用于无线充电的自适应电控制

申请号 CN201410815409.9 申请日 2010-01-22 公开(公告)号 CN104485722A 公开(公告)日 2015-04-01
申请人 高通股份有限公司; 发明人 威廉·H·冯诺瓦克; 斯坦利·S·通丘; 斯坦顿·C·布雷登; 伊恩·J·费夫里耶;
摘要 本 申请 涉及用于无线充电的自适应电 力 控制。示范性 实施例 是针对无线电力传送。发射器(202)通过发射天线产生在谐振 频率 下的电 磁场 ,以在所述发射天线(204)的近场内产生耦合模式区。所述发射器在递归周期的同步部分期间通过开/关键控所述 电磁场 而界定所述递归周期的开始。在所述递归周期的电力发射部分期间,所述发射器将所述电磁场的部分耦合到所述耦合模式区内的各种接收器装置的不同接收天线。所述发射器还确定在所述递归周期内针对安置于所述耦合模式区内的所述各种接收器装置的电力分配,且响应于从所述接收器装置接收的电力要求而调整近场 辐射 的电力电平。
权利要求

1.一种无线电发射器,其包含:
发射天线,其经配置以将电力电感性地传递给多个接收器装置;及
控制器,其可操作地耦合到所述发射天线,且所述控制器经配置以使得所述多个接收器装置中的第一接收器装置被启用以接收来自所述发射天线的电力,并使得当所述第一接收器装置被启用时余下的接收器装置中的至少一部分停用于接收电力。
2.根据权利要求1所述的无线电力发射器,其中所述控制器经配置以基于发送到所述多个接收器装置的消息使得所述第一接收器装置被启用以及使得所述余下的接收器中的所述至少一部分被停用。
3.根据权利要求2所述的无线电力发射器,其中所述控制器进一步经配置以经由开/关键控通信协议或单独通信信道将所述消息发送到所述多个接收器装置。
4.根据权利要求3所述的无线电力发射器,其中所述单独通信信道包含蓝牙、紫蜂、或蜂窝网络。
5.根据权利要求1所述的无线电力发射器,其中所述控制器进一步经配置以基于所述第一接收器装置的充电电平来调整所述第一接收器装置被启用的时间量。
6.根据权利要求5所述的无线电力发射器,其中所述控制器进一步经配置以使得当所述第一接收器装置使用所接收到的电力被实质上完全充好电时所述第一接收器装置停用于接收所述电力。
7.根据权利要求6所述的无线电力发射器,其中所述控制器进一步经配置以使得所述多个接收器装置中的第二接收器装置被启用以接收来自所述发射天线的电力,并使得当所述第二接收器装置被启用时余下的接收器装置中的至少一部分停用于接收所述电力。
8.根据权利要求1所述的无线电力发射器,其中所述控制器进一步经配置以顺序地使得所述多个接收器装置被启用以接收所述电力且实质上相等地分配所述接收器装置中的每一者被启用的时间量。
9.根据权利要求1所述的无线电力发射器,其中所述控制器进一步经配置以顺序地使得所述多个接收器装置被启用以接收所述电力且不相等地分配所述接收器装置中的每一者被启用的时间量。
10.一种用于无线地传递电力的方法,其包含:
将电力电感性地传递给多个接收器装置;及
使得所述多个接收器装置中的第一接收器装置被启用以接收来自所述电力,并使得当所述第一接收器装置被启用时余下的接收器装置中的至少一部分停用于接收所述电力。
11.根据权利要求10所述的方法,进一步包含将消息发送到所述多个接收器装置,其中所述使得的步骤是基于所述消息的。
12.根据权利要求11所述的方法,其中经由开/关键控通信协议或单独通信信道来将所述消息发送到所述多个接收器装置,且其中所述单独通信信道包含蓝牙、紫蜂、或蜂窝网络。
13.根据权利要求10所述的方法,进一步包含基于所述第一接收器装置的充电电平来调整所述第一接收器装置被启用的时间量。
14.根据权利要求13所述的方法,进一步包含:
当所述第一接收器装置己实质上完全充好电时,使得所述第一接收器装置停用于接收所述电力。
使得所述多个接收器装置中的第二接收器装置被启用以接收来自所述发射天线的电力,并使得当所述第二接收器装置被启用时余下的接收器装置中的至少一部分停用于接收所述电力。
15.根据权利要求10所述的方法,其中顺序地使得所述多个接收器装置被启用,且针对所述接收器装置中的每一者被启用的时间量而对所述多个接收器装置进行实质上相等地分配。
16.根据权利要求10所述的方法,其中所述控制器进一步经配置以顺序地使得所述多个接收器装置被启用,且针对所述接收器装置中的每一者被启用时间量对所述多个接收器装置进行不相等地分配。
17.一种无线电力接收器,其包含:
接收天线,其经配置以电感性地接收来自发射器的电力,所述发射器经配置以将所述电力电感性地传递给与所述接收天线空间上分离的多个接收器装置;及
控制器,其可操作地耦合到所述接收天线,且所述控制器经配置以当所述多个接收器装置中的至少一部分停用于接收所述电力时使得所述接收天线被启用以接收来自所述发射器的电力。
18.根据权利要求17所述的无线电力接收器,其中所述控制器经配置以基于从所述发射器接收到的消息而使得所述接收天线被启用。
19.根据权利要求18所述的无线电力接收器,其中所述接收天线经配置以经由开/关键控通信协议或单独通信信道来接收所述消息,且其中所述单独通信信道包含蓝牙、紫蜂、或蜂窝网络。
20.根据权利要求17所述的无线电力接收器,其中所述控制器经配置以使得所述接收天线被启用直到所述无线电力接收器使用所接收到的电力实质上完全充好电。

说明书全文

用于无线充电的自适应电控制

[0001] 本申请发明名称为“用于无线充电的自适应电力控制”的原中国发明专利申请的分案申请。原申请的中国申请号为201080005299.X;原申请的申请日为2010年1月22日,其国际申请号为PCT/US2010/021873。
[0002] 根据35U.S.C.§119主张优先权
[0003] 本申请案根据35U.S.C.§119(e)主张以下美国临时专利申请案的优先权:
[0004] 2009年1月22日申请的名为“用于无线电力装置的电力共享(POWER SHARING FOR WIRELESS POWER DEVICES)”的美国临时专利申请案61/146,586。
[0005] 2009年2月9日申请的名为“用于无线充电的动态电力控制方法(DYNAMIC POWER CONTROL METHODOLOGY FOR WIRELESS CHARGING)”的美国临时专利申请案61/151,156。
[0006] 2009年6月3日申请的名为“用于无线充电装置的自适应电力控制(ADAPTIVE POWER CONTROL FOR WIRELESSLY CHARGING DEVICES)”的美国临时专利申请案61/183,907。

技术领域

[0007] 本发明大体来说涉及无线充电,且更具体来说,涉及与将电力分配给可定位于无线电力系统中的接收器装置有关的装置、系统及方法。

背景技术

[0008] 通常,例如无线电子装置等每一电池供电装置需要其自己的充电器及电源,所述电源通常为交流电(AC)电力插座。当许多装置需要充电时,此种有线配置变为使用不便的。
