无线通信方法、无线通信系统和终端设备

申请号 CN201210284759.8 申请日 2006-01-06 公开(公告)号 CN102868429B 公开(公告)日 2016-01-06
申请人 富士通株式会社; 发明人 大出高义; 川端和生;
摘要 本 发明 涉及无线通信方法、无线通信系统和终端设备。在用于从包括多个天线的发送基站向包括多个天线的移动站发送多个流的无线通信系统中,发送基站经由多个天线分别发送通过分割要发送的数据而得到的各个流。移动站通过使用多个天线分别接收各个流。测量单元分别测量涉及来自各个天线的流的接收 质量 或接收功率。转换单元根据测量单元的测量结果针对各个流执行切换。
权利要求

1.一种在利用通过分割要发送的数据获得的多个数据流与多个基站设备通信的终端设备中的无线通信方法,所述无线通信方法包括:
当所述终端设备利用通过分割要发送的数据获得的多个数据流与第一基站设备通信时,所述终端设备将通过分割要发送的数据获得的所述多个数据流中的一个或更多个数据流的来源从所述第一基站设备改变为第二基站设备以利用所述一个或更多个数据流与所述第二基站设备通信;和
所述终端设备利用不包括用于与所述第二基站设备通信的所述一个或更多个数据流的一个或更多个数据流同时还与所述第一基站设备通信。
2.一种用于利用通过分割要发送的数据获得的多个数据流与基站设备和终端设备通信的无线通信系统,所述无线通信系统包括:
在第一基站设备中配备的用于利用通过分割要发送的数据获得的一个或更多个数据流与所述终端设备通信的单元;
在第二基站设备中配备的用于利用通过分割要发送的数据获得的一个或更多个数据流与所述终端设备通信的单元;以及
在所述终端设备中配备的用于利用通过分割要发送的数据获得的多个数据流通信的单元,
其中,
当利用通过分割要发送的数据获得的多个数据流与所述第一基站设备通信时,所述终端设备执行以下处理:
将通过分割要发送的数据获得的所述多个数据流中的一个或更多个数据流的来源从所述第一基站设备改变为所述第二基站设备以利用所述一个或更多个数据流与所述第二基站设备通信;和
利用不包括用于与所述第二基站设备通信的所述一个或更多个数据流的一个或更多个数据流同时还与所述第一基站设备通信。
3.一种用于经由通过分割要发送的数据获得的多个数据流与多个基站设备通信的终端设备,所述终端设备包括:
用于利用通过分割要发送的数据获得的多个数据流与包括第一基站设备和第二基站设备的多个基站设备通信的单元,
其中,
当利用通过分割要发送的数据获得的多个数据流与所述第一基站设备通信时,与所述多个基站设备通信的所述单元将通过分割要发送的数据获得的所述多个数据流中的一个或更多个数据流的来源从所述第一基站设备改变为所述第二基站设备以利用所述一个或更多个数据流与所述第二基站设备通信;和
与所述多个基站设备通信的所述单元利用不包括用于与所述第二基站设备通信的所述一个或更多个数据流的一个或更多个数据流同时还与所述第一基站设备通信。

说明书全文

无线通信方法、无线通信系统和终端设备

[0001] 本申请是针对申请日为2006年1月6日、申请号为200610000361.1、发明名称为“无线通信系统、发送器以及接收器”的原案申请的分案申请201010175857.9的再次分案申请。

技术领域

[0002] 本发明涉及用于经由多个天线发送多个流(stream)的MIMO(多输入多输出)传输技术。

背景技术

[0003] 在无线通信系统中,如果接收功率等降低,通过根据来自周围基站的接收功率、接收质量等将已连接的基站选择性地转换为最佳基站,能使移动终端(即终端)继续进行通信(例如,参见专利文献1、2、3和4,以及非专利文献1)。无线通信系统的一个示例是近来广泛传播的W-CDMA(宽带码分多址)系统。
[0004] 图1例示出采用W-CDMA系统的通信系统的结构。终端(即移动站,MS)接收来自多个发送基站(BTS)BTSa、BTSb、BTSc至BTSn的信号。移动站从该多个发送基站中选择具有最大接收功率的发送基站作为用于通信的最佳发送基站,以经由所选定的发送基站与网络相连接。如果移动站的移动使得来自附近发送基站(即,相邻的发送基站)的接收功率变得比来自所连接的发送基站的接收功率大,则例如执行将所连接的发送基站变成附近的发送基站的切换(handover),以便继续通信。在通过采用MIMO技术在发送基站与移动站之间同时发送并接收多个数据流的情况下,也根据通信环境执行切换。以下说明是在采用作为W-CDMA的一个标准规范的HSDPA(高速下行链路分组接入)的无线通信系统中利用MIMO技术的切换处理。
[0005] 图2示出根据传统技术的切换处理的总体视图,例示了在HSDPA系统100下的下行链路传输中(即,从发送基站到移动站的数据传输中)的切换处理。在图2的示例中,在发送基站与移动站之间构造2乘2的天线结构。
[0006] 如图2(a)所示,在切换之前,移动站102经由发送基站103A接收数据流。如图2(b)所示,当在移动站102处来自发送基站103B的接收功率变得比来自发送基站103A的接收功率大时,切换处理将发送基站103A改变为具有更大接收功率的发送基站103B,作为用于发送数据流的发送基站。在这种情况下,从发送基站103A发送的两个数据流被同时转换。该切换处理使得移动站102经由发送基站103B接收两个数据流。
[0007] 图3、4A和4B例示了根据传统技术的接收装置和发送装置的各结构。在此,移动站102是接收装置,而发送基站103是发送装置。而且在图3、4A和4B的示例中,移动站102和发送基站103分别包括用于发送和接收的3个天线,由此被构造为同时发送并接收3个数据流。另外,为了易于观看图3、4A和4B,将用于从发送基站103向移动站102发送数据流的天线(即Tx1至Tx3;以及Rx1至Rx3)与用于从移动站102向发送基站103发送信号的天线(即Tx0和Rx0)分开绘制。但是在实际结构中,各个天线既用于发送信号,也用于接收信号。即,天线Rx1至Rx3中的任意一个或多个实现移动站102包含的天线Tx0,同样,天线Tx1至Tx3中的任意一个或多个实现发送基站103包含的天线Rx0。注意这也适用于下文中分开绘制发送和接收天线的那些图。
