネチウム‐99mに崩壊する。テクネチウム‐99mは医療の分野において撮影及び癌診断を含むいくつかの特殊な用途に使用され、その半減期は短時間である。モリブデン‐98から製造され且つ照射ターゲット130の大きさに基づいて動作中の原子炉の中で中性子束に暴露された照射ターゲット130を使用して、実施形態の保持構体及び方法において、Mo‐98を格納する放射ターゲットの質量、動作中の原子炉の炉心における照射ターゲットの軸方向位置、動作中の原子炉の炉心の軸方向プロファイル及び照射ターゲットの暴露時間の長さを判定することにより、モリブデン‐99及び/又はテクネチウム‐99mが生成され且つ回収されてもよい。

以下の表1は、本発明の方法において適切な照射ターゲット130を使用して生成されるいくつかの短期間放射性同位体を示す。表に示される短期間放射性同位体のうち最長の半減期は約75日であってもよい。原子炉の動作停止及び使用済み核燃料の抽出が頻繁ではなく、2年おきなどの間隔で実行され、核燃料からの放射性同位体の抽出及び回収が著しく長い処理時間及び冷却時間を必要とすると仮定すると、表に示される放射性同位体を従来の使用済み核燃料から生成し且つ回収することは不可能だろう。

表1は、本発明の実施形態及び方法において生成可能な放射性同位体を網羅したリストではなく、癌治療を含む医療の分野で使用可能ないくつかの放射性同位体の例を示すにすぎない。ターゲットを適正に選択すれば、本発明の実施形態及び方法により、使用可能なほぼすべての放射性同位体を生成及び回収できるだろう。

本発明の実施形態を説明したが、日常的な実験作業を通して、更なる発明的活動を伴わずに実施形態が変形されてもよいことは当業者には理解されるだろう。変形は本発明の精神及び範囲からの逸脱とみなされるべきではなく、当業者には自明であると考えられるそのようなすべての変形は、添付の特許請求の範囲の範囲内に含まれることを意図する。

10 原子炉圧力容器、容器 15 管 20 ドライウェル 50 計装管 100 ケーブル 110 駆動部分 113 コネクタ 114 第1の端部 116 マーク 120 ターゲット部分 122 照射ターゲット保持構体 122a 照射ターゲット保持構体、構体 122b 照射ターゲット保持構体、構体 124 ワイヤ 126 第1のエンドキャップ 126a 雌ねじ 127 第1の端部 129 第2の端部 130 照射ターゲット 131 キャップ 133 側壁 135 孔 136 穴 137 最大外径 138 上面 139 可撓性接着テープ 200a 管 200b 管 200c 管 200d 管 300 駆動機構 400 第1のガイド 411 格納構造 500 第2のガイド 1000 同位体送り出しシステム 2000 挿入/取り出し領域 3000 トランスバースインコアプローブ(TIP)システム、TIPシステム 3100 ケーブル 3200a 管系、管 3200b 管系、管 3200c 管系、管 3200d 管系、管 3300 駆動システム 3400 チャンバシールド、チャンバシールド壁 3500 ガイド 3600 弁 4000 変形TIPシステム 4100 ガイド

QQ群二维码
意见反馈