[0009] 正开发在发射器与耦合到待充电的电子装置的接收器之间使用空中或无线电力发射的方法。这些方法大体上分成两类。一类是基于发射天线与待充电的装置上的接收天线之间的平面波辐射(也称为远场辐射)的耦合。接收天线收集辐射电力且将其整流以用于对电池充电。天线大体上具有谐振长度以便改善耦合效率。此方法遭遇以下事实:电力耦合随着天线之间的距离增加而迅速衰退,因此合理距离(例如,小于1到2米)上的充电变得困难。另外,因为发射系统辐射平面波,所以如果不经由滤波进行适当控制,则无意的辐射可能干扰其它系统。
[0010] 用于无线能量发射技术的其它方法是基于嵌入于(例如)“充电”垫子或表面中的发射天线与嵌入于待充电的电子装置中的接收天线(加上整流电路)之间的电感性耦合。此方法的缺点在于:发射天线与接收天线之间的间距必须非常接近(例如,在几毫米内)。
但是此方法不具有同时对相同区域中的多个装置充电的能力,此区域通常非常小且需要用户准确地将装置定位到特定区域。
[0011] 对于许多无线充电系统来说,从源发射的电力固定到单一电平,因此大体上无法调整电力电平以适应具有不同的最大峰值电力电平的装置。这限制了可被充电的装置的类型。另一问题在于:无法依据装置的当前电池电平来调整固定的辐射电力电平。这浪费了电力,因为随着电池充电,其需要越来越少的电力来完成充电。来自发射器的未被装置吸收的辐射电力可增加比吸收率(SAR)电平。固定发射器电力规定:对于当被充电的装置具有到发射器的不良耦合时发生的最坏状况,必须满足SAR要求。因此,具有优良耦合的装置受限于由具有不良耦合的装置规定的电力电平,此可导致所述装置的增加的充电时间。当对多个装置充电时,固定发射电力暗示相同电力电平必须适用于所有装置,而不管对于每一装置来说何种充电电平是最佳的。如较早所叙述,此可导致浪费的辐射电力。
[0012] 在无线电力发射的情况下,存在对于用于以变化的电力电平及多路复用时间来发射及中继无线电力以增加电力发射效率的设备及方法的需要。附图说明
[0013] 图1展示无线电力传送系统的简化框图
[0014] 图2展示无线电力传送系统的简化示意图。
[0015] 图3展示用于本发明的示范性实施例中的环形天线的示意图。
[0016] 图4为根据本发明的示范性实施例的发射器的简化框图。
[0017] 图5为根据本发明的示范性实施例的接收器的简化框图。
[0018] 图6展示发射电路的用于执行发射器与接收器之间的消息接发的一部分的简化示意图。
[0019] 图7展示发射电路的用于调整发射器的电力电平的一部分的简化示意图。
[0020] 图8为可用以为发射器供应电力的AC/DC电力供应器的简化框图。
[0021] 图9说明驱动两个N沟道晶体管以产生同步降压式转换器的脉宽调制器(PWM)控制器
[0022] 图10说明使用微控制器的示范性同步降压式转换器。
[0023] 图11说明具有发射天线且包括放置于附近的接收器装置的主机装置。
[0024] 图12A及图12B为说明用于发射器与接收器之间的通信及用于电力发射的消息接发协议的简化时序图。
[0025] 图13A到图13C说明具有发射天线且包括放置于相对于所述发射天线的各种位置中的接收器装置的主机装置。
[0026] 图14A到图14G为说明用于将电力递送到多个接收器装置的自适应电力控制的简化时序图。

具体实施方式

[0027] 词语“示范性”在本文中用以意谓“充当实例、例子或说明”。本文中经描述为“示范性”的任一实施例未必解释为比其它实施例优选或有利。
[0028] 下文结合附加图式所阐述的详细描述意在作为对本发明的示范性实施例的描述,且并不意在表示可实践本发明的仅有实施例。贯穿此描述所使用的术语“示范性”意谓“用作实例、例子或说明”,且未必应解释为比其它示范性实施例优选或有利。所述详细描述出于提供对本发明的示范性实施例的透彻理解的目的而包括特定细节。对于所属领域的技术人员来说将显而易见,可在无这些特定细节的情况下实践本发明的示范性实施例。在一些例子中,以框图形式展示众所周知的结构及装置,以便避免混淆本文中所呈现的示范性实施例的新颖性。
[0029] 词语“无线电力”在本文中用以意谓在不使用物理电磁导体的情况下在从发射器到接收器之间发射的与电场磁场电磁场或其它者相关联的任何形式的能量。
[0030] 图1说明根据本发明的各种示范性实施例的无线发射或充电系统100。将输入电力102提供到发射器104以供产生用于提供能量传送的辐射场106。接收器108耦合到辐射场106,且产生输出电力110以供耦合到输出电力110的装置(未图示)存储或消耗。发射器104与接收器108两者隔开距离112。在一示范性实施例中,根据相互谐振关系来配置发射器104与接收器108,且当接收器108的谐振频率与发射器104的谐振频率非常接近时,当接收器108定位于辐射场106的“近场”中时,发射器104与接收器108之间的发射损耗为最小的。
[0031] 发射器104进一步包括用于提供用于能量发射的装置的发射天线114,且接收器108进一步包括用于提供用于能量接收的装置的接收天线118。根据应用及待与其相关联的装置来设定发射天线及接收天线的大小。如所陈述,有性能量传送通过将发射天线的近场中的大部分能量耦合到接收天线而非以电磁波形式将大部分能量传播到远场而发生。当处于此近场中时,可在发射天线114与接收天线118之间产生耦合模式。天线114及118周围的可发生此近场耦合的区域在本文中称作耦合模式区。
[0032] 图2展示无线电力传送系统的简化示意图。发射器104包括振荡器122、功率放大器124及滤波器及匹配电路126。所述振荡器经配置以产生所要频率,所述所要频率可响应于调整信号123来调整。振荡器信号可由功率放大器124以响应于控制信号125的放大量来放大。可包括滤波器及匹配电路126以滤除谐波或其它非所要的频率且使发射器104的阻抗与发射天线114匹配。
[0033] 接收器108可包括匹配电路132及整流器及切换电路134以产生DC电力输出以对电池136(如图2中所展示)充电或对耦合到接收器的装置(未图示)供电。可包括匹配电路132以使接收器108的阻抗与接收天线118匹配。接收器108与发射器104可在单独通信信道119(例如,蓝牙、紫蜂(zigbee)、蜂窝式等)上通信。
[0034] 如图3中所说明,示范性实施例中所使用的天线可经配置为“环形”天线150,其在本文中也可称作“磁性”天线。环形天线可经配置以包括空气磁心或物理磁心(例如,体磁心)。空气磁心环形天线可能更可容许放置于所述磁心附近的外来物理装置。此外,空气磁心环形天线允许其它组件放置于磁心区域内。另外,空气磁心环可更易于使得能够将接收天线118(图2)放置于发射天线114(图2)的平面内,在所述平面中,发射天线114(图2)的耦合模式区的电力可更大。
[0035] 如所陈述,发射器104与接收器108之间的有性能量传送在发射器104与接收器108之间的匹配或接近匹配的谐振期间发生。然而,即使发射器104与接收器108之间的谐振不匹配时,也可以较低效率传送能量。能量传送通过将来自发射天线的近场的能量耦合到驻留于建立了此近场的邻域中的接收天线而非将能量从发射天线传播到自由空间中而发生。