[0008] 图3示出的传统移动站102包括3个天线Rx1、Rx2和Rx3,以及对应的接收单元111A、111B和111C。接收功率测量单元112A、112B和112C测量各个接收单元111A、111B和111C处的来自各个发送基站103的接收功率。切换判断单元113根据各个接收功率测量单元112的测量结果来计算总接收功率(即,各个发送基站处的接收功率之和),并判断是否执行切换。
[0009] 在如图4A所示的传统发送基站103中,天线Rx0接收从移动站102的天线Tx0发送的切换控制信息。通过接收单元将所接收的信息提供给切换控制信号提取单元131。将该切换控制信号发送到上级控制站,即,HSDPA系统100中的无线电网控制器(RNC)。
[0010] 图4B示出作为发送基站103上级站的RNC的涉及切换处理的结构。当将切换信号从发送基站103发送到RNC时,发送基站103的切换控制单元确定用于执行切换的定时。发送基站103的切换控制单元132通过从RNC接收通知来执行切换。
[0011] 图5示出传统系统中的切换的处理步骤。第一步骤是测量来自各个发送基站的接收功率(S101),比较来自移动站102周围的发送基站的总接收功率(S102),基于比较结果判断是否执行切换,如果判定要执行切换,则确定将切换到哪一个发送基站(S103)。
[0012] 图6是示出作为传统切换处理的一部分的接收功率的确定测量处理的流程图。在图6所示的示例中,在移动站的周围区域中存在n个发送基站,并且各终端站分别配备有m个天线。同时,将来自发送基站编号为j的发送基站的信号的接收功率定义为Pj,并且将由天线Ax接收的功率定义为Prx。
[0013] 在接收功率的测量处理中,初始化天线编号、发送基站编号以及来自各个发送基站的接收功率(S111),将发送基站编号j和天线编号i分别增加1(步骤S112和S113),并且当经由各个天线Ai从各个发送基站接收到信号时将接收功率Prx相加,从而得到接收功率之和(S114、S115和S116)。分别针对n个发送基站获得接收功率之和(S117)。
[0014] 如图5和6所示,在传统切换处理中,基于接收功率之和来判断切换的必要性,并且当发送基站从当前的发送基站转换为目标发送基站以发送数据流时,在切换前后,经由不同的发送基站来发送数据流。
[0015] 图7例示出根据传统技术的切换前后的数据发送。将切换定义为移动站102从发送基站BTS1之下移动到BTSh之下。如图7(a)所示,切换之前发送基站BTS1发送数据,而当上级控制站(即RNC)在预定定时执行切换时,它切断RNC与发送基站BTS1之间的路径,并替代地在RNC与另一个发送基站BTSh之间建立路径。如图7(b)所示,随后经由切换后的发送基站BTSh发送数据,而保留切换之前在发送基站BTS1中积累的数据不发送。
[0016] 如图7所示,如果保留发送基站BTS1中积累的数据不发送,则移动站102就不能接收全部数据。为了防止出现这种数据丢失,在传统技术中已使用了数据转发或重新发送。
[0017] 图8至图11描述了用于防止传统系统发生切换时的数据丢失的处理。在图8至图11中,用于指定的定义如下:当前发送基站(即切换出终端的站):BTSa;目标发送基站(即终端被切换到的站):BTSb;传递到BTSa和BTSb的数据分别为数据A和数据B。
[0018] 图8描述了切换之前在各个发送基站处的缓冲器的状态。无线电网络控制器RNC(即发送基站的上级控制站)经由所连接的BTSa将数据发送给移动站。在BTSa的缓冲器中积累数据A。
[0019] 图9描述了在切换后重新发送数据的情况下,在刚执行切换后的各个发送基站处的缓冲器的状态。在执行切换后,移动站102经由BTSb与网络连接。执行切换后BTSb的缓冲器积累数据B。同时,在执行切换前已经发送到BTSa的数据A不再保留在其缓冲器中。
[0020] 图10描述了通过上级控制站的数据重新发送处理。如图9所示,数据A是在切换之前发送到当前发送基站BTSa并积累在缓冲器中的数据。当丢弃BTSa中的数据A时,收到来自移动站102的请求的RNC(即上级控制站)将积累在BTSa中的数据A重新发送到BTSb,即目标发送基站。在BTSb中,在数据A的重新发送处理之前,在移动站102与RNC之间进行用于重新发送控制的信号交换,然后重新发送数据A。重新发送控制信号的交换和实际的重新发送处理是耗时的。
[0021] 图11描述了在切换之后转发数据的情况下,在刚执行切换后的各个发送基站处的缓冲器的状态。作为切换的结果,此方法将BTSa的缓冲器中积累的数据A经由RNC转发给BTSb。类似地,与图10所示的数据重新发送处理一样,对于此转发,控制信号的交换和实际的转发处理是耗时的。
[0022] 如通过参照图8至图11所述,由于在传统技术中,在同一时刻切换同时发送的多个数据流,所以在移动站102中发生数据丢失,除非将当前发送基站的缓冲器中积累的数据重新发送或转发到移动站102。存在这样的问题:切换处理要消耗与重新发送或转发数据的处理所花费的时间差不多的时间,因此导致传输速度下降。
[0023] 同时,在通过使用相同频率无线地同时发送分别来自多个发送系统的互相独立的数据流的系统中,如MIMO相关技术,存在这样的技术:如果移动站的接收功率(或接收质量)呈现预定的阈值或更小,则在从互相独立的多个数据流转换为多个子流之后,通过使用相同频率分别从多个发送系统同时无线地发送一发送数据流。根据这种技术,如果移动站存在于具有相对较大接收功率的发送基站的附近,则进行MIMO发送,然而如果移动站存在于接收功率相对较低的区域中,则进行分集发送(diversity transmission)。在这两个区域的附近,进行MIMO发送与分集发送之间的转换。
[0024] [专利文献1]日本特开第2004-72624号公报
[0025] [专利文献2]日本特开第2003-338781号公报
[0026] [专利文献3]日本特开第2004-229088号公报
[0027] [专利文献4]日本特开第2005-509565号公报