[0036] 环形天线或磁性天线的谐振频率是基于电感及电容。环形天线中的电感大体上仅为由环产生的电感,而大体上将电容添加到环形天线的电感以在所要谐振频率下产生谐振结构。作为非限制性实例,可将电容器152及电容器154添加到天线以产生一产生谐振信号156的谐振电路。因此,对于较大直径的环形天线来说,诱发谐振所需的电容的大小随着环的直径或电感增加而减小。此外,随着环形天线或磁性天线的直径增加,近场的有性能量传送面积增加。当然,其它谐振电路也是可能的。作为另一非限制性实例,电容器可平行放置于环形天线的两个端子之间。另外,一般所属领域的技术人员将认识到,对于发射天线,谐振信号156可为到环形天线150的输入。
[0037] 本发明的示范性实施例包括在处于彼此的近场中的两个天线之间耦合电力。如所陈述,近场为在天线周围的存在电磁场但可能并不远离所述天线传播或辐射的区域。其通常限定于接近所述天线的物理体积的体积。在本发明的示范性实施例中,磁型天线(例如,单环形天线及多匝环形天线)用于发射(Tx)天线系统与接收(Rx)天线系统两者,这是因为与电型天线(例如,小型偶极天线)的电近场相比,磁型天线的磁近场振幅倾向于较高。此允许所述对天线之间的潜在较高耦合。此外,还预期“电”天线(例如,偶极天线及单极天线)或磁性天线与电天线的组合。
[0038] Tx天线可在足够低的频率下且在天线大小足够大的情况下操作,以在显著大于较早所叙述的远场及电感性方法所允许的距离的距离下实现到小型Rx天线的良好耦合(例如,>-4dB)。如果Tx天线的大小经正确设定,则当将主机装置上的Rx天线放置于受驱动Tx环形天线的耦合模式区内(即,在近场中)时,可实现高耦合电平(例如,-1到-4dB)。
[0039] 图4为根据本发明的示范性实施例的发射器200的简化框图。发射器200包括发射电路202及发射天线204。大体上,发射电路202通过提供引起产生发射天线204四周的近场能量的振荡信号来将RF电力提供到发射天线204。作为实例,发射器200可在13.56MHz ISM频带下操作。
[0040] 示范性发射电路202包括固定阻抗匹配电路206,其用于将发射电路202的阻抗(例如,50欧姆)与发射天线204匹配;及低通滤波器(LPF)208,其经配置以将谐波发射减少到防止耦合到接收器108(图1)的装置的自干扰的电平。其它示范性实施例可包括不同滤波器拓扑(包括(但不限于)使特定频率衰减同时使其它频率通过的陷波滤波器),且可包括自适应阻抗匹配,其可基于可测量的发射度量(例如,到天线的输出电力或由功率放大器汲取的DC电流)而变化。发射电路202进一步包括功率放大器210,其经配置以驱动如由振荡器212确定的RF信号。发射电路可由离散装置或电路组成,或者可由集成组合件组成。来自发射天线204的示范性RF电力输出可为约2.5到8.0瓦。
[0041] 发射电路202进一步包括控制器214,控制器214用于在针对特定接收器的发射阶段(或工作循环)期间启用振荡器212,用于调整所述振荡器的频率,且用于调整输出电力电平以实施通信协议(用于经由相邻装置所附接的接收器与相邻装置互动)。
[0042] 发射电路202可进一步包括负载感测电路216,其用于检测作用中接收器在由发射天线204产生的近场附近的存在与否。作为实例,负载感测电路216监视流动到功率放大器210的电流,所述电流受作用中接收器在由发射天线204产生的近场附近的存在与否的影响。对功率放大器210上的加载的改变的检测是由控制器214监视,其用于确定是否启用振荡器212以发射能量从而与作用中接收器通信。
[0043] 发射天线204可经实施为天线带,其具有经选择以使电阻性损耗保持为低的厚度、宽度及金属类型。在常规实施方案中,发射天线204可大体上经配置以与较大结构(例如,桌子、垫子、灯或其它不太便携的配置)相关联。因此,发射天线204大体上将不需要“匝”以便具有实用尺寸。发射天线204的示范性实施方案可为“电学上小的”(即,波长的分率)且经调谐以通过使用电容器界定谐振频率来在较低的可用频率下谐振。在发射天线204相对于接收天线来说在直径上或边长上(如果是正方形环)可能较大(例如,0.50米)的示范性应用中,发射天线204将未必需要大量匝数来获得合理电容。
[0044] 发射器200可聚集及追踪关于可与发射器200相关联的接收器装置的行踪及状态的信息。因此,发射器电路202可包括连接到控制器214(在本文中也称作处理器)的存在检测器280、封闭式检测器290,或其组合。控制器214可响应于来自存在检测器280及封闭式检测器290的存在信号而调整由放大器210递送的电力的量。发射器可经由许多电源接收电力,许多电源例如是用以转换存在于建筑物中的常规AC电力的AC/DC转换器(未图示)、用以将常规DC电源转换成适合于发射器200的电压的DC/DC转换器(未图示),或可接收直接来自常规DC电源(未图示)的电力。
[0045] 作为非限制性实例,存在检测器280可为运动检测器,其用以感测插入于发射器的覆盖区域中的待充电的装置的初始存在。在检测之后,可将发射器接通且可使用由装置接收的RF电力来以预定方式触发Rx装置上的开关,这又引起发射器的驱动点阻抗的改变。
[0046] 作为另一非限制性实例,存在检测器280可为一检测器,其能够(例如)通过红外线检测、运动检测或其它合适手段检测人类。在一些示范性实施例中,可能存在限制发射天线可在特定频率下发射的电力的量的规则。在一些状况下,这些规则意在保护人类免受电磁辐射。然而,可能存在发射天线放置于人类未占据的或人类很少占据的区域(例如,车库、厂区、车间,及其类似者)中的环境。如果这些环境无人类,则可能可准许增加发射天线的高于标称电力限制规则的电力输出。换句话说,控制器214可响应于人类存在而将发射天线204的电力输出调整到管制电平或更低电平,且当人类在距发射天线204的电磁场一管制距离之外时,将发射天线204的电力输出调整到高于管制电平的电平。
[0047] 作为非限制性实例,封闭式检测器290(在本文中也可称作封闭式隔间检测器或封闭式空间检测器)可为例如感测开关的装置,其用于确定外罩何时处于关闭或打开状态中。当发射器处于为封闭状态的外罩中时,可增加发射器的电力电平。
[0048] 在示范性实施例中,可使用发射器200借以不会无限地保持接通的方法。在此状况下,发射器200可经编程以在用户确定的时间量之后切断。此特征防止发射器200(尤其是功率放大器210)在其周边的无线装置完全充好电之后长时间运作。此事件可归因于用以检测从中继器或接收线圈发送的指示装置完全充好电的信号的电路的故障。为了防止发射器200在另一装置放置于其周边的情况下自动地切断,可仅在检测到其周边缺乏运动的设定周期之后激活发射器200自动切断特征。用户可能能够确定不活动时间间隔,且在需要时改变所述不活动时间间隔。作为非限制性实例,所述时间间隔可比在假定特定类型的无线装置最初完全放电的情况下对所述装置完全充电所需的时间间隔长。
[0049] 图5为根据本发明的示范性实施例的接收器300的简化框图。接收器300包括接收电路302及接收天线304。接收器300进一步耦合到装置350以用于将所接收的电力提供到装置350。应注意,将接收器300说明为在装置350外部,但其可集成到装置350中。大体来说,能量是无线地传播到接收天线304且接着经由接收电路302而耦合到装置350。
[0050] 接收天线304经调谐以在与发射天线204(图4)的频率相同的频率下或接近相同的频率下谐振。接收天线304可与发射天线204类似地设定尺寸,或可基于相关联装置350的尺寸来不同地设定大小。作为实例,装置350可为具有小于发射天线204的直径的长度的直径或长度尺寸的便携型电子装置。在此实例中,接收天线304可经实施为多匝天线,以便减小调谐电容器(未图示)的电容值且增加接收天线的阻抗。作为实例,接收天线304可放置于装置350的实质圆周周围,以便将天线直径最大化并减少接收天线的环匝(即,绕组)的数目及绕组间电容。
[0051] 接收电路302提供与接收天线304的阻抗匹配。接收电路302包括电力转换电路306,其用于将所接收的RF能源转换成供装置350使用的充电电力。电力转换电路306包括RF/DC转换器308且还可包括DC/DC转换器310。RF/DC转换器308将在接收天线304处所接收的RF能量信号整流成非交流电力,而DC/DC转换器310将经整流的RF能量信号转换成与装置350兼容的能量电位(例如,电压)。预期各种RF/DC转换器,包括部分及全整流器、调节器、桥接器、倍加器以及线性及切换转换器。
[0052] 接收电路302可进一步包括切换电路312,其用于将接收天线304连接到电力转换电路306或者用于将电力转换电路306断开。将接收天线304与电力转换电路306断开不仅中止对装置350的充电,而且还改变发射器200(图2)所“看到”的“负载”。
[0053] 如上文所揭示,发射器200包括负载感测电路216,负载感测电路216检测提供到发射器功率放大器210的偏压电流的波动。因此,发射器200具有用于确定接收器何时存在于发射器的近场中的机制。
[0054] 当多个接收器300存在于发射器的近场中时,可能需要对一个或一个以上接收器的加载及卸载进行时间多路复用以使其它接收器能够更有效地耦合到发射器。也可遮蔽接收器以便消除到其它附近接收器的耦合或减少附近发射器上的加载。接收器的此“卸载”在本文中也称为“遮蔽(cloaking)”。此外,如下文更完全地解释,由接收器300控制且由发射器200检测的卸载与加载之间的此切换提供从接收器300到发射器200的通信机制。另外,一协议可与所述切换相关联,所述协议使得能够将消息从接收器300发送到发射器
200。作为实例,切换速度可为约100微秒。
[0055] 在示范性实施例中,发射器与接收器之间的通信指代装置感测及充电控制机制而非常规双向通信。换句话说,发射器使用所发射的信号的开/关键控,以调整近场中的能量是否可用。接收器将这些能量改变解译为来自发射器的消息。从接收器侧来说,接收器使用接收天线的调谐与去谐来调整正从近场接收到的电力的量。发射器可检测来自近场的所使用的电力的此差,且将这些改变解译为来自接收器的消息。
[0056] 接收电路302可进一步包括用以识别所接收的能量波动的信令检测器及信标电路314,所述能量波动可对应于从发射器到接收器的信息性信令。此外,信令及信标电路314还可用以检测减少的RF信号能量(即,信标信号)的发射并将所述减少的RF信号能量整流成标称电力以用于唤醒接收电路302内的未供电或耗尽电力的电路,以便配置接收电路302以用于无线充电。
[0057] 接收电路302进一步包括处理器316,其用于协调本文中所描述的接收器300的处理(包括对本文中所描述的切换电路312的控制)。接收器300的遮蔽也可在其它事件(包括检测到将充电电力提供到装置350的外部有线充电源(例如,壁式/USB电力))发生后即发生。除了控制接收器的遮蔽之外,处理器316还可监视信标电路314以确定信标状态并提取从发射器发送的消息。处理器316还可为获得改善的性能而调整DC/DC转换器310。
[0058] 在一些示范性实施例中,接收电路320可用(例如)所要电力电平、最大电力电平、所要电流电平、最大电流电平、所要电压电平及最大电压电平的形式用信号向发射器发出电力要求(如下文更完全地解释)。基于这些电平及从发射器所接收的电力的实际量,处理器316可调整DC/DC转换器310的操作以用调整电流电平、调整电压电平或其组合的形式调节其输出。
[0059] 图6展示发射电路的用于执行发射器与接收器之间的消息接发的一部分的简化示意图。在本发明的一些示范性实施例中,可在发射器与接收器之间启用用于通信的装置。在图6中,功率放大器210驱动发射天线204以产生辐射场。功率放大器由载波信号220驱动,载波信号220是以发射天线204的所要频率振荡。发射调制信号224用以控制功率放大器210的输出。
[0060] 发射电路可通过使用功率放大器210上的开/关键控过程来向接收器发送信号。换句话说,当发射调制信号224确证时,功率放大器210将在发射天线204上向外驱动载波信号220的频率。当发射调制信号224否定时,功率放大器将不在发射天线204上向外驱动任何频率。
[0061] 图6的发射电路还包括负载感测电路216,其将电力供应到功率放大器210且产生接收信号235输出。在负载感测电路216中,电阻器Rs上的电压降产生于电力输入信号226与到功率放大器210的电力供应228之间。由功率放大器210消耗的电力的任何改变将引起电压降的改变,电压降的改变将由差动放大器230放大。当发射天线处于与接收器(图6中未展示)中的接收天线的耦合模式中时,由功率放大器210汲取的电流的量将改变。换句话说,如果发射天线210不存在耦合模式谐振,则驱动辐射场所需的电力将为第一量。如果存在耦合模式谐振,则由功率放大器210消耗的电力的量将上升,因为大量电力耦合到接收天线。因此,接收信号235可指示耦合到发射天线235的接收天线的存在且还可检测从接收天线发送的信号。另外,接收器电流汲取的改变将可在发射器的功率放大器电流汲取中观察到,且此改变可用以检测来自接收天线的信号。
[0062] 遮蔽信号、信标信号及用于产生这些信号的电路的一些示范性实施例的细节可参看以下美国实用新型专利申请案:2008年10月10日申请的名为“经由接收天线阻抗调制的反向链路信令(REVERSE LINK SIGNALING VIA RECEIVE ANTENNA IMPEDANCE MODULATION)”的美国实用新型专利申请案12/249,873;及2008年10月10日申请的名为“无线充电系统的发射电力控制(TRANSMIT POWER CONTROL FOR A WIRELESS CHARGING SYSTEM)”的美国实用新型专利申请案12/249,861,所述两个申请案的全文以引用的方式并入本文中。