[0028] [非专利文献1]3GPP规范:25.211Rel-5,版本5.7.0,[在线],2005年8月2日,3GPP,2005年8月3日搜索到,因特网html-info/25211.htm>。

发明内容

[0029] 本发明的目的是缩短切换所需的时间,从而防止执行切换时传输速度的下降。
[0030] 为了解决上述问题,本发明提供一种无线通信系统,其用于将多个流从包括多个天线的发送装置发送到接收装置,所述无线通信系统包括:配备在发送装置中的发送单元,用于发送多个流;配备在接收装置中的接收单元,用于独立地接收从发送单元发送的各个流;测量单元,用于分别测量涉及来自发送单元的各个流的接收质量或接收功率;以及转换单元,用于根据测量单元的测量结果针对各个流执行切换。
[0031] 各个接收单元针对各个流来测量从发送单元发送的接收质量和接收功率。如果测量结果表明进行切换是优选的,则以流为单位执行切换。不再需要对当前基站处的数据进行丢弃、转发或重新发送处理,因此缩短了数据发送所需的时间。
[0032] 或者,该无线通信系统可以进一步包括判断单元,该判断单元用于通过将涉及来自正用于通信的第一发送装置中的第一发送单元的流的接收质量或接收功率与涉及来自第二发送装置中的第二发送单元的流的接收质量或接收功率分别进行比较,来判断是否有必要执行切换,其中如果判断需要执行切换,则所述转换单元将用于流通信的发送单元从第一发送单元转换为第二发送单元。
[0033] 此外,该无线通信系统可以按如下方式进行构造:如果涉及来自所述第二发送单元的流的接收质量或接收功率分别呈现出预定阈值,或者与涉及来自所述第一发送单元的流的接收质量或接收功率相比更大,则所述判断单元判断需要执行切换。
[0034] 并且本发明提供一种包括用于发送多个流的多个天线的发送器,所述发送器包括:发送单元,用于发送多个流;以及转换单元,用于根据涉及来自发送单元的各个流的接收质量或接收功率的各个测量结果,针对各个流执行切换。
[0035] 此外,本发明提供一种用于接收多个数据流的接收器,所述接收器包括:接收单元,用于接收从第一发送器和第二发送器发送的多个流;测量单元,用于分别测量涉及来自发送器的各个流的接收质量或接收功率;以及信号重新产生单元,如果基于测量单元的测量结果判断需要针对从第一发送器发送的多个流中的一部分流执行到第二发送器的切换,则根据从第一发送器发送的一个或更多个流以及从第二发送器发送的一个或更多个流重新产生信号。
[0036] 根据本发明,一旦针对各个数据流执行切换,则当前的发送基站不必丢弃、重新发送或转发数据,并且因此能够缩短切换处理所需的时间。缩短切换处理所需的时间防止了在执行切换时降低传输速度。附图说明
[0037] 图1例示出采用W-CDMA系统的通信系统的结构;
[0038] 图2示出根据传统技术的切换处理的概况;
[0039] 图3例示出根据传统技术的移动站的结构;
[0040] 图4A例示出根据传统技术的发送基站的结构;
[0041] 图4B例示出根据传统技术的无线电网络控制器的结构;
[0042] 图5示出传统系统中的切换的处理过程;
[0043] 图6是示出作为传统切换处理的一部分的接收功率的确定测量处理的流程图;
[0044] 图7例示出根据传统技术的在切换前后的数据发送;
[0045] 图8描述了切换之前各个发送基站处的缓冲器的状态;
[0046] 图9描述了在切换后重新发送数据的情况下,在刚执行切换之后各个发送基站处的缓冲器的状态;
[0047] 图10描述了通过上级控制站的数据重新发送处理;
[0048] 图11描述了在切换后转发数据的情况下,在刚执行切换之后各个发送基站处的缓冲器的状态;
[0049] 图12是根据本发明的切换方法的概念图
[0050] 图13示出根据第一实施例的执行切换的移动站的结构;
[0051] 图14例示出根据第一实施例的数据流的发送与接收;
[0052] 图15示出根据第一实施例的执行切换方法的发送基站的结构;
[0053] 图16例示出根据第一实施例的切换方法;
[0054] 图17是判断切换必要性的处理的流程图;
[0055] 图18是切换判断处理的控制顺序图(部分1);
[0056] 图19例示出切换信息的数据结构;
[0057] 图20A是切换信息的实际示例(部分1);
[0058] 图20B是切换信息的实际示例(部分2);
[0059] 图20C是切换信息的实际示例(部分3);
[0060] 图20D是切换信息的实际示例(部分4);
[0061] 图21是用于在当前发送基站中的积累数据的发送处理的流程图;
[0062] 图22例示出在执行切换之后,在发送基站处的积累数据的状态;
[0063] 图23是切换判断处理的控制顺序图(部分2);
[0064] 图24示出根据第二实施例的执行切换的移动站的结构;
[0065] 图25是根据第二实施例的切换处理的流程图;
[0066] 图26是根据第三实施例的切换处理的流程图;
[0067] 图27A例示出选定的目标发送基站;
[0068] 图27B例示出针对来自目标发送基站的各个流的接收功率;
[0069] 图28是根据第四实施例的切换处理的流程图;
[0070] 图29示出根据第五实施例的切换方法;
[0071] 图30是根据第六实施例的系统结构的概念图;以及
[0072] 图31是根据第六实施例的发送方法转换处理的流程图。

具体实施方式

[0073] 以下是参照附图对本发明优选实施例的详细说明。
[0074] <第一实施例>
[0075] 图12是根据本发明的切换方法的概念图。使用采用作为W-CDMA的一个标准规范的HSDPA(高速下行链路分组接入)的MIMO发送技术的无线通信系统1,包括发送基站BTS3(BTS3a和BTS3b)和移动站(MS)2。如图12(a)所示,在切换之前移动站2经由发送基站BTS3a接收多个数据流。关于针对相同数据流的接收功率,如果来自另一个发送基站(所辖移动站2未与其连接)的接收功率大于来自所连接的发送基站的接收功率,则针对前述数据流执行切换。如图12(b)所示,将执行切换后的数据流经由发送基站BTS3b发送到移动站2。将未对其执行切换的数据流跟以前一样经由发送基站BTS3a发送到移动站2。即,移动站2从发送基站BTS3a接收一个或更多个数据流,同时从发送基站BTS3b接收一个或更多个数据流。
[0076] 图13示出根据第一实施例的执行切换的移动站2的结构。在图13所示的示例中,示出3乘3(3x3)天线的结构作为m乘n(mxn)天线的无线通信系统的示例(其中m和n为整数)。
[0077] 图13所示的移动站2包括:多个天线Rx(Rx1、Rx2和Rx3),多个接收单元(21A、21B和21C),信号分离合成单元24,解码处理单元25,流接收功率测量单元22,切换判断单元23,以及发送单元26。
[0078] 多个接收单元21是用于处理经由各个天线Rx接收的信号的接口。信号分离合成单元24根据经由接收单元21从发送基站3接收的信号重新产生多个数据流,以将它们提供给解码处理单元25和流接收功率测量单元22。在这种情况下,仅导频信号(pilot signal)可被发送到流接收功率测量单元22。解码处理单元25对所重新产生的数据流进行解码。流接收功率测量单元22测量由信号分离合成单元24重新产生的各个流(即,具体为指导频信号)的接收功率。在这种情况下,流接收功率测量单元22测量从当前连接的发送基站接收的各个流的接收功率,以及来自位于移动站2的周围区域的其它发送基站的各个流的接收功率。切换判断单元23基于流接收功率测量单元22的测量结果来判断切换的必要性。在本实施例中,发送单元26是用于经由天线Tx0发送诸如切换请求的消息的接口。
[0079] 如参照图2A至6所述,在传统无线通信系统中,针对各个发送基站测量多个流的接收功率之和(即,总接收功率),并且根据总接收功率来判断进行切换的必要性。比较而言,在根据本实施例的无线通信系统1中,针对各个流测量接收功率,并且根据该结果判断切换的必要性。
[0080] 图14例示出根据本实施例的数据流的发送和接收。在无线通信系统1的控制下,移动站2从多个发送基站3(即,从图13所示的系统结构中的两个发送基站BTS3a和BTS3b)接收数据流。在m乘n(mxn)的无线通信系统中,发送基站3(即用于数据的发送器方装置)分割要发送的数据,并且经由m个天线发送数据流。移动站2(即用于数据的接收方装置)包括n个天线并且通过该天线接收数据流。用于在移动站2处将从发送基站BTS3a接收的接收信号分成各个数据流的信道响应矩阵如下:
[0081]
[0082] 信号分离合成单元24通过使用表达式(1)所示的矩阵来分离经由发送基站BTS3a接收的数据流。将经分离的信号提供给解码处理单元25以获得经解码的信号。
[0083] 注意,在此将移动站2构造为通过利用从发送基站BTS3a发送的导频信号,预先确定发送基站BTS3a与移动站2之间的信道响应矩阵。并且还将移动站2构造为通过使用从周围区域中的发送基站(即,在此为发送基站BTS3b)发送的导频信号确定发送基站BTS3b与移动站2之间的信道响应矩阵。发送基站BTS3b与移动站2之间的信道响应矩阵如表达式(2)所示:
[0084]
[0085] 这里,假设从发送基站BTS3b的天线2发送的流的接收功率超过了从发送基站BTS3a的天线2发送的流的接收功率,导致执行根据本发明的切换,如图12所示。在这种情况下,用来在移动站2处将从发送基站BTS3a和BTS3b接收的信号分成各个流的信道响应矩阵表示为:
[0086]
[0087] 在上述表达式(3)中,第二行的矩阵元b21、b22至b2m表示发送基站BTS3b的第二天线与移动站2之间的传播特性。
[0088] 因此,根据本发明,用目标发送基站的信道响应矩阵的矩阵元取代信道响应矩阵中涉及要对其转换的数据流的矩阵元,来针对各个数据流执行切换。
[0089] 图15示出执行根据第一实施例的切换方法的发送基站3的结构,示出与图13的情况相同的3乘3(3x3)天线的结构。
[0090] 图15所示的发送基站3包括:发送数据单元33,S/P单元34,导频发生单元35,多个发送单元36(即36A、36B和36C),多个天线Tx(即Tx1、Tx2和Tx3),接收单元37,控制信号解码单元31,以及流选择单元32。
[0091] 发送数据单元33包括存储器,该存储器用于积累要发送给移动站2的数据,所述数据从上级控制站(即HSDPA系统中的RNC)接收。S/P单元34对从上级控制站接收的串行信号进行并行化,以将其提供给各个发送单元36。导频发生单元35产生与各个流相对应的导频信号。图15的示例中的多个发送单元36(即36A、36B和36C)是分别用于经由天线Tx1、Tx2和Tx3发送导频信号和数据的接口。接收单元37是用于经由天线Rx0接收来自图13所示的移动站2的切换请求等的接口。控制信号解码单元31对接收单元37给出的控制信号进行解码。流选择单元32基于经解码的控制信号来选择要进行转换的数据流,并且控制S/P单元34和导频发生单元35。
[0092] 针对下面的说明,不妨进行如下定义:当前与移动站2连接的发送基站为BTS3a,而位于移动站2的周围区域中除了BTS3a以外的那些发送基站为BTS3b、BTS3c至BTS3n。移动站2包含的流接收功率测量单元22测量从发送基站3发送的各个数据流的接收功率Pbts3a、Pbts3b至Pbts3n。切换判断单元23比较针对各个数据流的接收功率Pbts3a、Pbts3b至Pbts3n的值,由此判断切换的必要性。注意,将要测量的已接收功率定义为基于导频信号测量的已接收功率。
[0093] 图16例示出根据第一实施例的切换方法。如图16(a)所示,切换之前,全部3个数据流(即st1、st2和st3)从BTS3a发送给移动站2。在这3个数据流中,如果对于数据流st2来自BTS3b的接收功率超过来自BTS3a的接收功率,则因此导致执行切换到BTS3b的判断,随后对用于数据流st2的路径进行转换。如图16(b)所示,保持剩余的两个数据流(即st1和st3)仍从BTS3a向移动站2发送。
[0094] 图17是用于判断切换必要性的处理的流程图。仅在当如图13所示构造的移动站2以预定的时间间隔接收从发送基站3发送的导频信号时才执行图17所示的处理。