[0063] 示范性通信机制及协议的细节可参看2008年10月10日申请的名为“无线电力环境中的信令充电(SIGNALING CHARGING IN WIRELESS POWER ENVIRONMENT)”的美国实用新型专利申请案12/249,866,所述申请案的内容的全文以引用的方式并入本文中。
[0064] 图7展示发射电路的用于调整发射器的电力电平的一部分的简化示意图。在一些示范性实施例中,控制器214可耦合到电压调节器240、电流限制器242或电压调节器240与电流限制器242的组合,以相对于供应的DC输入415控制在电力输入信号226上递送的电力的量。另外,一些示范性实施例可包括耦合到电力输入信号226且用以将关于电力的消耗的反馈提供到控制器的电流检测器252及电压检测器250。图6的负载感测电路216为合适的电流检测器的一个实例。
[0065] 如较早参看图1、图2及图4所陈述,可通过将需要充电的接收器装置放置于发射天线的耦合模式区附近来使用发射电路202及发射天线204来将电力递送到所述接收器装置。在本文中所论述的示范性实施例中,发射器可基于电力电平、时间及其类似者顺序地将电力循环到待充电的所有接收器装置。接收器装置可将装置电力要求及其它信息传达到发射器。通过此电力要求信息,发射器可通过调整所发射的电力的量、调整发射电力的时间的量或其组合来修整递送到每一接收器装置的电力的量。
[0066] 电压调节器240与电流限制器242的组合可用以实施用于调整发射器的电力电平的适当电路。可调整的电压调节器电路可(例如)包括可调整的电位计、整流器、(可能的)平滑电路及(可能的)带隙参考电路。下文参看图8、图9及图10来说明及论述适合于供本发明的实施例使用的一些电压调节器电路的实例。
[0067] 需要充电的接收器装置可用信号向发射器发出其电力要求需要((例如)根据电流及电压)。举例来说,可包括协议,在所述协议中,希望充电的每一接收器装置用信号发出其电力额定值(包括其峰值电压及电流电平)。另外,也可用信号发出电流及电压的推荐电平。另外,可同样地用信号发出待充电的每一装置的识别符。
[0068] 处理器214可接着经由电力输入信号226控制(例如)递送到功率放大器210(图6)的电力。
[0069] 在一些示范性实施例中,可(例如)单独地(如图7中所展示)或作为电压调节器240的一部分来包括电压检测器250。电压检测器250与控制器214形成反馈路径以调整电力输入信号226上的电力电平。因此,结合控制电流,控制器214可在指定极限内调整电压调节器240内的电平以为待充电的装置提供最佳充电。因此,可设定所述最佳电平不超过装置的电力额定值(如通过功率为电压与电流的乘积的事实确定的)。
[0070] 在一些示范性实施例中,可(例如)单独地(如图7中所展示)或作为电流调节器242的一部分来包括电流检测器252。电压检测器250与控制器214形成反馈路径以调整电力输入信号226上的电力电平。因此,结合控制电压,控制器214可在指定极限内调整电流限制器242内的电平以为待充电的装置提供最佳充电。因此,可设定所述最佳电平不超过装置的电力额定值(如通过功率为电压与电流的乘积的事实确定的)。
[0071] 通过电流检测器252及电压检测器250,可结合提供功率分量(电压或电流)阈值检测的电压及电流检测器来监视由每一接收器装置汲取的电力。因此,控制器214可在整个充电过程中针对正被充电的每一接收器装置将电压及电流调整到不同电平。
[0072] 接收器装置可经由如上文所论述的无线充电信令协议来用信号发出电力要求需要。另外,可使用单独通信信道119(例如,蓝牙、紫蜂、蜂窝式等)来用信号发出电力要求。
[0073] 本发明的示范性实施例是针对通过利用驱动电压、驱动电流或其组合的自适应控制来驱动功率放大器210(图6)的动态发射辐射电力电平控制。改变驱动电平改变了来自PA的RF电力输出及(因此的)发射到被充电的接收装置的电力。
[0074] 用以界定电力电平的某一示范性信息可包括:
[0075] 1.装置类型及接收器装置将愿意看见的最佳RF电力电平,
[0076] 2.被充电的装置的当前电池充电电平,及
[0077] 3.每一装置当前正接收的来自发射源的RF电力电平。
[0078] 在知道装置类型及其用于充电的优选RF电力电平(第1项)的情况下,可在正经充电的时隙期间将发射源调整到此电平,如下文更完全地解释。因此,可在不影响其它装置中的任一装置的情况下独立地为每一装置定制递送到所述装置的电力电平。另外,了解被充电的装置的当前电池充电电平(第2项)允许基于装置的当前电池充电电平将辐射RF电平最优化。两种技术有助于将通常在实施固定发射电力电平时将被浪费的电力最小化。
[0079] 在解决RF安全问题中,比较由每一装置吸收的电力电平(第3项)与从发射器发射的电力给出辐射到局部环境的总电力的指示,所述总电力又与发射器SAR电平成比例。此允许一装置基于每一装置到发射器的耦合比而将到每一装置的辐射电力最大化,同时仍维持可接受的SAR电平。结果,能够改善个别地递送到每一装置的电力,而非限于通过具有到发射器的不良耦合的装置规定的较低的固定电力电平。最后,可调整的辐射电力允许较低电力信标模式,所述模式减少了在不处于充电模式中时的发射器AC电力消耗,且还减少了对局部定位的电子装置的干扰。
[0080] 图8、图9及图10说明可用以调节及调整功率放大器210及其它发射电路202的电力电平的示范性电路。在图8中,AC/DC电力供应器400将120伏特AC 405转换成发射器可能需要的驱动发射天线204的各种DC电压(例如,用以使发射电路202运作的5伏特及100毫安辅助电力,及用以使功率放大器210运作的5到12伏特及500毫安主电力)。
[0081] AC/DC转换器410产生用于电路调节器420及PA调节器450的中间DC电压415(在本文中也称作“DC输入”)。电路调节器420提供用于发射电路202的普通电力425,且PA调节器提供用以驱动PA 210的电力输入信号226的可变电力电平。
[0082] AC/DC转换器410可为(例如)常规“变压器(wall wart)”,其允许保险商实验室(UL;Underwriter Laboratories)及加拿大标准协会(CSA;Canadian Standards Association)认可的电力供应作为系统的“被认证”部分,同时保持成本下降。经准调节(例如,约10%)的变压器廉价且可从各种卖主购得。
[0083] 作为非限制性实例,电路调节器420及PA调节器450可经实施为降压式电压转换器(buck voltage converter)。电路调节器420与PA调节器450的双降压式设计可以额外开关模式控制器、场效应晶体管(FET)、电容器及电感器为代价使效率保持为高的。
[0084] 因此,电路调节器420可为低电力固定输出降压式转换器,其提供用于控制器214及如图4中所说明的其它电路的5伏特。PA调节器450可为较高电力可变输出降压式转换器,其将变化的电压供应到功率放大器以控制发射器的电力输出。功率放大器供应226可通过从发射电路202到PA调节器450的控制信号452来控制,控制信号452使所发射的RF电力(例如)在约50毫瓦到约5瓦的范围内变化。