[0095] 首先,步骤S1将数据流stk设置为判断切换必要性的对象,根据本实施例在该步骤中设置数据流st1、st2或st3中的任意一个。步骤S2测量从当前连接的发送基站BTS3a接收的数据流stk的接收功率Pbts3a_stk。步骤S3测量与附近的发送基站BTS3b、BTS3c至BTS3n有关的数据流stk的接收功率Pbts3b_stk、Pbts3c_stk至Pbts3n_stk。步骤S4从步骤S3中计算的数据流stk的接收功率中计算出最大接收功率Pbts3h_stk。
[0096] 步骤S5将来自当前连接的发送基站BTS3a的Pbts3a_stk与步骤S4中计算出的最大接收功率Pbts3h_stk进行比较。如果最大接收功率Pbts3h_stk大于接收功率Pbts3a_stk,则步骤S6判断有必要执行切换,于是结束处理。相反,如果最大接收功率Pbts3h_stk小于或等于接收功率Pbts3a_stk,则步骤S7判断不必执行切换,于是结束处理。对于在步骤S5的处理中判定有必要切换的数据流stk,执行切换,以便经由具有最大接收功率的发送基站BTS3h向移动站2进行发送。
[0097] 针对全部同时发送的数据流中的每一个(即根据本实施例的三个数据流st1、st2和st3中的每一个)执行图17所示的处理,并由此确定用于发送各个数据流的最佳发送基站(即,定义为BTS3i)。一旦确定针对特定数据流执行切换,则用于RNC等处对切换进行控制的切换控制单元确定目标发送基站BTS3i,向该目标发送基站BTS3i发送从上级站发送的数据,并且停止向当前发送基站BTS3a发送数据。
[0098] 注意,本实施例包括如图13所示的移动站2中的切换判断单元23,但是移动站2不是唯一能够判断切换必要性的单元。RNC或发送基站3可以基于移动站2中针对各个数据流的接收功率的测量结果进行判断。以下描述例示出RNC和移动站2判断切换必要性的情况,以便详细说明用于这两种情况的控制过程。
[0099] 图18是在移动站2判断切换必要性的情况下的切换判断处理的控制顺序图。仅在移动站2接收到以预定的时间间隔从发送基站发送的导频信号时才执行图18所示的处理。
[0100] 首先,在移动站2中,针对各个数据流测量接收功率。比较所测得的针对各个数据流的接收功率,来判断切换的必要性。针对各个数据流的接收功率的测量和基于测量结果对切换必要性的判断与参照图17所述的相同。这里,如果判断是执行切换,则移动站2向RNC发送切换执行通知消息,随后向RNC发送切换信息。这里,切换信息是关于流编号、目标发送基站等的信息,例如,表明哪个数据流要转换到哪个发送基站。
[0101] 收到切换执行通知和切换信息后,RNC向移动站2发送切换信息。这里,从RNC向移动站2发送的切换信息例如包括流编号、目标发送基站信息、当前发送基站信息、切换定时信息等。此外,RNC确定并控制用于执行切换的触发器(trigger)。RNC将其确定的切换定时通知目标发送基站BTS3i、当前发送基站BTS3a和移动站2。根据来自RNC的切换定时通知执行切换。
[0102] 在RNC与发送基站之间进行切换启动控制处理,并转换数据流的路径。在切换处理中,向目标发送基站BTS3i和当前发送基站BTS3a发送诸如“线路建立”、“线路连接”、“线路断开”等消息作为通知。当完成切换时,移动站2向目标发送基站发送切换完成控制消息,并且目标发送基站在收到该消息后发送切换完成控制消息并结束处理。
[0103] 在图18所示的顺序中从RNC向移动站2发送的切换消息使得各个通信装置能够识别关于数据流或发送基站的信息以执行切换。以下描述是参照图19以及图20A至20D,关于在RNC下从RNC向发送基站3和移动站2发送的信息。
[0104] 图19例示出由RNC向下级装置发送的作为通知的切换信息的数据结构;而图20A至20D是切换信息的明确示例。图19所示的切换信息包括针对各个数据流的切换(HO)执行信息、目标发送基站信息、当前发送基站信息以及切换定时信息(即,切换执行时刻信息)。
[0105] 切换(HO)执行信息例如表明多个同时发送的数据流中要转换的数据流,或针对各个数据流的转换必要性。图20A是切换执行信息的实际示例,存储表示针对多个数据流(即,这里的6个数据流)中的每一个执行切换的必要性的数据。
[0106] 根据图20A的“示例1”,要转换的数据流为6个数据流中编号为“1”、“3”、“5”和“6”的流。根据图20A的“示例2”,要转换的数据流只有“3”。如图20A所示,可以通过用于要转换的数据流的“1”和用于不转换的数据流的“0”来对此信息进行编码,并且将其存储在图19的预定区中作为切换执行信息。另选地,例如可以在图19的预定区中存储要转换的数据流的流编号作为切换信息。
[0107] 目标站信息表明在执行切换后成为用于移动站2的连接站的发送基站3。图20B是目标站信息的实际示例。图20B的“示例1”示出编号1、3、5和6的流分别转换到站编号“120”、“121”、“120”和“121”的发送基站。另外,示例1示出编号2和4的流存储零(“0”)作为站编号,其表明将不会执行切换。同样地,对于示例2,具有流编号3的数据流转换到具有发送基站编号“23”的发送基站,同时其它数据流存储零(“0”),因此不执行切换。
[0108] 当前站信息表明在执行切换前移动站2与之连接的发送基站3。图20C是当前站信息的实际示例。如图20C所示,如果存储除了零(“0”)以外的编号作为与流编号对应的当前发送基站的编号,则表示在执行切换前移动站2与之连接的发送基站的发送基站编号。如果存储零(“0”),则表示针对该对应流编号的数据流不执行切换。在示例1中,图20C所示的数据表明将针对其执行切换处理的全部4个数据流与具有发送基站编号“1”的发送基站相连接。同样地,在示例2中,图20C所示的数据表明将针对其执行切换处理的编号为3的数据流与具有发送基站编号“1”的发送基站相连接。