[0085] 图9说明经实施为脉宽调制器(PWM)控制器460(例如,线性技术LTC3851)的PA调节器450A,其驱动两个N沟道晶体管以包含同步降压式转换器。小电感器、电阻器梯及输出电容器对晶体管的输出进行滤波以完成降压式转换器。降压式转换器将DC输入电压415转换及调节成DC输出电压226。
[0086] 可(例如)通过受控制信号452控制的数字(可编程)电位计465来控制电力输出。控制信号452可由控制器214(图4)来驱动,以使得可将DC输出电压226设定为约(例如)5到12伏特DC。PA调节器450A花费非常少的控制器开销,且可经配置以在以超过90%的效率快速改变负载的条件下具有得到保证的回路稳定性
[0087] 或者,图10说明使用微控制器470的作为同步降压式转换器的PA调节器450B。微控制器470可专用于同步降压式转换器功能。然而,在一些示范性实施例中,发射器200(图4)的控制器214可用于同步降压式转换器功能以及其正在执行的其它功能。降压式转换器将DC输入电压415转换及调节成DC输出电压226。
[0088] 因此,微控制器470可直接驱动P沟道及N沟道FET以提供对于降压式转换器的开关控制。小电感器、电阻器梯及输出电容器对晶体管的输出进行滤波以完成降压式转换器。可将反馈直接输入到微控制器470的A/D输入,以作为电压感测操作。因此,可将控制信号452体现为DC输出226上的电压的取样版本。微控制器470可比较DC输出226上的实际输出与所要输出,且相应地对PWM信号进行校正。因为对于微控制器470实施方案来说频率可能低得多,所以可能需要较大电感器,此并非发射器中的大问题。微控制器470实施方案可能相当便宜,因为不需要单独PWM控制器。
[0089] 如上文所陈述,允许动态地调整发射电力的益处为以下各项:
[0090] 1.递送到个别装置类型的电力的定制,借此允许用单一充电器设计对更多装置类型充电;
[0091] 2.避免浪费的辐射电力,这是通过允许以不会影响其它装置的充电时间的方式依据当前电池充电电平将变化的电力电平递送到多个装置来实现;
[0092] 3.改善的充电时间,这是通过以仍满足SAR要求的方式允许基于个别装置的到发射器的耦合电平的辐射电力电平来实现;及
[0093] 4.充电器不对装置充电时(信标模式)的减少的电力消耗,及对附近电子装置的减少的干扰。
[0094] 图11说明具有发射电路202及发射天线204的主机装置510。展示接收器装置520放置于发射天线204的耦合模式区内。虽然未说明,但接收器装置可包括接收天线304及接收电路302(如图5中所展示)。在图11中,主机装置410经说明为充电垫子,但其可整合到家具或建筑物件(例如,墙、天花板及地板)中。此外,主机装置510可为例如具有内建式发射器的手提包、背包或公文包的项目。或者,主机装置可为特别设计用于用户输送接收器装置520且对接收器装置520充电的便携型发射器(例如,充电包)。
[0095] 如本文中所使用,“共面”意味着发射天线与接收天线具有实质上对准的平面(即,具有指向实质上相同方向的表面法线)且发射天线的平面与接收天线的平面之间无距离(或有小距离)。如本文中所使用,“共轴”意味着发射天线与接收天线具有实质上对准的平面(即,具有指向实质上相同方向的表面法线)且所述两个平面之间的距离不为零,且此外,发射天线与接收天线的表面法线实质上沿着同一向量延伸,或所述两个法线成阶梯形。
[0096] 共面放置可具有相对高的耦合效率。然而,耦合可视接收天线相对于发射天线放置的位置而变化。举例来说,在发射环形天线外部的共面放置点可能不如在发射环形天线内部的共面放置点那样有效地耦合。此外,在发射环形天线内但在相对于环形天线的不同位置处的共面放置点可具有不同耦合效率。
[0097] 共轴放置可具有较低耦合效率。然而,可通过中继器天线的使用来改善耦合效率,例如2008年10月10日申请的名为“用于扩大的无线充电区域的方法和设备(METHOD AND APPARATUS FOR AN ENLARGED WIRELESS CHARGING AREA)”的美国实用新型专利申请案12/249,875中所描述的,所述申请案的内容的全文以引用的方式并入本文中。
[0098] 图12A为说明用于发射器与接收器之间的使用上文所论述的信令技术的通信的示范性消息接发协议的简化时序图。在一个示范性方法中,从发射器到接收器的信号在本文中称作“前向链路”且在标称电力发射与较低电力发射之间使用简单AM调制。也预期其它调制技术。作为非限制性实例,可将信号存在解译为“1”且将信号不存在解译为“0”(即,开/关键控)。
[0099] 通过由接收装置汲取的电力的调制来提供反向链路信令,电力的调制可通过发射器中的负载感测电路来检测。作为非限制性实例,可将较高电力状态解译为1且将较低电力状态解译为0。应注意,发射器必须接通以使得接收器能够执行反向链路信令。另外,接收器不应在前向链路信令期间执行反向链路信令。此外,如果两个接收装置试图在相同时间执行反向链路信令,则可能发生冲突,如果发射器有可能解码适当反向链路信号,则冲突将使得解码困难。
[0100] 图12A说明消息接发协议的简单且低电力形式。每一递归周期610(在示范性实施例中为约1秒)重复一次同步脉冲620以界定递归周期的开始。作为非限制性实例,同步脉冲接通时间可为约40毫秒。可在发射器接通时无限地重复递归周期610(具有至少一同步脉冲620)。注意,“同步脉冲”稍微用词不当,因为同步脉冲620在脉冲周期620期间可为稳定频率。同步脉冲620也可包括通过上文所论述且如通过“阴影线”脉冲620说明的开/关键控在谐振频率下的信令。图12A说明最小电力状态,其中在同步脉冲420期间供应在谐振频率下的电力,且在电力周期650期间发射天线断开。允许所有接收器装置在同步脉冲420期间接收电力。
[0101] 图12B说明具有同步脉冲620、反向链路周期630及电力周期650′的递归周期610,在电力周期650′中发射天线接通且通过在谐振频率下振荡来供应满电力且不执行任何信令。可将电力周期450′分段成不同周期以用于多个接收器装置,如下文解释。图12B展示用于三个不同接收器装置的三个电力区段Pd1、Pd2及Pdn。
[0102] 可扩展上文所论述的开/关键控通信协议,以使得每一接收器装置能够请求充电且指示所要电力参数(如上文所论述)。另外,接收器装置可通过唯一识别符(例如,使接收器装置与特定用户相关联的序列号或标记)来识别其自身。请求接收器装置也可传达例如装置的类别(例如,相机、手机、媒体播放机、个人数字助理)等额外信息。
[0103] 接收器信息可包括例如唯一装置识别符、装置类型、联系人信息及关于装置的用户编程的信息等项目。举例来说,装置可为来自特定制造商的音乐播放机,其经标记有用户名称。作为另一实例,装置可为来自特定制造商的具有特定序列号的电子簿,其经标记有用户名称。