[0109] 切换定时信息存储绝对时间、相对时间或以为单位的值。图20D是切换定时信息的实际示例。图20D所示的切换定时信息表明在通知切换信息后过多少帧会启动切换。针对数据流存储的零值(“0”)表明不会执行切换。在图20D的示例1中,针对分别通过切换而转换的编号1、3、5和6的数据流,分别在20、20、18和22帧启动切换。同样,在示例2中,对于编号为3的数据流,在10帧处启动切换。
[0110] 注意,切换执行信息不限于图19所示的上述结构,而可以通过例如汇编了上述针对各个数据流的各种信息片的任何结构实现。或者可以表示出只与要对其执行切换的数据流有关的切换执行信息,而可以略去与不对其执行切换的数据流有关的信息。
[0111] 基于切换执行信息针对预定数据流转换路径之后,发送基站(即,上述示例中的BTS3a)的缓冲器(即,图15所示的发送数据单元33)留有已转换的数据流stk的未发送数据。按照根据本实施例的切换方法,通过另一个数据流发送未发送数据。即,在根据本实施例的切换方法中,并非一次对所有数据流执行切换,通过使用未对其执行切换的数据流可以发送数据,直到发送了当前发送基站BTS3a处的发送数据单元33中积累的数据。
[0112] 图21是用于当前发送基站中积累的数据的发送处理的流程图。如果图17所示的判断切换必要性处理的步骤S6判断“有必要执行切换”,则执行图21所示的处理。
[0113] 首先,当处理开始时,步骤S11针对各个数据流判断是否需要切换,并且步骤S12计算已判定不需要执行切换的数据流的数量(即ST_rest)。步骤S13判断在执行切换后是否存在当前发送基站继续使用其发送数据的数据流(即,ST_rest>0)。
[0114] 如果在执行切换后不从当前发送基站继续发送数据,即,如果对所有数据流执行切换,则步骤前进到S14,以针对各个数据流执行切换。在针对数据流逐一地依次执行切换时,将所积累的数据发送到移动站2。注意,可以在发送基站中的所有积累数据都已发送后执行步骤S14的处理。
[0115] 如果在执行切换后继续从当前发送基站发送数据,即,存在不对其执行切换的数据流,则处理前进到步骤S15,并且计算在发送基站的发送数据单元33中积累的数据量(即,Mdata)。步骤S16判断积累的数据量是否存在(即,Mdata>0?)。
[0116] 如果在发送基站中不存在积累的数据,则处理前进到步骤S17,针对剩余的数据流执行切换。如果存在积累的数据,则处理前进到步骤S18,通过使用不对其执行切换的数据流进行发送,直到完全发送了当前发送基站BTS3a中积累的数据。
[0117] 另外,关于步骤14中的切换顺序,例如,以来自连接的发送基站的数据流接收功率是相对较低功率的顺序来执行切换,这使得能够可靠地执行数据发送,由此可以防止整体传输速度下降。
[0118] 图22例示出根据本实施例的执行切换后在发送基站处的积累数据的状态。在执行切换前已经从RNC发送到发送基站BTS3a并且还将发送到移动站2的数据(即数据A)在执行切换时仍积累在发送基站BTS3a的缓冲器中。根据本发明的切换方法,即使用于一个数据流的路径被转换为经由发送基站BTS3b,仍能够通过图21所示的处理,通过使用发送基站BTS3a的未被执行切换的天线,将未发送的数据A发送给移动站2。另外,作为切换的结果,在转换路径时从RNC向发送基站BTS3b发送的数据B从发送基站BTS3b发送到移动站2。
[0119] 当将发送基站BTS3a的发送数据单元33中积累的数据全部发送给移动站2时,RNC取消与发送基站BTS3a的连接。同样,在目标发送基站BTS3i中,根据本实施例,基于针对各个数据流的接收功率执行切换。
[0120] 上述切换方法被构造为RNC将如图19所示的切换执行信息通知给全部目标发送基站BTS3i、当前发送基站BTS3a和移动站2,但不限于此。同时,上述对其执行切换的数据流编号、发送基站编号等仅为示例,并非旨在设置上限等。例如,可以对针对每个数据流或针对特定数据流选择的各个目标发送基站执行切换。另选地,可以根据通信环境指配优先级,例如首先针对特定的数据流执行切换。相同的考虑同样适用于下述实施例。
[0121] 关于要对其执行切换的数据流的顺序,可以一次对判定为切换对象的所有数据流全部执行,或者对各个数据流逐一依次执行。在每个数据流执行一次切换的情况下,可以针对各个数据流比较来自各个目标基站的接收功率,并且以具有最低接收功率的数据流最先的顺序执行切换,这使得可以可靠地发送各个数据流。另选地,能够以具有最高接收功率的数据流最先的顺序执行切换。
[0122] 图23是在RNC判断切换必要性的情况下切换判断处理的控制顺序图。说明集中在与已参照图18所述的移动站判断切换必要性的情况相比的不同之处。
[0123] 测量了各个数据流的接收功率后,移动站2通过将其包括在测量结果消息中向RNC报告测量结果。测量结果消息例如包括流编号、正发送的发送基站、接收功率等。
[0124] 收到测量结果通知后,与图18所示的移动站2基于接收功率进行判断的情况一样,RNC基于其中包括的信息针对各个数据流判断切换的必要性。对于在前述判断中被判定为需要切换的数据流,将切换信息的通知发送给目标发送基站、当前发送基站和移动站2,然后以与之前描述的方法相同的方法在随后的处理中执行切换处理。
[0125] 在图18和23所示的处理中分别由移动站2和RNC执行的切换判断处理可以由发送基站3执行。如果发送基站3判断了切换的必要性,则其顺序是该基站3从移动站2接收包括在移动站2处测量的针对各个数据流的接收功率的信息。由于发送基站3基于收到的信息判断切换的必要性,因此如果判定了切换的必要性,则将图19以及图20A至20D所示的切换控制信息作为通知发送给RNC、移动站2和目标发送基站。随后基于所通知的切换控制信息对每个数据流执行切换。
[0126] 注意,以上描述利用接收功率来判断切换的必要性,但是不限于此。例如,可以替代地使用接收场强或接收质量(如SIR,即信噪功率比)。下面的描述也利用接收功率来判断切换的必要性,但是也能够通过使用接收场强或接收质量来执行相同的切换。
[0127] 上述实施例例示出从发送基站3向移动站2进行发送,但是不限于此。例如,可以将上述切换方法应用于从移动站2向发送基站3的发送,或者移动站2之间的发送。注意,下面的描述同样不限于从发送基站3向移动站2的发送。
[0128] <第二实施例>
[0129] 图24示出根据第二实施例的执行切换的移动站2的结构。说明关于与如图13所示的根据第一实施例的移动站2的结构相比的不同之处。注意,根据本实施例的用于执行切换的发送基站3与如图15所示的根据第一实施例的发送基站相同,因此在此略去其说明。
[0130] 如图24所示,根据第二实施例的移动站2与根据第一实施例的移动站2的不同之处在于:前者包括接收功率测量单元27(27A、27B和27C),用于测量经由各个天线Rx接收的接收导频信号的接收功率。接收功率测量单元27A、27B和27C测量经由各个天线接收的信号的接收功率,并且将测量结果提供给切换判断单元23,然后切换判断单元23计算由各个接收功率测量单元27提供的接收功率之和(总接收功率),并确定目标发送基站。基于流接收功率测量单元22的测量结果决定对多个数据流中的哪个数据流执行切换的确定处理与第一实施例相同。
[0131] 图25是根据本实施例的切换处理的流程图。每当移动站2接收到以预定的时间间隔从发送基站3发送的导频信号时,执行图25所示的处理。以下说明是参照图25的根据本实施例的切换方法。
[0132] 首先,步骤S21是接收功率测量单元27测量来自当前连接的发送基站BTS3a以及附近的发送基站BTS3b至BTS3n的总接收功率。步骤S22是通过比较各个总接收功率来确定具有最大接收功率的发送基站BTS3h。步骤S23是将来自发送基站BTS3h的总接收功率Pbts3h与来自当前连接的发送基站BTS3a的总接收功率Pbts3a进行比较,而且如果Pbts3h大于Pbts3a,则判断为需要执行切换。
[0133] 在步骤S24中,流接收功率测量单元22测量来自当前连接的发送基站BTS3a以及在步骤S23中被判断为目标站的发送基站BTS3h的针对各个数据流的接收功率。步骤S25针对各个数据流将来自发送基站BTS3a的接收功率与来自发送基站BTS3h的接收功率进行比较;并且,如果来自发送基站BTS3h的接收功率最大,则步骤S26判断针对该数据流的切换是必要的。步骤S27经由发送基站BTS3a向RNC报告涉及发送基站BTS3h和数据流的切换控制信息,而且步骤S28基于报告执行切换以结束处理。
[0134] 在步骤S25和S26中,通过比较接收功率选择要对其执行切换的数据流的处理与图17所示根据第一实施例的一系列处理相同。不同之处在于:基于总接收功率的值判断目标发送基站,该目标发送基站是对其执行切换的数据流共有的。
[0135] 如上所述,根据本实施例,针对需要切换的数据流和接收功率大于当前连接的发送基站的发送基站执行切换。因此,除了根据上述实施例的切换方法的益处外,益处还在于针对各个数据流进行到共同的发送基站的切换,而不是执行到不同的发送基站的切换。即,在每个流的切换时,不可能存在三个或更多个发送基站与移动站之间的连接,因此可以期待提高数据发送效率。
[0136] <第三实施例>
[0137] 根据本实施例的切换方法与第二实施例的将要执行切换的数据流的路径转换到共同的目标发送基站的情况相同,但是与第二实施例的不同之处在于:基于针对各个数据流的最佳目标发送基站的统计数据来确定目标站。由于根据本实施例的移动站2和发送基站3的结构与第一实施例的情况相同,因此在以下根据本实施例的切换方法的说明中略去对它们的说明。
[0138] 图26是根据第三实施例的切换处理的流程图。与图17和25所示处理的情况相同,在从发送基站3接收到导频信号时执行图26所示的处理。注意,图26所示的流程图用于同时发送的数据流的数量为“m”的情况。
[0139] 首先,步骤S31将用于标识各个数据流的流编号初始化为零(“0”)。步骤S32递增流编号k,而步骤S33测量来自当前连接的发送基站BTS3a的流编号为k的数据流的接收功率Pbts3a_stk。步骤S34测量来自附近的发送基站BTS3b至BTS3n的流编号为k的数据流的接收功率Pbts3b_stk至Pbts3n_stk,而步骤S35计算Pbts3a_stk至Pbts3n_stk中的最大接收功率Pbts3h_stk。
[0140] 步骤S36将最大接收功率Pbts3h_stk与来自当前连接的发送基站BTS3a的接收功率Pbts3a_stk进行比较。如果接收功率Pbts3a_stk的值超过最大接收功率Pbts3h_stk的值,则处理前进到步骤S37,判断针对该数据流不必进行切换,并在步骤S38中存储当前连接的发送基站“BTS3a”作为选定的目标发送基站。进行存储后,处理前进到步骤S41。这里,选定的目标发送基站意味着在执行切换时针对数据流的共同目标发送基站的候选发送基站。
[0141] 如果最大接收功率Pbts3h_stk的值超过来自当前连接的BTS3a的接收功率Pbts3a_stk的值,则处理从步骤S36前进到步骤S39,判断需要切换。步骤S40将存储具有最大接收功率的发送基站“BTS3h”作为选定的目标发送基站,并且处理前进到步骤S41。
[0142] 步骤S41判断是否对所有数据流都完成了步骤S33至步骤S38或至步骤S40的处理,并在步骤S32中重复这些处理,直到针对流编号k等于m(k=m)的数据流进行了处理。
[0143] 图27A例示出步骤S38和S40中存储的选定目标发送基站。该表针对与发送基站相关联的各个数据流,存储具有最大接收功率的发送基站作为选定的发送基站。
[0144] 步骤S42通过参考针对各个数据流的选定的目标发送基站来确定目标发送基站。本实施例被构造为将最多次选定的发送基站作为目标发送基站。例如,图27A所示的数据表表明发送基站BTS3b被存储为最多次“选定发送基站”,并因此将发送基站BTS3b选为目标发送基站。
[0145] 步骤S43和S44中的处理相当于并等同于图25所示的步骤S27和S28中的处理,因此这里略去其说明。图27B例示出来自在上一个步骤中被确定为目标发送基站的发送基站的各个数据流的接收功率。步骤S44,能够以来自如图27B所示实际要对其执行切换的那些发送基站中具有最高或最低接收功率的数据流的顺序来执行切换。