[0104] 除使用上文所论述的开/关键控通信协议的通信之外,接收器与发射器可在单独通信信道119(例如,蓝牙、紫蜂、蜂窝式等)上通信。通过单独通信信道,递归周期不需要包括任何通信周期且整个时间可致力于电力周期650′。发射器仍可将时隙分配给每一接收器装置(在单独通信信道上通信)且每一接收器装置仅在总线上得到其被分配的电力区段Pdn。
[0105] 如上文所描述,在许多应用中,能够在经供电的接收器装置中的每一者之间分配特定百分比的电力以使得每一接收器装置经适当供电可能是重要的。在一些状况下,此将是所有接收器装置之间的电力的平均划分。在其它状况下,一个接收器装置可能需要更多电力(可能归因于其必须周期性地执行的较高电力任务)。在又其它状况下,一个接收器装置可能需要较少电力(可能归因于电池完全充好电)。在此种状况下,系统可能希望将所述接收器装置的电力分配分给其它装置。
[0106] 存在用于电力共享的许多方法。一个简单方式为使所有接收器装置同时接收电力,因此共享无线电力环境中可用的电力。此方法简单、廉价且稳健,但其可能具有缺点在于:在许多RF/电感性充电环境中,一个接收器装置可能比另一接收器装置更好地耦合到发射天线。结果,第一接收器装置可得到大部分电力。另一缺点在于:无法为具有完全充好电的电池的接收器装置“节流”电力。
[0107] 用以在多个接收器装置之间分配电力的另一方式是时分多路复用,其中一次启用一个接收器装置以接收电力。停用不接收电力的所有接收器装置使其不能够接收电力,以使得其不会与RF/电感性环境互动。时分多路复用需要控制器,所述控制器可在若干被供电装置之间分派电力,且可任选地对电力的不等分配作出决策。作为非限制性实例,发射器可减少去往完全充好电的装置的电力区段的长度或消除所述电力区段。时分多路复用可具有损耗一定效率的缺点,因为同时接收的所有接收器装置的耦合效率的总和可能不等于每一接收器装置顺序地接收电力的效率。另外,断开的接收器装置可能必须在一长时间内存储电力直到其下一个接通周期为止,因此需要较大的/更昂贵的电荷存储装置。
[0108] 本发明的示范性实施例是针对混合技术。在本发明的示范性实施例中,许多接收器装置共享一无线充电区域。最初,其可能全部同时共享接收电力。在某一时间之后,控制系统(其包括来自接收器装置的反馈)注意到每一接收器装置实际接收的电力的量,且在需要时,经由时分多路复用方法、电力电平调整方法或其组合来调整电力。在大多数状况下,每一接收器装置将在大部分时间内接收电力。在某一时间点,可切断或停用一些接收器装置使其不能够接收电力,以减少其所接收的总电力。举例来说,可能在部分时间内将放置于发射线圈上以使得其接收大部分电力的接收器装置切断,以使得其它接收器装置接收更多电力。结果,由于各种接收器装置的放置引起的不平衡可得到校正。另一实例可能是经放置以使得其均共享电力且最初均在100%的时间内接通的两个接收器装置。随着一个装置结束对其电池充电,其可能开始在越来越大的百分比时间内将其自身切断以允许更多电力到达另一装置。或者,发射器可能开始将越来越小的时隙分配用于几乎充好电的接收器装置,以允许更多电力到达其它接收器装置。
[0109] 图13A到图13C说明具有发射天线204且包括放置于相对于发射天线204的各种位置中的接收器装置(Dev1及Dev2)的主机装置150。出于简单起见,本文中仅论述两个接收器装置,但也预期多个装置的使用在本发明的教示的范围内且一般所属领域的技术人员将显而易见对这些的修改
[0110] 图13A说明一情况,其中两个接收器装置(Dev1及Dev2)经定位以(例如)通过远离发射天线204的周边约相同距离而从发射天线204接收实质上等量的电力。在图13A中,接收器装置Dev1与Dev2均靠近发射天线204的中心放置。
[0111] 在图13B中,接收器装置Dev1与Dev2彼此远离但距发射天线204的周边约相同距离地放置。因此,接收器装置Dev1与Dev2不必彼此靠近或处于供电区内的相同地理位置中以接收来自发射天线204的相同量的电力。应注意,归因于与装置的距发射器的距离相关联的变化的耦合效率,在图13A设置中,接收器装置Dev1及Dev2可接收来自发射天线204的较少电力(与图4B设置中所接收的电力相比)。然而,在每一设置中,所述装置中的每一者中所接收的电力的量实质上等于另一装置中所接收的电力的量。
[0112] 图13C说明一情况,其中接收器装置Dev1及Dev2经定位以接收来自发射天线204的不等量的电力。在此实例中,接收器装置Dev1靠近发射天线204的中心放置,且将很可能接收比接收器装置Dev2(接收器装置Dev2更接近于发射天线204放置)少的电力。在此情况下,Dev2将比Dev1更快地充电且因此变得比Dev1更早地完全充好电。
[0113] 图14A到图14G为说明用于将电力递送到多个接收器装置的自适应电力控制的简化时序图。出于简单起见,本文中仅论述两个装置,但也预期多个装置的使用在本发明的教示的范围内且一般所属领域的技术人员将显而易见对这些的修改。
[0114] 在图14A中,状况0情况展示用以说明单一接收器装置放置于发射器天线204的供电区内时的情况的时间线700。在此情况下,单一接收器装置在每一递归周期610期间实质上接收由发射天线204提供的全部电力。如上文参看图12A及图12B所论述,递归周期610的一部分620可能花费在任选的信令上。
[0115] 在图14B中,状况1情况展示用于接收器装置Dev1的时间线711及用于接收器装置Dev2的时间线712。在此状况下,每一接收器装置Dev1及Dev2消耗约50%的由发射天线204供应的电力。当两个接收器装置对称地定位于发射天线204的供电区内时(例如,图13A及图13B中),很可能为情况14B。因此,接收器装置Dev1及Dev2中的每一者在递归周期610期间接收等量的电力(例如,接收50%的电力,如通过垂直轴展示)。信令周期620也可用以允许发射器与接收器之间的通信,且可减少可用于两个装置的充电时间。
[0116] 在图14C中,状况2情况(通过时间线721及722说明)使用时间多路复用。因此,接收器装置Dev1及Dev2中的每一者在递归周期610期间接收等量的电力。然而,在状况2中,在50%的递归周期610内启用Dev1以接收100%的电力,且在另外50%的递归周期610内启用Dev2以接收100%的电力。信令周期620也可用以允许发射器与接收器之间的通信,且可减少可用于两个装置的充电时间。
[0117] 在图14D中,状况3情况说明时间线731及732,其中在信令周期610期间可启用两个接收器装置Dev1与Dev2以接收电力。即使可能发生信令,接收器装置Dev1及Dev2也仍可从信号提取电力。因此,在状况3中,在信令周期620期间启用接收装置中的每一者以接收电力且因此在信令周期620期间接收约50%的电力。可相等地分裂递归周期610的电力部分(即,递归周期610的未被信令周期620使用的部分)以在接收器装置Dev1与接收器装置Dev2之间进行时分多路复用。