[0146] 根据如上所述的本实施例,利用基于各个数据流的接收功率选择的各个目标发送基站,针对各个数据流选择共同目标发送基站而不是不同的目标发送基站。即,根据要切换的数据流的情况执行到共同目标发送基站的切换。
[0147] 另外,至于对被判定为需要切换的那些数据流中的哪个数据流执行切换,例如可以给予具有最高接收功率或最低接收功率的数据流优先级。在其它方法中,从相邻的发送基站BTS3x的接收功率Pbts3x_stk中减去当前连接的发送基站的接收功率Pbts3a_stk,并能够基于接收功率之差Pdiff_stk=Pbts3x_stk-Pbts3a_stk来确定执行切换的顺序。
[0148] <第四实施例>
[0149] 根据本实施例的切换方法与上述实施例的不同之处在于:前者预先针对各个数据流设置阈值,并且当来自当前连接的发送基站的接收功率与来自相邻发送基站的接收功率之差超过该阈值时判断需要切换。
[0150] 图28是根据第四实施例的切换处理的流程图。将上述设置用于判断切换的阈值定义为Pth。与图17、25和26所示的处理一样,用于启动图28所示的处理的定时是收到导频信号的时刻。步骤S51至S55以及S56中的处理对应于图17所示的步骤S1至S5以及S7,它们分别执行相同的处理,因此这里略去其说明。
[0151] 步骤S57计算如第三实施例所述的接收功率之差Pdiff_stk。步骤S58比较差值Pdiff_stk与阈值Pth的大小。如果差值Pdiff_stk超过阈值Pth,则处理前进到步骤S59,判断需要切换,但是如果Pdiff_stk等于或小于Pth,则处理前进到步骤S56,判断不需要切换,随后结束处理。
[0152] 根据本实施例的切换方法,直到来自当前连接的发送基站的接收功率与来自相邻发送基站的接收功率之差超过预定量值,否则判断不需要切换。这使得除了根据上述实施例的切换的益处之外,还可以防止太过频繁地执行切换。
[0153] 注意,上述实施例假设设置了共同的阈值,但是如果针对各个数据流设置不同的阈值Pth(k),也可以获得与根据本实施例的切换方法同样的益处。
[0154] <第五实施例>
[0155] 根据本实施例的切换方法被构造为在执行了根据上述实施例的任一种切换方法之后,通过利用如下事实:即在发送基站中数据流的数量减少(即,一部分用于发送数据的资源(即,多个天线中的一部分)处于未使用的状态),对来自前述发送基站的数据流执行分集发送。对根据本实施例的切换方法的下列描述参照附图。
[0156] 图29例示出根据第五实施例的切换方法。如图29(a)所示,在切换之前,发送基站BTS3a向移动站2同时发送三个数据流st1、st2和st3。假设已经通过根据第一至第四实施例的上述切换方法中的任一执行了切换,将数据流st2转换为经由相邻发送基站BTS3b来发送。
[0157] 因为转换到经由相邻发送基站BTS3b来发送,所以发送基站BTS3a的天线Tx2未使用。如图29(b)所示,通过使用因切换而已成为未使用的天线Tx2,在发送基站BTS3a处针对未对其执行切换的数据流进行分集发送。在图29(b)的示例中,对通常由天线Tx1发送的数据流st1进行分集发送。通过该分集发送,同一数据流st1经由发送基站BTS3a的天线Tx1和Tx2发送到移动站2。这种构造使得在根据上述实施例的切换处理时可以改善数据流st1的发送质量,并且因改善发送质量还可以提高传输速度。
[0158] 同时,关于作为分集发送对象的数据流的选择,一种配置可以是选择移动站2处具有大接收功率或小接收功率的数据流。或者,如果存在发送数据的属性,即诸如最大延时的QoS(业务质量),并且对各个数据流的希望发送质量不同,则可以基于该属性进行选择。
[0159] <第六实施例>
[0160] 本实施例根据通信环境等将用于数据发送的方法从MIMO发送转换为分集发送。
[0161] 图30是根据第六实施例的系统结构的概念图。区域A是与发送基站3相对较近的小区,而区域B是与发送基站相对较远的小区。如果移动站2位于区域A中,则其中的接收功率大,于是可以预期好的通信质量。随着移动站2移动到区域B,移动站2处的接收功率降低,因此预期通信质量下降。本实施例被构造为基于接收功率等,例如在预期通信质量下降的环境中,按流逐一从通过MIMO的数据通信转换为通过分集发送的数据通信。
[0162] 图31是根据本实施例的发送方法转换处理的流程图。如上述实施例的情况一样,在移动站2从发送基站3接收导频信号的定时,启动图31所示的处理。
[0163] 首先,步骤S61测量来自当前连接的发送基站(BTS3a)的接收功率,其测量由移动站2的各个天线接收的总功率(定义Pbts3a)。下一个步骤S62将针对发送基站BTS3a设置的预定阈值Pbts3a_th与接收功率Pbts3a进行比较。如果接收功率Pbts3a大于或等于阈值Pbts3a_th,则处理进入步骤S63并继续通过MIMO通信,结束处理。如果接收功率Pbts3a小于阈值Pbts3a_th,则处理前进到步骤S64,并将流编号k初始化为零(“0”),随后前进到步骤S65。对流编号为k的数据流重复进行步骤S65至S67中的处理,直到针对所有数据流测量了来自当前连接的发送基站BTS3a的接收功率Pbts3a_stk。图31例示出m个数据流的情况。
[0164] 步骤S68比较数据流的接收功率,由此选择要从MIMO通信转换成分集发送的数据流;并且步骤S69将选定的数据流转换成通过分集发送的通信,随后结束处理。
[0165] 注意,上述示例基于接收功率的大小来判断选择MIMO发送或分集发送来进行发送,然而构造不限于此。例如,可以考虑接收功率和接收质量(例如SIR)这二者来进行判断。
[0166] 而且,在步骤S62中,是否将用于数据流的发送方法从通过MIMO的发送转换成分集发送的判断是基于独立于流的接收功率的测量的,但是构造不限于此。例如,可以针对具有流编号k的数据流准备阈值Pth(k),并且可以基于与对应于阈值Pth(k)的接收功率Pbts3a_stk的大小关系来做出判断。
[0167] 如上所述,即使在出现接收功率降低的情况下,本发明也可以通过根据通信环境的通信方法来发送数据流,因此有助于维持通信质量。
QQ群二维码
意见反馈