[0118] 在图14E中,状况4情况展示用于接收器装置Dev1的时间线741及用于接收器装置Dev2的时间线742。在状况4中,接收器装置Dev1及Dev2经定位以接收来自发射天线204的不等量的电力,例如,接收器装置Dev1靠近发射天线204的中心放置且接收比接收器装置Dev2(接收器装置Dev2更接近于发射天线204放置)(如图13C中所展示)少的电力。接收器装置Dev1及Dev2中的每一者依赖于其到发射天线204的耦合来在供电区中的两个装置之间分派电力。因此,在状况4中,较好定位的接收器装置(例如,接收器装置Dev2)接收约75%的电力,而接收器装置Dev1接收另外25%的电力,因为电力划分是纯粹通过相对于发射天线204的位置来次最佳地确定。
[0119] 在图14F中,状况5情况展示用于接收器装置Dev1的时间线751及用于接收器装置Dev2的时间线752。在状况5中,接收器装置Dev1及Dev2经定位以用类似于图14E的方式的方式接收来自发射天线的不等量的电力。然而,虽然每一接收器装置部分依赖于其到发射天线204的相对耦合来分派电力,但每一接收器装置也可在需要时将其自身与发射天线204解耦。如果50/50电力分裂是所要的,则可在递归周期610的P2部分内停用接收器装置Dev2自身而不能够接收电力,而在P1部分期间Dev1保持启用以接收100%的电力。
[0120] 在P1部分及信令部分620期间,两个接收器装置保持接通,以使得接收器装置Dev1接收约25%的电力且接收器装置Dev2接收约75%的电力。可调整P1部分及P2部分的长度以便将约50%的电力(或在需要时为其它分派比例)分配给每一接收器装置Dev1及Dev2。状况5类似于状况2,但需要较少断开时间。举例来说,在状况5中,接收装置Dev1从未变为停用而不能够接收电力且仅在P2部分期间接收更多电力(归因于接收器装置Dev2停用)。
[0121] 在图14G中,状况6情况展示用于接收器装置Dev1的时间线761及用于接收器装置Dev2的时间线762。回想上文关于图7到图10的论述,可调整发射天线204的电力输出。因此,在图14G中,根据瓦数而非根据满电力的百分比来展示电力输出。在状况6中,接收器装置Dev1及Dev2经定位以接收来自发射天线204的约等量的电力。因此,在信令周期620期间,发射器可经设定以递送约4瓦,且接收器装置Dev1及Dev2中的每一者可接收约2瓦。在P1部分期间,停用接收器装置Dev1使其不能够接收电力,且将发射天线的电力输出设定到约3瓦,此电力输出主要被接收器装置Dev2消耗。在P2部分期间,停用接收器装置Dev2使其不能够接收电力,且将发射天线的电力输出设定到约4瓦,此电力输出主要被接收器装置Dev1消耗。
[0122] 图14A到图14G是作为一些可能情况的实例来给出。一般所属领域的技术人员将认识到,预期涉及更多接收器装置及各种电力输出电平的许多其它情况在本发明的范围内。
[0123] 所属领域的技术人员应理解,可使用多种不同技艺及技术中的任一者来表示信息及信号。举例来说,可通过电压、电流、电磁波、磁场或磁粒子、光场或光粒子或其任何组合来表示可能贯穿上述描述而参考的数据、指令、命令、信息、信号、位、符号及码片。
[0124] 所属领域的技术人员应进一步了解,结合本文中所揭示的示范性实施例所描述的各种说明性逻辑、模块、电路及算法步骤可经实施为电子硬件、计算机软件或两者的组合。为了清楚地说明硬件与软件的此互换性,上文已大体在功能性方面描述了各种说明性组件、块、模块、电路及步骤。将此功能性实施为硬件还是软件视特定应用及强加于整个系统的设计约束而定。所属领域的技术人员可对于每一特定应用以变化的方式实施所描述的功能性,但这些实施决策不应被解释为会引起偏离本发明的示范性实施例的范围。
[0125] 结合本文中所揭示的示范性实施例所描述的各种说明性逻辑块、模块及电路可用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程阵列(FPGA)或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件组件或其经设计以执行本文中所描述的功能的任何组合来实施或执行。通用处理器可为微处理器,但在替代例中,处理器可为任何常规的处理器、控制器、微控制器或状态机。也可将处理器实施为计算装置的组合,例如,DSP与微处理器的组合、多个微处理器、结合DSP核心的一个或一个以上微处理器,或任何其它此配置。
[0126] 结合本文中所揭示的示范性实施例所描述的方法或算法的步骤可直接体现于硬件中、由处理器执行的软件模块中,或所述两者的组合中。软件模块可驻留于随机存取存储器(RAM)、快闪存储器、只读存储器(ROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)、寄存器、硬盘、可装卸盘、CD-ROM或此项技术中已知的任何其它形式的存储媒体中。将示范性存储媒体耦合到处理器,以使得所述处理器可从所述存储媒体读取信息,并可将信息写入到所述存储媒体。在替代例中,存储媒体可与处理器形成一体。处理器及存储媒体可驻留于ASIC中。ASIC可驻留于用户终端中。在替代例中,处理器及存储媒体可作为离散组件驻留于用户终端中。
[0127] 在一个或一个以上示范性实施例中,可用硬件、软件、固件或其任何组合来实施所描述的功能。如果用软件来实施,则可将所述功能作为一个或一个以上指令或代码存储于计算机可读媒体上或在计算机可读媒体上传输。计算机可读媒体包括计算机存储媒体与通信媒体(通信媒体包括促进计算机程序从一处到另一处的传送的任何媒体)两者。存储媒体可为可由计算机存取的任何可用媒体。作为实例且非限制,此计算机可读媒体可包含RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置,或可用于以指令或数据结构的形式载运或存储所要的程序代码且可由计算机存取的任何其它媒体。又,将任何连接适当地称为计算机可读媒体。举例来说,如果使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)或例如红外线、无线电及微波的无线技术而从网站服务器或其它远程源发射软件,则同轴电缆、光纤电缆、双绞线、DSL或例如红外线、无线电及微波的无线技术包括在媒体的定义中。如本文中所使用的磁盘及光盘包括压缩光盘(CD)、激光光盘、光学光盘、数字多功能盘(DVD)、软磁盘及蓝光(blu-ray)光盘,其中磁盘通常磁性地再现数据,而光盘通过激光光学地再现数据。上述的组合也应包括在计算机可读媒体的范围内。
[0128] 提供所揭示的示范性实施例的先前描述以使得任何所属领域的技术人员能够制造或使用本发明。对于所属领域的技术人员来说,对这些示范性实施例的各种修改将容易显而易见,且可在不偏离本发明的精神或范围的情况下将本文中所定义的一般原理应用于其它实施例。因此,本发明不意在限于本文中所展示的实施例,而应符合与本文中所揭示的原理及新颖特征一致的最宽范围。
QQ群二维码
意见反馈